deque.tcc: Trivial formatting fixes.
[gcc.git] / libstdc++-v3 / include / bits / locale_facets.tcc
1 // Locale support -*- C++ -*-
2
3 // Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 // USA.
21
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
30
31 // Warning: this file is not meant for user inclusion. Use <locale>.
32
33 #ifndef _LOCALE_FACETS_TCC
34 #define _LOCALE_FACETS_TCC 1
35
36 #pragma GCC system_header
37
38 #include <limits> // For numeric_limits
39 #include <typeinfo> // For bad_cast.
40 #include <bits/streambuf_iterator.h>
41
42 namespace std
43 {
44 template<typename _Facet>
45 locale
46 locale::combine(const locale& __other) const
47 {
48 _Impl* __tmp = new _Impl(*_M_impl, 1);
49 try
50 {
51 __tmp->_M_replace_facet(__other._M_impl, &_Facet::id);
52 }
53 catch(...)
54 {
55 __tmp->_M_remove_reference();
56 __throw_exception_again;
57 }
58 return locale(__tmp);
59 }
60
61 template<typename _CharT, typename _Traits, typename _Alloc>
62 bool
63 locale::operator()(const basic_string<_CharT, _Traits, _Alloc>& __s1,
64 const basic_string<_CharT, _Traits, _Alloc>& __s2) const
65 {
66 typedef std::collate<_CharT> __collate_type;
67 const __collate_type& __collate = use_facet<__collate_type>(*this);
68 return (__collate.compare(__s1.data(), __s1.data() + __s1.length(),
69 __s2.data(), __s2.data() + __s2.length()) < 0);
70 }
71
72 /**
73 * @brief Test for the presence of a facet.
74 *
75 * has_facet tests the locale argument for the presence of the facet type
76 * provided as the template parameter. Facets derived from the facet
77 * parameter will also return true.
78 *
79 * @param Facet The facet type to test the presence of.
80 * @param locale The locale to test.
81 * @return true if locale contains a facet of type Facet, else false.
82 */
83 template<typename _Facet>
84 inline bool
85 has_facet(const locale& __loc) throw()
86 {
87 const size_t __i = _Facet::id._M_id();
88 const locale::facet** __facets = __loc._M_impl->_M_facets;
89 return (__i < __loc._M_impl->_M_facets_size && __facets[__i]);
90 }
91
92 /**
93 * @brief Return a facet.
94 *
95 * use_facet looks for and returns a reference to a facet of type Facet
96 * where Facet is the template parameter. If has_facet(locale) is true,
97 * there is a suitable facet to return. It throws std::bad_cast if the
98 * locale doesn't contain a facet of type Facet.
99 *
100 * @param Facet The facet type to access.
101 * @param locale The locale to use.
102 * @return Reference to facet of type Facet.
103 * @throw std::bad_cast if locale doesn't contain a facet of type Facet.
104 */
105 template<typename _Facet>
106 inline const _Facet&
107 use_facet(const locale& __loc)
108 {
109 const size_t __i = _Facet::id._M_id();
110 const locale::facet** __facets = __loc._M_impl->_M_facets;
111 if (!(__i < __loc._M_impl->_M_facets_size && __facets[__i]))
112 __throw_bad_cast();
113 return static_cast<const _Facet&>(*__facets[__i]);
114 }
115
116 // Routine to access a cache for the facet. If the cache didn't
117 // exist before, it gets constructed on the fly.
118 template<typename _Facet>
119 struct __use_cache
120 {
121 const _Facet*
122 operator() (const locale& __loc) const;
123 };
124
125 // Specializations.
126 template<typename _CharT>
127 struct __use_cache<__numpunct_cache<_CharT> >
128 {
129 const __numpunct_cache<_CharT>*
130 operator() (const locale& __loc) const
131 {
132 const size_t __i = numpunct<_CharT>::id._M_id();
133 const locale::facet** __caches = __loc._M_impl->_M_caches;
134 if (!__caches[__i])
135 {
136 __numpunct_cache<_CharT>* __tmp = NULL;
137 try
138 {
139 __tmp = new __numpunct_cache<_CharT>;
140 __tmp->_M_cache(__loc);
141 }
142 catch(...)
143 {
144 delete __tmp;
145 __throw_exception_again;
146 }
147 __loc._M_impl->_M_install_cache(__tmp, __i);
148 }
149 return static_cast<const __numpunct_cache<_CharT>*>(__caches[__i]);
150 }
151 };
152
153 template<typename _CharT, bool _Intl>
154 struct __use_cache<__moneypunct_cache<_CharT, _Intl> >
155 {
156 const __moneypunct_cache<_CharT, _Intl>*
157 operator() (const locale& __loc) const
158 {
159 const size_t __i = moneypunct<_CharT, _Intl>::id._M_id();
160 const locale::facet** __caches = __loc._M_impl->_M_caches;
161 if (!__caches[__i])
162 {
163 __moneypunct_cache<_CharT, _Intl>* __tmp = NULL;
164 try
165 {
166 __tmp = new __moneypunct_cache<_CharT, _Intl>;
167 __tmp->_M_cache(__loc);
168 }
169 catch(...)
170 {
171 delete __tmp;
172 __throw_exception_again;
173 }
174 __loc._M_impl->_M_install_cache(__tmp, __i);
175 }
176 return static_cast<
177 const __moneypunct_cache<_CharT, _Intl>*>(__caches[__i]);
178 }
179 };
180
181 template<typename _CharT>
182 void
183 __numpunct_cache<_CharT>::_M_cache(const locale& __loc)
184 {
185 _M_allocated = true;
186
187 const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
188
189 _M_grouping_size = __np.grouping().size();
190 char* __grouping = new char[_M_grouping_size];
191 __np.grouping().copy(__grouping, _M_grouping_size);
192 _M_grouping = __grouping;
193 _M_use_grouping = _M_grouping_size && __np.grouping()[0] != 0;
194
195 _M_truename_size = __np.truename().size();
196 _CharT* __truename = new _CharT[_M_truename_size];
197 __np.truename().copy(__truename, _M_truename_size);
198 _M_truename = __truename;
199
200 _M_falsename_size = __np.falsename().size();
201 _CharT* __falsename = new _CharT[_M_falsename_size];
202 __np.falsename().copy(__falsename, _M_falsename_size);
203 _M_falsename = __falsename;
204
205 _M_decimal_point = __np.decimal_point();
206 _M_thousands_sep = __np.thousands_sep();
207
208 const ctype<_CharT>& __ct = use_facet<ctype<_CharT> >(__loc);
209 __ct.widen(__num_base::_S_atoms_out,
210 __num_base::_S_atoms_out + __num_base::_S_oend, _M_atoms_out);
211 __ct.widen(__num_base::_S_atoms_in,
212 __num_base::_S_atoms_in + __num_base::_S_iend, _M_atoms_in);
213 }
214
215 template<typename _CharT, bool _Intl>
216 void
217 __moneypunct_cache<_CharT, _Intl>::_M_cache(const locale& __loc)
218 {
219 _M_allocated = true;
220
221 const moneypunct<_CharT, _Intl>& __mp =
222 use_facet<moneypunct<_CharT, _Intl> >(__loc);
223
224 _M_grouping_size = __mp.grouping().size();
225 char* __grouping = new char[_M_grouping_size];
226 __mp.grouping().copy(__grouping, _M_grouping_size);
227 _M_grouping = __grouping;
228 _M_use_grouping = _M_grouping_size && __mp.grouping()[0] != 0;
229
230 _M_decimal_point = __mp.decimal_point();
231 _M_thousands_sep = __mp.thousands_sep();
232 _M_frac_digits = __mp.frac_digits();
233
234 _M_curr_symbol_size = __mp.curr_symbol().size();
235 _CharT* __curr_symbol = new _CharT[_M_curr_symbol_size];
236 __mp.curr_symbol().copy(__curr_symbol, _M_curr_symbol_size);
237 _M_curr_symbol = __curr_symbol;
238
239 _M_positive_sign_size = __mp.positive_sign().size();
240 _CharT* __positive_sign = new _CharT[_M_positive_sign_size];
241 __mp.positive_sign().copy(__positive_sign, _M_positive_sign_size);
242 _M_positive_sign = __positive_sign;
243
244 _M_negative_sign_size = __mp.negative_sign().size();
245 _CharT* __negative_sign = new _CharT[_M_negative_sign_size];
246 __mp.negative_sign().copy(__negative_sign, _M_negative_sign_size);
247 _M_negative_sign = __negative_sign;
248
249 _M_pos_format = __mp.pos_format();
250 _M_neg_format = __mp.neg_format();
251
252 const ctype<_CharT>& __ct = use_facet<ctype<_CharT> >(__loc);
253 __ct.widen(money_base::_S_atoms,
254 money_base::_S_atoms + money_base::_S_end, _M_atoms);
255 }
256
257
258 // Used by both numeric and monetary facets.
259 // Check to make sure that the __grouping_tmp string constructed in
260 // money_get or num_get matches the canonical grouping for a given
261 // locale.
262 // __grouping_tmp is parsed L to R
263 // 1,222,444 == __grouping_tmp of "\1\3\3"
264 // __grouping is parsed R to L
265 // 1,222,444 == __grouping of "\3" == "\3\3\3"
266 static bool
267 __verify_grouping(const char* __grouping, size_t __grouping_size,
268 const string& __grouping_tmp);
269
270 template<typename _CharT, typename _InIter>
271 _InIter
272 num_get<_CharT, _InIter>::
273 _M_extract_float(_InIter __beg, _InIter __end, ios_base& __io,
274 ios_base::iostate& __err, string& __xtrc) const
275 {
276 typedef char_traits<_CharT> __traits_type;
277 typedef typename numpunct<_CharT>::__cache_type __cache_type;
278 __use_cache<__cache_type> __uc;
279 const locale& __loc = __io._M_getloc();
280 const __cache_type* __lc = __uc(__loc);
281 const _CharT* __lit = __lc->_M_atoms_in;
282
283 // True if a mantissa is found.
284 bool __found_mantissa = false;
285
286 // First check for sign.
287 if (__beg != __end)
288 {
289 const char_type __c = *__beg;
290 const bool __plus = __c == __lit[__num_base::_S_iplus];
291 if ((__plus || __c == __lit[__num_base::_S_iminus])
292 && !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
293 && !(__c == __lc->_M_decimal_point))
294 {
295 __xtrc += __plus ? '+' : '-';
296 ++__beg;
297 }
298 }
299
300 // Next, look for leading zeros.
301 while (__beg != __end)
302 {
303 const char_type __c = *__beg;
304 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep
305 || __c == __lc->_M_decimal_point)
306 break;
307 else if (__c == __lit[__num_base::_S_izero])
308 {
309 if (!__found_mantissa)
310 {
311 __xtrc += '0';
312 __found_mantissa = true;
313 }
314 ++__beg;
315 }
316 else
317 break;
318 }
319
320 // Only need acceptable digits for floating point numbers.
321 bool __found_dec = false;
322 bool __found_sci = false;
323 string __found_grouping;
324 if (__lc->_M_use_grouping)
325 __found_grouping.reserve(32);
326 int __sep_pos = 0;
327 const char_type* __lit_zero = __lit + __num_base::_S_izero;
328 while (__beg != __end)
329 {
330 // According to 22.2.2.1.2, p8-9, first look for thousands_sep
331 // and decimal_point.
332 const char_type __c = *__beg;
333 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
334 {
335 if (!__found_dec && !__found_sci)
336 {
337 // NB: Thousands separator at the beginning of a string
338 // is a no-no, as is two consecutive thousands separators.
339 if (__sep_pos)
340 {
341 __found_grouping += static_cast<char>(__sep_pos);
342 __sep_pos = 0;
343 ++__beg;
344 }
345 else
346 {
347 __err |= ios_base::failbit;
348 break;
349 }
350 }
351 else
352 break;
353 }
354 else if (__c == __lc->_M_decimal_point)
355 {
356 if (!__found_dec && !__found_sci)
357 {
358 // If no grouping chars are seen, no grouping check
359 // is applied. Therefore __found_grouping is adjusted
360 // only if decimal_point comes after some thousands_sep.
361 if (__found_grouping.size())
362 __found_grouping += static_cast<char>(__sep_pos);
363 __xtrc += '.';
364 __found_dec = true;
365 ++__beg;
366 }
367 else
368 break;
369 }
370 else
371 {
372 const char_type* __q = __traits_type::find(__lit_zero, 10, __c);
373 if (__q)
374 {
375 __xtrc += __num_base::_S_atoms_in[__q - __lit];
376 __found_mantissa = true;
377 ++__sep_pos;
378 ++__beg;
379 }
380 else if ((__c == __lit[__num_base::_S_ie]
381 || __c == __lit[__num_base::_S_iE])
382 && __found_mantissa && !__found_sci)
383 {
384 // Scientific notation.
385 if (__found_grouping.size() && !__found_dec)
386 __found_grouping += static_cast<char>(__sep_pos);
387 __xtrc += 'e';
388 __found_sci = true;
389
390 // Remove optional plus or minus sign, if they exist.
391 if (++__beg != __end)
392 {
393 const bool __plus = *__beg == __lit[__num_base::_S_iplus];
394 if ((__plus || *__beg == __lit[__num_base::_S_iminus])
395 && !(__lc->_M_use_grouping
396 && *__beg == __lc->_M_thousands_sep)
397 && !(*__beg == __lc->_M_decimal_point))
398 {
399 __xtrc += __plus ? '+' : '-';
400 ++__beg;
401 }
402 }
403 }
404 else
405 // Not a valid input item.
406 break;
407 }
408 }
409
410 // Digit grouping is checked. If grouping and found_grouping don't
411 // match, then get very very upset, and set failbit.
412 if (__found_grouping.size())
413 {
414 // Add the ending grouping if a decimal or 'e'/'E' wasn't found.
415 if (!__found_dec && !__found_sci)
416 __found_grouping += static_cast<char>(__sep_pos);
417
418 if (!std::__verify_grouping(__lc->_M_grouping,
419 __lc->_M_grouping_size,
420 __found_grouping))
421 __err |= ios_base::failbit;
422 }
423
424 // Finish up.
425 if (__beg == __end)
426 __err |= ios_base::eofbit;
427 return __beg;
428 }
429
430 template<typename _CharT, typename _InIter>
431 template<typename _ValueT>
432 _InIter
433 num_get<_CharT, _InIter>::
434 _M_extract_int(_InIter __beg, _InIter __end, ios_base& __io,
435 ios_base::iostate& __err, _ValueT& __v) const
436 {
437 typedef char_traits<_CharT> __traits_type;
438 typedef typename numpunct<_CharT>::__cache_type __cache_type;
439 __use_cache<__cache_type> __uc;
440 const locale& __loc = __io._M_getloc();
441 const __cache_type* __lc = __uc(__loc);
442 const _CharT* __lit = __lc->_M_atoms_in;
443
444 // NB: Iff __basefield == 0, __base can change based on contents.
445 const ios_base::fmtflags __basefield = __io.flags()
446 & ios_base::basefield;
447 const bool __oct = __basefield == ios_base::oct;
448 int __base = __oct ? 8 : (__basefield == ios_base::hex ? 16 : 10);
449
450 // True if numeric digits are found.
451 bool __found_num = false;
452
453 // First check for sign.
454 bool __negative = false;
455 if (__beg != __end)
456 {
457 const char_type __c = *__beg;
458 if (numeric_limits<_ValueT>::is_signed)
459 __negative = __c == __lit[__num_base::_S_iminus];
460 if ((__negative || __c == __lit[__num_base::_S_iplus])
461 && !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
462 && !(__c == __lc->_M_decimal_point))
463 ++__beg;
464 }
465
466 // Next, look for leading zeros and check required digits
467 // for base formats.
468 while (__beg != __end)
469 {
470 const char_type __c = *__beg;
471 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep
472 || __c == __lc->_M_decimal_point)
473 break;
474 else if (__c == __lit[__num_base::_S_izero]
475 && (!__found_num || __base == 10))
476 {
477 __found_num = true;
478 ++__beg;
479 }
480 else if (__found_num)
481 {
482 if (__c == __lit[__num_base::_S_ix]
483 || __c == __lit[__num_base::_S_iX])
484 {
485 if (__basefield == 0)
486 __base = 16;
487 if (__base == 16)
488 {
489 __found_num = false;
490 ++__beg;
491 }
492 }
493 else if (__basefield == 0)
494 __base = 8;
495 break;
496 }
497 else
498 break;
499 }
500
501 // At this point, base is determined. If not hex, only allow
502 // base digits as valid input.
503 const size_t __len = (__base == 16 ? __num_base::_S_iend
504 - __num_base::_S_izero : __base);
505
506 // Extract.
507 string __found_grouping;
508 if (__lc->_M_use_grouping)
509 __found_grouping.reserve(32);
510 int __sep_pos = 0;
511 bool __overflow = false;
512 _ValueT __result = 0;
513 const char_type* __lit_zero = __lit + __num_base::_S_izero;
514 if (__negative)
515 {
516 const _ValueT __min = numeric_limits<_ValueT>::min() / __base;
517 for (; __beg != __end; ++__beg)
518 {
519 // According to 22.2.2.1.2, p8-9, first look for thousands_sep
520 // and decimal_point.
521 const char_type __c = *__beg;
522 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
523 {
524 // NB: Thousands separator at the beginning of a string
525 // is a no-no, as is two consecutive thousands separators.
526 if (__sep_pos)
527 {
528 __found_grouping += static_cast<char>(__sep_pos);
529 __sep_pos = 0;
530 }
531 else
532 {
533 __err |= ios_base::failbit;
534 break;
535 }
536 }
537 else if (__c == __lc->_M_decimal_point)
538 break;
539 else
540 {
541 const char_type* __q = __traits_type::find(__lit_zero,
542 __len, __c);
543 if (__q)
544 {
545 int __digit = __q - __lit_zero;
546 if (__digit > 15)
547 __digit -= 6;
548 if (__result < __min)
549 __overflow = true;
550 else
551 {
552 const _ValueT __new_result = (__result * __base
553 - __digit);
554 __overflow |= __new_result > __result;
555 __result = __new_result;
556 ++__sep_pos;
557 __found_num = true;
558 }
559 }
560 else
561 // Not a valid input item.
562 break;
563 }
564 }
565 }
566 else
567 {
568 const _ValueT __max = numeric_limits<_ValueT>::max() / __base;
569 for (; __beg != __end; ++__beg)
570 {
571 const char_type __c = *__beg;
572 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
573 {
574 if (__sep_pos)
575 {
576 __found_grouping += static_cast<char>(__sep_pos);
577 __sep_pos = 0;
578 }
579 else
580 {
581 __err |= ios_base::failbit;
582 break;
583 }
584 }
585 else if (__c == __lc->_M_decimal_point)
586 break;
587 else
588 {
589 const char_type* __q = __traits_type::find(__lit_zero,
590 __len, __c);
591 if (__q)
592 {
593 int __digit = __q - __lit_zero;
594 if (__digit > 15)
595 __digit -= 6;
596 if (__result > __max)
597 __overflow = true;
598 else
599 {
600 const _ValueT __new_result = (__result * __base
601 + __digit);
602 __overflow |= __new_result < __result;
603 __result = __new_result;
604 ++__sep_pos;
605 __found_num = true;
606 }
607 }
608 else
609 break;
610 }
611 }
612 }
613
614 // Digit grouping is checked. If grouping and found_grouping don't
615 // match, then get very very upset, and set failbit.
616 if (__found_grouping.size())
617 {
618 // Add the ending grouping.
619 __found_grouping += static_cast<char>(__sep_pos);
620
621 if (!std::__verify_grouping(__lc->_M_grouping,
622 __lc->_M_grouping_size,
623 __found_grouping))
624 __err |= ios_base::failbit;
625 }
626
627 if (!(__err & ios_base::failbit) && !__overflow
628 && __found_num)
629 __v = __result;
630 else
631 __err |= ios_base::failbit;
632
633 if (__beg == __end)
634 __err |= ios_base::eofbit;
635 return __beg;
636 }
637
638 // _GLIBCXX_RESOLVE_LIB_DEFECTS
639 // 17. Bad bool parsing
640 template<typename _CharT, typename _InIter>
641 _InIter
642 num_get<_CharT, _InIter>::
643 do_get(iter_type __beg, iter_type __end, ios_base& __io,
644 ios_base::iostate& __err, bool& __v) const
645 {
646 if (!(__io.flags() & ios_base::boolalpha))
647 {
648 // Parse bool values as long.
649 // NB: We can't just call do_get(long) here, as it might
650 // refer to a derived class.
651 long __l = -1;
652 __beg = _M_extract_int(__beg, __end, __io, __err, __l);
653 if (__l == 0 || __l == 1)
654 __v = __l;
655 else
656 __err |= ios_base::failbit;
657 }
658 else
659 {
660 // Parse bool values as alphanumeric.
661 typedef typename numpunct<_CharT>::__cache_type __cache_type;
662 __use_cache<__cache_type> __uc;
663 const locale& __loc = __io._M_getloc();
664 const __cache_type* __lc = __uc(__loc);
665
666 bool __testf = true;
667 bool __testt = true;
668 size_t __n;
669 for (__n = 0; __beg != __end; ++__n, ++__beg)
670 {
671 if (__testf)
672 if (__n < __lc->_M_falsename_size)
673 __testf = *__beg == __lc->_M_falsename[__n];
674 else
675 break;
676
677 if (__testt)
678 if (__n < __lc->_M_truename_size)
679 __testt = *__beg == __lc->_M_truename[__n];
680 else
681 break;
682
683 if (!__testf && !__testt)
684 break;
685 }
686 if (__testf && __n == __lc->_M_falsename_size)
687 __v = 0;
688 else if (__testt && __n == __lc->_M_truename_size)
689 __v = 1;
690 else
691 __err |= ios_base::failbit;
692
693 if (__beg == __end)
694 __err |= ios_base::eofbit;
695 }
696 return __beg;
697 }
698
699 template<typename _CharT, typename _InIter>
700 _InIter
701 num_get<_CharT, _InIter>::
702 do_get(iter_type __beg, iter_type __end, ios_base& __io,
703 ios_base::iostate& __err, long& __v) const
704 { return _M_extract_int(__beg, __end, __io, __err, __v); }
705
706 template<typename _CharT, typename _InIter>
707 _InIter
708 num_get<_CharT, _InIter>::
709 do_get(iter_type __beg, iter_type __end, ios_base& __io,
710 ios_base::iostate& __err, unsigned short& __v) const
711 { return _M_extract_int(__beg, __end, __io, __err, __v); }
712
713 template<typename _CharT, typename _InIter>
714 _InIter
715 num_get<_CharT, _InIter>::
716 do_get(iter_type __beg, iter_type __end, ios_base& __io,
717 ios_base::iostate& __err, unsigned int& __v) const
718 { return _M_extract_int(__beg, __end, __io, __err, __v); }
719
720 template<typename _CharT, typename _InIter>
721 _InIter
722 num_get<_CharT, _InIter>::
723 do_get(iter_type __beg, iter_type __end, ios_base& __io,
724 ios_base::iostate& __err, unsigned long& __v) const
725 { return _M_extract_int(__beg, __end, __io, __err, __v); }
726
727 #ifdef _GLIBCXX_USE_LONG_LONG
728 template<typename _CharT, typename _InIter>
729 _InIter
730 num_get<_CharT, _InIter>::
731 do_get(iter_type __beg, iter_type __end, ios_base& __io,
732 ios_base::iostate& __err, long long& __v) const
733 { return _M_extract_int(__beg, __end, __io, __err, __v); }
734
735 template<typename _CharT, typename _InIter>
736 _InIter
737 num_get<_CharT, _InIter>::
738 do_get(iter_type __beg, iter_type __end, ios_base& __io,
739 ios_base::iostate& __err, unsigned long long& __v) const
740 { return _M_extract_int(__beg, __end, __io, __err, __v); }
741 #endif
742
743 template<typename _CharT, typename _InIter>
744 _InIter
745 num_get<_CharT, _InIter>::
746 do_get(iter_type __beg, iter_type __end, ios_base& __io,
747 ios_base::iostate& __err, float& __v) const
748 {
749 string __xtrc;
750 __xtrc.reserve(32);
751 __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
752 std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
753 return __beg;
754 }
755
756 template<typename _CharT, typename _InIter>
757 _InIter
758 num_get<_CharT, _InIter>::
759 do_get(iter_type __beg, iter_type __end, ios_base& __io,
760 ios_base::iostate& __err, double& __v) const
761 {
762 string __xtrc;
763 __xtrc.reserve(32);
764 __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
765 std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
766 return __beg;
767 }
768
769 template<typename _CharT, typename _InIter>
770 _InIter
771 num_get<_CharT, _InIter>::
772 do_get(iter_type __beg, iter_type __end, ios_base& __io,
773 ios_base::iostate& __err, long double& __v) const
774 {
775 string __xtrc;
776 __xtrc.reserve(32);
777 __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
778 std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
779 return __beg;
780 }
781
782 template<typename _CharT, typename _InIter>
783 _InIter
784 num_get<_CharT, _InIter>::
785 do_get(iter_type __beg, iter_type __end, ios_base& __io,
786 ios_base::iostate& __err, void*& __v) const
787 {
788 // Prepare for hex formatted input.
789 typedef ios_base::fmtflags fmtflags;
790 const fmtflags __fmt = __io.flags();
791 __io.flags(__fmt & ~ios_base::basefield | ios_base::hex);
792
793 unsigned long __ul;
794 __beg = _M_extract_int(__beg, __end, __io, __err, __ul);
795
796 // Reset from hex formatted input.
797 __io.flags(__fmt);
798
799 if (!(__err & ios_base::failbit))
800 __v = reinterpret_cast<void*>(__ul);
801 else
802 __err |= ios_base::failbit;
803 return __beg;
804 }
805
806 // For use by integer and floating-point types after they have been
807 // converted into a char_type string.
808 template<typename _CharT, typename _OutIter>
809 void
810 num_put<_CharT, _OutIter>::
811 _M_pad(_CharT __fill, streamsize __w, ios_base& __io,
812 _CharT* __new, const _CharT* __cs, int& __len) const
813 {
814 // [22.2.2.2.2] Stage 3.
815 // If necessary, pad.
816 __pad<_CharT, char_traits<_CharT> >::_S_pad(__io, __fill, __new, __cs,
817 __w, __len, true);
818 __len = static_cast<int>(__w);
819 }
820
821 // Forwarding functions to peel signed from unsigned integer types.
822 template<typename _CharT>
823 inline int
824 __int_to_char(_CharT* __bufend, long __v, const _CharT* __lit,
825 ios_base::fmtflags __flags)
826 {
827 unsigned long __ul = static_cast<unsigned long>(__v);
828 bool __neg = false;
829 if (__v < 0)
830 {
831 __ul = -__ul;
832 __neg = true;
833 }
834 return __int_to_char(__bufend, __ul, __lit, __flags, __neg);
835 }
836
837 template<typename _CharT>
838 inline int
839 __int_to_char(_CharT* __bufend, unsigned long __v, const _CharT* __lit,
840 ios_base::fmtflags __flags)
841 {
842 // About showpos, see Table 60 and C99 7.19.6.1, p6 (+).
843 return __int_to_char(__bufend, __v, __lit,
844 __flags & ~ios_base::showpos, false);
845 }
846
847 #ifdef _GLIBCXX_USE_LONG_LONG
848 template<typename _CharT>
849 inline int
850 __int_to_char(_CharT* __bufend, long long __v, const _CharT* __lit,
851 ios_base::fmtflags __flags)
852 {
853 unsigned long long __ull = static_cast<unsigned long long>(__v);
854 bool __neg = false;
855 if (__v < 0)
856 {
857 __ull = -__ull;
858 __neg = true;
859 }
860 return __int_to_char(__bufend, __ull, __lit, __flags, __neg);
861 }
862
863 template<typename _CharT>
864 inline int
865 __int_to_char(_CharT* __bufend, unsigned long long __v,
866 const _CharT* __lit, ios_base::fmtflags __flags)
867 { return __int_to_char(__bufend, __v, __lit,
868 __flags & ~ios_base::showpos, false); }
869 #endif
870
871 template<typename _CharT, typename _ValueT>
872 int
873 __int_to_char(_CharT* __bufend, _ValueT __v, const _CharT* __lit,
874 ios_base::fmtflags __flags, bool __neg)
875 {
876 // Don't write base if already 0.
877 const bool __showbase = (__flags & ios_base::showbase) && __v;
878 const ios_base::fmtflags __basefield = __flags & ios_base::basefield;
879 _CharT* __buf = __bufend - 1;
880
881 if (__builtin_expect(__basefield != ios_base::oct &&
882 __basefield != ios_base::hex, true))
883 {
884 // Decimal.
885 do
886 {
887 *__buf-- = __lit[(__v % 10) + __num_base::_S_odigits];
888 __v /= 10;
889 }
890 while (__v != 0);
891 if (__neg)
892 *__buf-- = __lit[__num_base::_S_ominus];
893 else if (__flags & ios_base::showpos)
894 *__buf-- = __lit[__num_base::_S_oplus];
895 }
896 else if (__basefield == ios_base::oct)
897 {
898 // Octal.
899 do
900 {
901 *__buf-- = __lit[(__v & 0x7) + __num_base::_S_odigits];
902 __v >>= 3;
903 }
904 while (__v != 0);
905 if (__showbase)
906 *__buf-- = __lit[__num_base::_S_odigits];
907 }
908 else
909 {
910 // Hex.
911 const bool __uppercase = __flags & ios_base::uppercase;
912 const int __case_offset = __uppercase ? __num_base::_S_oudigits
913 : __num_base::_S_odigits;
914 do
915 {
916 *__buf-- = __lit[(__v & 0xf) + __case_offset];
917 __v >>= 4;
918 }
919 while (__v != 0);
920 if (__showbase)
921 {
922 // 'x' or 'X'
923 *__buf-- = __lit[__num_base::_S_ox + __uppercase];
924 // '0'
925 *__buf-- = __lit[__num_base::_S_odigits];
926 }
927 }
928 return __bufend - __buf - 1;
929 }
930
931 template<typename _CharT, typename _OutIter>
932 void
933 num_put<_CharT, _OutIter>::
934 _M_group_int(const char* __grouping, size_t __grouping_size, _CharT __sep,
935 ios_base& __io, _CharT* __new, _CharT* __cs, int& __len) const
936 {
937 // By itself __add_grouping cannot deal correctly with __cs when
938 // ios::showbase is set and ios_base::oct || ios_base::hex.
939 // Therefore we take care "by hand" of the initial 0, 0x or 0X.
940 // However, remember that the latter do not occur if the number
941 // printed is '0' (__len == 1).
942 streamsize __off = 0;
943 const ios_base::fmtflags __basefield = __io.flags()
944 & ios_base::basefield;
945 if ((__io.flags() & ios_base::showbase) && __len > 1)
946 if (__basefield == ios_base::oct)
947 {
948 __off = 1;
949 __new[0] = __cs[0];
950 }
951 else if (__basefield == ios_base::hex)
952 {
953 __off = 2;
954 __new[0] = __cs[0];
955 __new[1] = __cs[1];
956 }
957 _CharT* __p = std::__add_grouping(__new + __off, __sep, __grouping,
958 __grouping_size, __cs + __off,
959 __cs + __len);
960 __len = __p - __new;
961 }
962
963 template<typename _CharT, typename _OutIter>
964 template<typename _ValueT>
965 _OutIter
966 num_put<_CharT, _OutIter>::
967 _M_insert_int(_OutIter __s, ios_base& __io, _CharT __fill,
968 _ValueT __v) const
969 {
970 typedef typename numpunct<_CharT>::__cache_type __cache_type;
971 __use_cache<__cache_type> __uc;
972 const locale& __loc = __io._M_getloc();
973 const __cache_type* __lc = __uc(__loc);
974 const _CharT* __lit = __lc->_M_atoms_out;
975
976 // Long enough to hold hex, dec, and octal representations.
977 const int __ilen = 4 * sizeof(_ValueT);
978 _CharT* __cs = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
979 * __ilen));
980
981 // [22.2.2.2.2] Stage 1, numeric conversion to character.
982 // Result is returned right-justified in the buffer.
983 int __len;
984 __len = __int_to_char(__cs + __ilen, __v, __lit, __io.flags());
985 __cs += __ilen - __len;
986
987 // Add grouping, if necessary.
988 if (__lc->_M_use_grouping)
989 {
990 // Grouping can add (almost) as many separators as the
991 // number of digits, but no more.
992 _CharT* __cs2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
993 * __len * 2));
994 _M_group_int(__lc->_M_grouping, __lc->_M_grouping_size,
995 __lc->_M_thousands_sep, __io, __cs2, __cs, __len);
996 __cs = __cs2;
997 }
998
999 // Pad.
1000 const streamsize __w = __io.width();
1001 if (__w > static_cast<streamsize>(__len))
1002 {
1003 _CharT* __cs3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1004 * __w));
1005 _M_pad(__fill, __w, __io, __cs3, __cs, __len);
1006 __cs = __cs3;
1007 }
1008 __io.width(0);
1009
1010 // [22.2.2.2.2] Stage 4.
1011 // Write resulting, fully-formatted string to output iterator.
1012 return std::__write(__s, __cs, __len);
1013 }
1014
1015 template<typename _CharT, typename _OutIter>
1016 void
1017 num_put<_CharT, _OutIter>::
1018 _M_group_float(const char* __grouping, size_t __grouping_size,
1019 _CharT __sep, const _CharT* __p, _CharT* __new,
1020 _CharT* __cs, int& __len) const
1021 {
1022 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1023 // 282. What types does numpunct grouping refer to?
1024 // Add grouping, if necessary.
1025 const int __declen = __p ? __p - __cs : __len;
1026 _CharT* __p2 = std::__add_grouping(__new, __sep, __grouping,
1027 __grouping_size,
1028 __cs, __cs + __declen);
1029
1030 // Tack on decimal part.
1031 int __newlen = __p2 - __new;
1032 if (__p)
1033 {
1034 char_traits<_CharT>::copy(__p2, __p, __len - __declen);
1035 __newlen += __len - __declen;
1036 }
1037 __len = __newlen;
1038 }
1039
1040 // The following code uses snprintf (or sprintf(), when
1041 // _GLIBCXX_USE_C99 is not defined) to convert floating point values
1042 // for insertion into a stream. An optimization would be to replace
1043 // them with code that works directly on a wide buffer and then use
1044 // __pad to do the padding. It would be good to replace them anyway
1045 // to gain back the efficiency that C++ provides by knowing up front
1046 // the type of the values to insert. Also, sprintf is dangerous
1047 // since may lead to accidental buffer overruns. This
1048 // implementation follows the C++ standard fairly directly as
1049 // outlined in 22.2.2.2 [lib.locale.num.put]
1050 template<typename _CharT, typename _OutIter>
1051 template<typename _ValueT>
1052 _OutIter
1053 num_put<_CharT, _OutIter>::
1054 _M_insert_float(_OutIter __s, ios_base& __io, _CharT __fill, char __mod,
1055 _ValueT __v) const
1056 {
1057 typedef typename numpunct<_CharT>::__cache_type __cache_type;
1058 __use_cache<__cache_type> __uc;
1059 const locale& __loc = __io._M_getloc();
1060 const __cache_type* __lc = __uc(__loc);
1061
1062 // Use default precision if out of range.
1063 streamsize __prec = __io.precision();
1064 if (__prec < static_cast<streamsize>(0))
1065 __prec = static_cast<streamsize>(6);
1066
1067 const int __max_digits = numeric_limits<_ValueT>::digits10;
1068
1069 // [22.2.2.2.2] Stage 1, numeric conversion to character.
1070 int __len;
1071 // Long enough for the max format spec.
1072 char __fbuf[16];
1073
1074 #ifdef _GLIBCXX_USE_C99
1075 // First try a buffer perhaps big enough (most probably sufficient
1076 // for non-ios_base::fixed outputs)
1077 int __cs_size = __max_digits * 3;
1078 char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1079
1080 __num_base::_S_format_float(__io, __fbuf, __mod);
1081 __len = std::__convert_from_v(__cs, __cs_size, __fbuf, __v,
1082 _S_get_c_locale(), __prec);
1083
1084 // If the buffer was not large enough, try again with the correct size.
1085 if (__len >= __cs_size)
1086 {
1087 __cs_size = __len + 1;
1088 __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1089 __len = std::__convert_from_v(__cs, __cs_size, __fbuf, __v,
1090 _S_get_c_locale(), __prec);
1091 }
1092 #else
1093 // Consider the possibility of long ios_base::fixed outputs
1094 const bool __fixed = __io.flags() & ios_base::fixed;
1095 const int __max_exp = numeric_limits<_ValueT>::max_exponent10;
1096
1097 // The size of the output string is computed as follows.
1098 // ios_base::fixed outputs may need up to __max_exp + 1 chars
1099 // for the integer part + __prec chars for the fractional part
1100 // + 3 chars for sign, decimal point, '\0'. On the other hand,
1101 // for non-fixed outputs __max_digits * 2 + __prec chars are
1102 // largely sufficient.
1103 const int __cs_size = __fixed ? __max_exp + __prec + 4
1104 : __max_digits * 2 + __prec;
1105 char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1106
1107 __num_base::_S_format_float(__io, __fbuf, __mod);
1108 __len = std::__convert_from_v(__cs, 0, __fbuf, __v,
1109 _S_get_c_locale(), __prec);
1110 #endif
1111
1112 // [22.2.2.2.2] Stage 2, convert to char_type, using correct
1113 // numpunct.decimal_point() values for '.' and adding grouping.
1114 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1115
1116 _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1117 * __len));
1118 __ctype.widen(__cs, __cs + __len, __ws);
1119
1120 // Replace decimal point.
1121 const _CharT __cdec = __ctype.widen('.');
1122 const _CharT __dec = __lc->_M_decimal_point;
1123 const _CharT* __p = char_traits<_CharT>::find(__ws, __len, __cdec);
1124 if (__p)
1125 __ws[__p - __ws] = __dec;
1126
1127 // Add grouping, if necessary.
1128 if (__lc->_M_use_grouping)
1129 {
1130 // Grouping can add (almost) as many separators as the
1131 // number of digits, but no more.
1132 _CharT* __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1133 * __len * 2));
1134 _M_group_float(__lc->_M_grouping, __lc->_M_grouping_size,
1135 __lc->_M_thousands_sep, __p, __ws2, __ws, __len);
1136 __ws = __ws2;
1137 }
1138
1139 // Pad.
1140 const streamsize __w = __io.width();
1141 if (__w > static_cast<streamsize>(__len))
1142 {
1143 _CharT* __ws3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1144 * __w));
1145 _M_pad(__fill, __w, __io, __ws3, __ws, __len);
1146 __ws = __ws3;
1147 }
1148 __io.width(0);
1149
1150 // [22.2.2.2.2] Stage 4.
1151 // Write resulting, fully-formatted string to output iterator.
1152 return std::__write(__s, __ws, __len);
1153 }
1154
1155 template<typename _CharT, typename _OutIter>
1156 _OutIter
1157 num_put<_CharT, _OutIter>::
1158 do_put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const
1159 {
1160 const ios_base::fmtflags __flags = __io.flags();
1161 if ((__flags & ios_base::boolalpha) == 0)
1162 {
1163 unsigned long __uv = __v;
1164 __s = _M_insert_int(__s, __io, __fill, __uv);
1165 }
1166 else
1167 {
1168 typedef typename numpunct<_CharT>::__cache_type __cache_type;
1169 __use_cache<__cache_type> __uc;
1170 const locale& __loc = __io._M_getloc();
1171 const __cache_type* __lc = __uc(__loc);
1172
1173 const _CharT* __name = __v ? __lc->_M_truename
1174 : __lc->_M_falsename;
1175 int __len = __v ? __lc->_M_truename_size
1176 : __lc->_M_falsename_size;
1177
1178 const streamsize __w = __io.width();
1179 if (__w > static_cast<streamsize>(__len))
1180 {
1181 _CharT* __cs
1182 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1183 * __w));
1184 _M_pad(__fill, __w, __io, __cs, __name, __len);
1185 __name = __cs;
1186 }
1187 __io.width(0);
1188 __s = std::__write(__s, __name, __len);
1189 }
1190 return __s;
1191 }
1192
1193 template<typename _CharT, typename _OutIter>
1194 _OutIter
1195 num_put<_CharT, _OutIter>::
1196 do_put(iter_type __s, ios_base& __io, char_type __fill, long __v) const
1197 { return _M_insert_int(__s, __io, __fill, __v); }
1198
1199 template<typename _CharT, typename _OutIter>
1200 _OutIter
1201 num_put<_CharT, _OutIter>::
1202 do_put(iter_type __s, ios_base& __io, char_type __fill,
1203 unsigned long __v) const
1204 { return _M_insert_int(__s, __io, __fill, __v); }
1205
1206 #ifdef _GLIBCXX_USE_LONG_LONG
1207 template<typename _CharT, typename _OutIter>
1208 _OutIter
1209 num_put<_CharT, _OutIter>::
1210 do_put(iter_type __s, ios_base& __b, char_type __fill, long long __v) const
1211 { return _M_insert_int(__s, __b, __fill, __v); }
1212
1213 template<typename _CharT, typename _OutIter>
1214 _OutIter
1215 num_put<_CharT, _OutIter>::
1216 do_put(iter_type __s, ios_base& __io, char_type __fill,
1217 unsigned long long __v) const
1218 { return _M_insert_int(__s, __io, __fill, __v); }
1219 #endif
1220
1221 template<typename _CharT, typename _OutIter>
1222 _OutIter
1223 num_put<_CharT, _OutIter>::
1224 do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const
1225 { return _M_insert_float(__s, __io, __fill, char(), __v); }
1226
1227 template<typename _CharT, typename _OutIter>
1228 _OutIter
1229 num_put<_CharT, _OutIter>::
1230 do_put(iter_type __s, ios_base& __io, char_type __fill,
1231 long double __v) const
1232 { return _M_insert_float(__s, __io, __fill, 'L', __v); }
1233
1234 template<typename _CharT, typename _OutIter>
1235 _OutIter
1236 num_put<_CharT, _OutIter>::
1237 do_put(iter_type __s, ios_base& __io, char_type __fill,
1238 const void* __v) const
1239 {
1240 const ios_base::fmtflags __flags = __io.flags();
1241 const ios_base::fmtflags __fmt = ~(ios_base::showpos
1242 | ios_base::basefield
1243 | ios_base::uppercase
1244 | ios_base::internal);
1245 __io.flags(__flags & __fmt | (ios_base::hex | ios_base::showbase));
1246
1247 __s = _M_insert_int(__s, __io, __fill,
1248 reinterpret_cast<unsigned long>(__v));
1249 __io.flags(__flags);
1250 return __s;
1251 }
1252
1253 template<typename _CharT, typename _InIter>
1254 template<bool _Intl>
1255 _InIter
1256 money_get<_CharT, _InIter>::
1257 _M_extract(iter_type __beg, iter_type __end, ios_base& __io,
1258 ios_base::iostate& __err, string& __units) const
1259 {
1260 typedef char_traits<_CharT> __traits_type;
1261 typedef typename string_type::size_type size_type;
1262 typedef money_base::part part;
1263 typedef moneypunct<_CharT, _Intl> __moneypunct_type;
1264 typedef typename __moneypunct_type::__cache_type __cache_type;
1265
1266 const locale& __loc = __io._M_getloc();
1267 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1268
1269 __use_cache<__cache_type> __uc;
1270 const __cache_type* __lc = __uc(__loc);
1271 const char_type* __lit = __lc->_M_atoms;
1272
1273 // Deduced sign.
1274 bool __negative = false;
1275 // Sign size.
1276 size_type __sign_size = 0;
1277 // True if sign is mandatory.
1278 const bool __mandatory_sign = (__lc->_M_positive_sign_size
1279 && __lc->_M_negative_sign_size);
1280 // String of grouping info from thousands_sep plucked from __units.
1281 string __grouping_tmp;
1282 if (__lc->_M_use_grouping)
1283 __grouping_tmp.reserve(32);
1284 // Last position before the decimal point.
1285 int __last_pos = 0;
1286 // Separator positions, then, possibly, fractional digits.
1287 int __n = 0;
1288 // If input iterator is in a valid state.
1289 bool __testvalid = true;
1290 // Flag marking when a decimal point is found.
1291 bool __testdecfound = false;
1292
1293 // The tentative returned string is stored here.
1294 string __res;
1295 __res.reserve(32);
1296
1297 const char_type* __lit_zero = __lit + money_base::_S_zero;
1298 const money_base::pattern __p = __lc->_M_neg_format;
1299 for (int __i = 0; __i < 4 && __testvalid; ++__i)
1300 {
1301 const part __which = static_cast<part>(__p.field[__i]);
1302 switch (__which)
1303 {
1304 case money_base::symbol:
1305 // According to 22.2.6.1.2, p2, symbol is required
1306 // if (__io.flags() & ios_base::showbase), otherwise
1307 // is optional and consumed only if other characters
1308 // are needed to complete the format.
1309 if (__io.flags() & ios_base::showbase || __sign_size > 1
1310 || __i == 0
1311 || (__i == 1 && (__mandatory_sign
1312 || (static_cast<part>(__p.field[0])
1313 == money_base::sign)
1314 || (static_cast<part>(__p.field[2])
1315 == money_base::space)))
1316 || (__i == 2 && ((static_cast<part>(__p.field[3])
1317 == money_base::value)
1318 || __mandatory_sign
1319 && (static_cast<part>(__p.field[3])
1320 == money_base::sign))))
1321 {
1322 const size_type __len = __lc->_M_curr_symbol_size;
1323 size_type __j = 0;
1324 for (; __beg != __end && __j < __len
1325 && *__beg == __lc->_M_curr_symbol[__j];
1326 ++__beg, ++__j);
1327 if (__j != __len
1328 && (__j || __io.flags() & ios_base::showbase))
1329 __testvalid = false;
1330 }
1331 break;
1332 case money_base::sign:
1333 // Sign might not exist, or be more than one character long.
1334 if (__lc->_M_positive_sign_size && __beg != __end
1335 && *__beg == __lc->_M_positive_sign[0])
1336 {
1337 __sign_size = __lc->_M_positive_sign_size;
1338 ++__beg;
1339 }
1340 else if (__lc->_M_negative_sign_size && __beg != __end
1341 && *__beg == __lc->_M_negative_sign[0])
1342 {
1343 __negative = true;
1344 __sign_size = __lc->_M_negative_sign_size;
1345 ++__beg;
1346 }
1347 else if (__lc->_M_positive_sign_size
1348 && !__lc->_M_negative_sign_size)
1349 // "... if no sign is detected, the result is given the sign
1350 // that corresponds to the source of the empty string"
1351 __negative = true;
1352 else if (__mandatory_sign)
1353 __testvalid = false;
1354 break;
1355 case money_base::value:
1356 // Extract digits, remove and stash away the
1357 // grouping of found thousands separators.
1358 for (; __beg != __end; ++__beg)
1359 {
1360 const char_type* __q = __traits_type::find(__lit_zero,
1361 10, *__beg);
1362 if (__q != 0)
1363 {
1364 __res += money_base::_S_atoms[__q - __lit];
1365 ++__n;
1366 }
1367 else if (*__beg == __lc->_M_decimal_point
1368 && !__testdecfound)
1369 {
1370 __last_pos = __n;
1371 __n = 0;
1372 __testdecfound = true;
1373 }
1374 else if (__lc->_M_use_grouping
1375 && *__beg == __lc->_M_thousands_sep
1376 && !__testdecfound)
1377 {
1378 if (__n)
1379 {
1380 // Mark position for later analysis.
1381 __grouping_tmp += static_cast<char>(__n);
1382 __n = 0;
1383 }
1384 else
1385 {
1386 __testvalid = false;
1387 break;
1388 }
1389 }
1390 else
1391 break;
1392 }
1393 if (__res.empty())
1394 __testvalid = false;
1395 break;
1396 case money_base::space:
1397 // At least one space is required.
1398 if (__beg != __end && __ctype.is(ctype_base::space, *__beg))
1399 ++__beg;
1400 else
1401 __testvalid = false;
1402 case money_base::none:
1403 // Only if not at the end of the pattern.
1404 if (__i != 3)
1405 for (; __beg != __end
1406 && __ctype.is(ctype_base::space, *__beg); ++__beg);
1407 break;
1408 }
1409 }
1410
1411 // Need to get the rest of the sign characters, if they exist.
1412 if (__sign_size > 1 && __testvalid)
1413 {
1414 const char_type* __sign = __negative ? __lc->_M_negative_sign
1415 : __lc->_M_positive_sign;
1416 size_type __i = 1;
1417 for (; __beg != __end && __i < __sign_size
1418 && *__beg == __sign[__i]; ++__beg, ++__i);
1419
1420 if (__i != __sign_size)
1421 __testvalid = false;
1422 }
1423
1424 if (__testvalid)
1425 {
1426 // Strip leading zeros.
1427 if (__res.size() > 1)
1428 {
1429 const size_type __first = __res.find_first_not_of('0');
1430 const bool __only_zeros = __first == string::npos;
1431 if (__first)
1432 __res.erase(0, __only_zeros ? __res.size() - 1 : __first);
1433 }
1434
1435 // 22.2.6.1.2, p4
1436 if (__negative && __res[0] != '0')
1437 __res.insert(__res.begin(), '-');
1438
1439 // Test for grouping fidelity.
1440 if (__grouping_tmp.size())
1441 {
1442 // Add the ending grouping.
1443 __grouping_tmp += static_cast<char>(__testdecfound ? __last_pos
1444 : __n);
1445 if (!std::__verify_grouping(__lc->_M_grouping,
1446 __lc->_M_grouping_size,
1447 __grouping_tmp))
1448 __testvalid = false;
1449 }
1450
1451 // Iff not enough digits were supplied after the decimal-point.
1452 if (__testdecfound && __lc->_M_frac_digits > 0
1453 && __n != __lc->_M_frac_digits)
1454 __testvalid = false;
1455 }
1456
1457 // Iff no more characters are available.
1458 if (__beg == __end)
1459 __err |= ios_base::eofbit;
1460
1461 // Iff valid sequence is not recognized.
1462 if (!__testvalid)
1463 __err |= ios_base::failbit;
1464 else
1465 __units.swap(__res);
1466
1467 return __beg;
1468 }
1469
1470 template<typename _CharT, typename _InIter>
1471 _InIter
1472 money_get<_CharT, _InIter>::
1473 do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
1474 ios_base::iostate& __err, long double& __units) const
1475 {
1476 string __str;
1477 if (__intl)
1478 __beg = _M_extract<true>(__beg, __end, __io, __err, __str);
1479 else
1480 __beg = _M_extract<false>(__beg, __end, __io, __err, __str);
1481 std::__convert_to_v(__str.c_str(), __units, __err, _S_get_c_locale());
1482 return __beg;
1483 }
1484
1485 template<typename _CharT, typename _InIter>
1486 _InIter
1487 money_get<_CharT, _InIter>::
1488 do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
1489 ios_base::iostate& __err, string_type& __units) const
1490 {
1491 typedef typename string::size_type size_type;
1492
1493 const locale& __loc = __io._M_getloc();
1494 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1495
1496 string __str;
1497 const iter_type __ret = __intl ? _M_extract<true>(__beg, __end, __io,
1498 __err, __str)
1499 : _M_extract<false>(__beg, __end, __io,
1500 __err, __str);
1501 const size_type __len = __str.size();
1502 if (__len)
1503 {
1504 _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1505 * __len));
1506 __ctype.widen(__str.data(), __str.data() + __len, __ws);
1507 __units.assign(__ws, __len);
1508 }
1509
1510 return __ret;
1511 }
1512
1513 template<typename _CharT, typename _OutIter>
1514 template<bool _Intl>
1515 _OutIter
1516 money_put<_CharT, _OutIter>::
1517 _M_insert(iter_type __s, ios_base& __io, char_type __fill,
1518 const string_type& __digits) const
1519 {
1520 typedef typename string_type::size_type size_type;
1521 typedef money_base::part part;
1522 typedef moneypunct<_CharT, _Intl> __moneypunct_type;
1523 typedef typename __moneypunct_type::__cache_type __cache_type;
1524
1525 const locale& __loc = __io._M_getloc();
1526 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1527
1528 __use_cache<__cache_type> __uc;
1529 const __cache_type* __lc = __uc(__loc);
1530 const char_type* __lit = __lc->_M_atoms;
1531
1532 // Determine if negative or positive formats are to be used, and
1533 // discard leading negative_sign if it is present.
1534 const char_type* __beg = __digits.data();
1535
1536 money_base::pattern __p;
1537 const char_type* __sign;
1538 size_type __sign_size;
1539 if (*__beg != __lit[money_base::_S_minus])
1540 {
1541 __p = __lc->_M_pos_format;
1542 __sign = __lc->_M_positive_sign;
1543 __sign_size = __lc->_M_positive_sign_size;
1544 }
1545 else
1546 {
1547 __p = __lc->_M_neg_format;
1548 __sign = __lc->_M_negative_sign;
1549 __sign_size = __lc->_M_negative_sign_size;
1550 if (__digits.size())
1551 ++__beg;
1552 }
1553
1554 // Look for valid numbers in the ctype facet within input digits.
1555 size_type __len = __ctype.scan_not(ctype_base::digit, __beg,
1556 __beg + __digits.size()) - __beg;
1557 if (__len)
1558 {
1559 // Assume valid input, and attempt to format.
1560 // Break down input numbers into base components, as follows:
1561 // final_value = grouped units + (decimal point) + (digits)
1562 string_type __value;
1563 __value.reserve(2 * __len);
1564
1565 // Add thousands separators to non-decimal digits, per
1566 // grouping rules.
1567 int __paddec = __len - __lc->_M_frac_digits;
1568 if (__paddec > 0)
1569 {
1570 if (__lc->_M_frac_digits < 0)
1571 __paddec = __len;
1572 if (__lc->_M_grouping_size)
1573 {
1574 _CharT* __ws =
1575 static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1576 * 2 * __len));
1577 _CharT* __ws_end =
1578 std::__add_grouping(__ws, __lc->_M_thousands_sep,
1579 __lc->_M_grouping,
1580 __lc->_M_grouping_size,
1581 __beg, __beg + __paddec);
1582 __value.assign(__ws, __ws_end - __ws);
1583 }
1584 else
1585 __value.assign(__beg, __paddec);
1586 }
1587
1588 // Deal with decimal point, decimal digits.
1589 if (__lc->_M_frac_digits > 0)
1590 {
1591 __value += __lc->_M_decimal_point;
1592 if (__paddec >= 0)
1593 __value.append(__beg + __paddec, __lc->_M_frac_digits);
1594 else
1595 {
1596 // Have to pad zeros in the decimal position.
1597 __value.append(-__paddec, __lit[money_base::_S_zero]);
1598 __value.append(__beg, __len);
1599 }
1600 }
1601
1602 // Calculate length of resulting string.
1603 const ios_base::fmtflags __f = __io.flags()
1604 & ios_base::adjustfield;
1605 __len = __value.size() + __sign_size;
1606 __len += ((__io.flags() & ios_base::showbase)
1607 ? __lc->_M_curr_symbol_size : 0);
1608
1609 string_type __res;
1610 __res.reserve(2 * __len);
1611
1612 const size_type __width = static_cast<size_type>(__io.width());
1613 const bool __testipad = (__f == ios_base::internal
1614 && __len < __width);
1615 // Fit formatted digits into the required pattern.
1616 for (int __i = 0; __i < 4; ++__i)
1617 {
1618 const part __which = static_cast<part>(__p.field[__i]);
1619 switch (__which)
1620 {
1621 case money_base::symbol:
1622 if (__io.flags() & ios_base::showbase)
1623 __res.append(__lc->_M_curr_symbol,
1624 __lc->_M_curr_symbol_size);
1625 break;
1626 case money_base::sign:
1627 // Sign might not exist, or be more than one
1628 // charater long. In that case, add in the rest
1629 // below.
1630 if (__sign_size)
1631 __res += __sign[0];
1632 break;
1633 case money_base::value:
1634 __res += __value;
1635 break;
1636 case money_base::space:
1637 // At least one space is required, but if internal
1638 // formatting is required, an arbitrary number of
1639 // fill spaces will be necessary.
1640 if (__testipad)
1641 __res.append(__width - __len, __fill);
1642 else
1643 __res += __fill;
1644 break;
1645 case money_base::none:
1646 if (__testipad)
1647 __res.append(__width - __len, __fill);
1648 break;
1649 }
1650 }
1651
1652 // Special case of multi-part sign parts.
1653 if (__sign_size > 1)
1654 __res.append(__sign + 1, __sign_size - 1);
1655
1656 // Pad, if still necessary.
1657 __len = __res.size();
1658 if (__width > __len)
1659 {
1660 if (__f == ios_base::left)
1661 // After.
1662 __res.append(__width - __len, __fill);
1663 else
1664 // Before.
1665 __res.insert(0, __width - __len, __fill);
1666 __len = __width;
1667 }
1668
1669 // Write resulting, fully-formatted string to output iterator.
1670 __s = std::__write(__s, __res.data(), __len);
1671 }
1672 __io.width(0);
1673 return __s;
1674 }
1675
1676 template<typename _CharT, typename _OutIter>
1677 _OutIter
1678 money_put<_CharT, _OutIter>::
1679 do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
1680 long double __units) const
1681 {
1682 const locale __loc = __io.getloc();
1683 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1684 #ifdef _GLIBCXX_USE_C99
1685 // First try a buffer perhaps big enough.
1686 int __cs_size = 64;
1687 char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1688 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1689 // 328. Bad sprintf format modifier in money_put<>::do_put()
1690 int __len = std::__convert_from_v(__cs, __cs_size, "%.*Lf", __units,
1691 _S_get_c_locale(), 0);
1692 // If the buffer was not large enough, try again with the correct size.
1693 if (__len >= __cs_size)
1694 {
1695 __cs_size = __len + 1;
1696 __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1697 __len = std::__convert_from_v(__cs, __cs_size, "%.*Lf", __units,
1698 _S_get_c_locale(), 0);
1699 }
1700 #else
1701 // max_exponent10 + 1 for the integer part, + 2 for sign and '\0'.
1702 const int __cs_size = numeric_limits<long double>::max_exponent10 + 3;
1703 char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1704 int __len = std::__convert_from_v(__cs, 0, "%.*Lf", __units,
1705 _S_get_c_locale(), 0);
1706 #endif
1707 _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1708 * __cs_size));
1709 __ctype.widen(__cs, __cs + __len, __ws);
1710 const string_type __digits(__ws, __len);
1711 return __intl ? _M_insert<true>(__s, __io, __fill, __digits)
1712 : _M_insert<false>(__s, __io, __fill, __digits);
1713 }
1714
1715 template<typename _CharT, typename _OutIter>
1716 _OutIter
1717 money_put<_CharT, _OutIter>::
1718 do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
1719 const string_type& __digits) const
1720 { return __intl ? _M_insert<true>(__s, __io, __fill, __digits)
1721 : _M_insert<false>(__s, __io, __fill, __digits); }
1722
1723
1724 // NB: Not especially useful. Without an ios_base object or some
1725 // kind of locale reference, we are left clawing at the air where
1726 // the side of the mountain used to be...
1727 template<typename _CharT, typename _InIter>
1728 time_base::dateorder
1729 time_get<_CharT, _InIter>::do_date_order() const
1730 { return time_base::no_order; }
1731
1732 // Expand a strftime format string and parse it. E.g., do_get_date() may
1733 // pass %m/%d/%Y => extracted characters.
1734 template<typename _CharT, typename _InIter>
1735 _InIter
1736 time_get<_CharT, _InIter>::
1737 _M_extract_via_format(iter_type __beg, iter_type __end, ios_base& __io,
1738 ios_base::iostate& __err, tm* __tm,
1739 const _CharT* __format) const
1740 {
1741 const locale& __loc = __io._M_getloc();
1742 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
1743 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1744 const size_t __len = char_traits<_CharT>::length(__format);
1745
1746 for (size_t __i = 0; __beg != __end && __i < __len && !__err; ++__i)
1747 {
1748 if (__ctype.narrow(__format[__i], 0) == '%')
1749 {
1750 // Verify valid formatting code, attempt to extract.
1751 char __c = __ctype.narrow(__format[++__i], 0);
1752 int __mem = 0;
1753 if (__c == 'E' || __c == 'O')
1754 __c = __ctype.narrow(__format[++__i], 0);
1755 switch (__c)
1756 {
1757 const char* __cs;
1758 _CharT __wcs[10];
1759 case 'a':
1760 // Abbreviated weekday name [tm_wday]
1761 const char_type* __days1[7];
1762 __tp._M_days_abbreviated(__days1);
1763 __beg = _M_extract_name(__beg, __end, __tm->tm_wday, __days1,
1764 7, __io, __err);
1765 break;
1766 case 'A':
1767 // Weekday name [tm_wday].
1768 const char_type* __days2[7];
1769 __tp._M_days(__days2);
1770 __beg = _M_extract_name(__beg, __end, __tm->tm_wday, __days2,
1771 7, __io, __err);
1772 break;
1773 case 'h':
1774 case 'b':
1775 // Abbreviated month name [tm_mon]
1776 const char_type* __months1[12];
1777 __tp._M_months_abbreviated(__months1);
1778 __beg = _M_extract_name(__beg, __end, __tm->tm_mon,
1779 __months1, 12, __io, __err);
1780 break;
1781 case 'B':
1782 // Month name [tm_mon].
1783 const char_type* __months2[12];
1784 __tp._M_months(__months2);
1785 __beg = _M_extract_name(__beg, __end, __tm->tm_mon,
1786 __months2, 12, __io, __err);
1787 break;
1788 case 'c':
1789 // Default time and date representation.
1790 const char_type* __dt[2];
1791 __tp._M_date_time_formats(__dt);
1792 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1793 __tm, __dt[0]);
1794 break;
1795 case 'd':
1796 // Day [01, 31]. [tm_mday]
1797 __beg = _M_extract_num(__beg, __end, __tm->tm_mday, 1, 31, 2,
1798 __io, __err);
1799 break;
1800 case 'e':
1801 // Day [1, 31], with single digits preceded by
1802 // space. [tm_mday]
1803 if (__ctype.is(ctype_base::space, *__beg))
1804 __beg = _M_extract_num(++__beg, __end, __tm->tm_mday, 1, 9,
1805 1, __io, __err);
1806 else
1807 __beg = _M_extract_num(__beg, __end, __tm->tm_mday, 10, 31,
1808 2, __io, __err);
1809 break;
1810 case 'D':
1811 // Equivalent to %m/%d/%y.[tm_mon, tm_mday, tm_year]
1812 __cs = "%m/%d/%y";
1813 __ctype.widen(__cs, __cs + 9, __wcs);
1814 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1815 __tm, __wcs);
1816 break;
1817 case 'H':
1818 // Hour [00, 23]. [tm_hour]
1819 __beg = _M_extract_num(__beg, __end, __tm->tm_hour, 0, 23, 2,
1820 __io, __err);
1821 break;
1822 case 'I':
1823 // Hour [01, 12]. [tm_hour]
1824 __beg = _M_extract_num(__beg, __end, __tm->tm_hour, 1, 12, 2,
1825 __io, __err);
1826 break;
1827 case 'm':
1828 // Month [01, 12]. [tm_mon]
1829 __beg = _M_extract_num(__beg, __end, __mem, 1, 12, 2,
1830 __io, __err);
1831 if (!__err)
1832 __tm->tm_mon = __mem - 1;
1833 break;
1834 case 'M':
1835 // Minute [00, 59]. [tm_min]
1836 __beg = _M_extract_num(__beg, __end, __tm->tm_min, 0, 59, 2,
1837 __io, __err);
1838 break;
1839 case 'n':
1840 if (__ctype.narrow(*__beg, 0) == '\n')
1841 ++__beg;
1842 else
1843 __err |= ios_base::failbit;
1844 break;
1845 case 'R':
1846 // Equivalent to (%H:%M).
1847 __cs = "%H:%M";
1848 __ctype.widen(__cs, __cs + 6, __wcs);
1849 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1850 __tm, __wcs);
1851 break;
1852 case 'S':
1853 // Seconds.
1854 __beg = _M_extract_num(__beg, __end, __tm->tm_sec, 0, 59, 2,
1855 __io, __err);
1856 break;
1857 case 't':
1858 if (__ctype.narrow(*__beg, 0) == '\t')
1859 ++__beg;
1860 else
1861 __err |= ios_base::failbit;
1862 break;
1863 case 'T':
1864 // Equivalent to (%H:%M:%S).
1865 __cs = "%H:%M:%S";
1866 __ctype.widen(__cs, __cs + 9, __wcs);
1867 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1868 __tm, __wcs);
1869 break;
1870 case 'x':
1871 // Locale's date.
1872 const char_type* __dates[2];
1873 __tp._M_date_formats(__dates);
1874 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1875 __tm, __dates[0]);
1876 break;
1877 case 'X':
1878 // Locale's time.
1879 const char_type* __times[2];
1880 __tp._M_time_formats(__times);
1881 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1882 __tm, __times[0]);
1883 break;
1884 case 'y':
1885 case 'C': // C99
1886 // Two digit year. [tm_year]
1887 __beg = _M_extract_num(__beg, __end, __tm->tm_year, 0, 99, 2,
1888 __io, __err);
1889 break;
1890 case 'Y':
1891 // Year [1900). [tm_year]
1892 __beg = _M_extract_num(__beg, __end, __mem, 0, 9999, 4,
1893 __io, __err);
1894 if (!__err)
1895 __tm->tm_year = __mem - 1900;
1896 break;
1897 case 'Z':
1898 // Timezone info.
1899 if (__ctype.is(ctype_base::upper, *__beg))
1900 {
1901 int __tmp;
1902 __beg = _M_extract_name(__beg, __end, __tmp,
1903 __timepunct_cache<_CharT>::_S_timezones,
1904 14, __io, __err);
1905
1906 // GMT requires special effort.
1907 if (__beg != __end && !__err && __tmp == 0
1908 && (*__beg == __ctype.widen('-')
1909 || *__beg == __ctype.widen('+')))
1910 {
1911 __beg = _M_extract_num(__beg, __end, __tmp, 0, 23, 2,
1912 __io, __err);
1913 __beg = _M_extract_num(__beg, __end, __tmp, 0, 59, 2,
1914 __io, __err);
1915 }
1916 }
1917 else
1918 __err |= ios_base::failbit;
1919 break;
1920 default:
1921 // Not recognized.
1922 __err |= ios_base::failbit;
1923 }
1924 }
1925 else
1926 {
1927 // Verify format and input match, extract and discard.
1928 if (__format[__i] == *__beg)
1929 ++__beg;
1930 else
1931 __err |= ios_base::failbit;
1932 }
1933 }
1934 return __beg;
1935 }
1936
1937 template<typename _CharT, typename _InIter>
1938 _InIter
1939 time_get<_CharT, _InIter>::
1940 _M_extract_num(iter_type __beg, iter_type __end, int& __member,
1941 int __min, int __max, size_t __len,
1942 ios_base& __io, ios_base::iostate& __err) const
1943 {
1944 const locale& __loc = __io._M_getloc();
1945 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1946
1947 // As-is works for __len = 1, 2, 4, the values actually used.
1948 int __mult = __len == 2 ? 10 : (__len == 4 ? 1000 : 1);
1949
1950 ++__min;
1951 size_t __i = 0;
1952 int __value = 0;
1953 for (; __beg != __end && __i < __len; ++__beg, ++__i)
1954 {
1955 const char __c = __ctype.narrow(*__beg, '*');
1956 if (__c >= '0' && __c <= '9')
1957 {
1958 __value = __value * 10 + (__c - '0');
1959 const int __valuec = __value * __mult;
1960 if (__valuec > __max || __valuec + __mult < __min)
1961 break;
1962 __mult /= 10;
1963 }
1964 else
1965 break;
1966 }
1967 if (__i == __len)
1968 __member = __value;
1969 else
1970 __err |= ios_base::failbit;
1971 return __beg;
1972 }
1973
1974 // Assumptions:
1975 // All elements in __names are unique.
1976 template<typename _CharT, typename _InIter>
1977 _InIter
1978 time_get<_CharT, _InIter>::
1979 _M_extract_name(iter_type __beg, iter_type __end, int& __member,
1980 const _CharT** __names, size_t __indexlen,
1981 ios_base& __io, ios_base::iostate& __err) const
1982 {
1983 typedef char_traits<_CharT> __traits_type;
1984 const locale& __loc = __io._M_getloc();
1985 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1986
1987 int* __matches = static_cast<int*>(__builtin_alloca(sizeof(int)
1988 * __indexlen));
1989 size_t __nmatches = 0;
1990 size_t __pos = 0;
1991 bool __testvalid = true;
1992 const char_type* __name;
1993
1994 // Look for initial matches.
1995 // NB: Some of the locale data is in the form of all lowercase
1996 // names, and some is in the form of initially-capitalized
1997 // names. Look for both.
1998 if (__beg != __end)
1999 {
2000 const char_type __c = *__beg;
2001 for (size_t __i1 = 0; __i1 < __indexlen; ++__i1)
2002 if (__c == __names[__i1][0]
2003 || __c == __ctype.toupper(__names[__i1][0]))
2004 __matches[__nmatches++] = __i1;
2005 }
2006
2007 while (__nmatches > 1)
2008 {
2009 // Find smallest matching string.
2010 size_t __minlen = __traits_type::length(__names[__matches[0]]);
2011 for (size_t __i2 = 1; __i2 < __nmatches; ++__i2)
2012 __minlen = std::min(__minlen,
2013 __traits_type::length(__names[__matches[__i2]]));
2014 ++__pos;
2015 ++__beg;
2016 if (__pos < __minlen && __beg != __end)
2017 for (size_t __i3 = 0; __i3 < __nmatches;)
2018 {
2019 __name = __names[__matches[__i3]];
2020 if (__name[__pos] != *__beg)
2021 __matches[__i3] = __matches[--__nmatches];
2022 else
2023 ++__i3;
2024 }
2025 else
2026 break;
2027 }
2028
2029 if (__nmatches == 1)
2030 {
2031 // Make sure found name is completely extracted.
2032 ++__pos;
2033 ++__beg;
2034 __name = __names[__matches[0]];
2035 const size_t __len = __traits_type::length(__name);
2036 while (__pos < __len && __beg != __end && __name[__pos] == *__beg)
2037 ++__beg, ++__pos;
2038
2039 if (__len == __pos)
2040 __member = __matches[0];
2041 else
2042 __testvalid = false;
2043 }
2044 else
2045 __testvalid = false;
2046 if (!__testvalid)
2047 __err |= ios_base::failbit;
2048 return __beg;
2049 }
2050
2051 template<typename _CharT, typename _InIter>
2052 _InIter
2053 time_get<_CharT, _InIter>::
2054 do_get_time(iter_type __beg, iter_type __end, ios_base& __io,
2055 ios_base::iostate& __err, tm* __tm) const
2056 {
2057 const locale& __loc = __io._M_getloc();
2058 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
2059 const char_type* __times[2];
2060 __tp._M_time_formats(__times);
2061 __beg = _M_extract_via_format(__beg, __end, __io, __err,
2062 __tm, __times[0]);
2063 if (__beg == __end)
2064 __err |= ios_base::eofbit;
2065 return __beg;
2066 }
2067
2068 template<typename _CharT, typename _InIter>
2069 _InIter
2070 time_get<_CharT, _InIter>::
2071 do_get_date(iter_type __beg, iter_type __end, ios_base& __io,
2072 ios_base::iostate& __err, tm* __tm) const
2073 {
2074 const locale& __loc = __io._M_getloc();
2075 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
2076 const char_type* __dates[2];
2077 __tp._M_date_formats(__dates);
2078 __beg = _M_extract_via_format(__beg, __end, __io, __err,
2079 __tm, __dates[0]);
2080 if (__beg == __end)
2081 __err |= ios_base::eofbit;
2082 return __beg;
2083 }
2084
2085 template<typename _CharT, typename _InIter>
2086 _InIter
2087 time_get<_CharT, _InIter>::
2088 do_get_weekday(iter_type __beg, iter_type __end, ios_base& __io,
2089 ios_base::iostate& __err, tm* __tm) const
2090 {
2091 typedef char_traits<_CharT> __traits_type;
2092 const locale& __loc = __io._M_getloc();
2093 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
2094 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
2095 const char_type* __days[7];
2096 __tp._M_days_abbreviated(__days);
2097 int __tmpwday;
2098 __beg = _M_extract_name(__beg, __end, __tmpwday, __days, 7, __io, __err);
2099
2100 // Check to see if non-abbreviated name exists, and extract.
2101 // NB: Assumes both _M_days and _M_days_abbreviated organized in
2102 // exact same order, first to last, such that the resulting
2103 // __days array with the same index points to a day, and that
2104 // day's abbreviated form.
2105 // NB: Also assumes that an abbreviated name is a subset of the name.
2106 if (!__err)
2107 {
2108 size_t __pos = __traits_type::length(__days[__tmpwday]);
2109 __tp._M_days(__days);
2110 const char_type* __name = __days[__tmpwday];
2111 if (__name[__pos] == *__beg)
2112 {
2113 // Extract the rest of it.
2114 const size_t __len = __traits_type::length(__name);
2115 while (__pos < __len && __beg != __end
2116 && __name[__pos] == *__beg)
2117 ++__beg, ++__pos;
2118 if (__len != __pos)
2119 __err |= ios_base::failbit;
2120 }
2121 if (!__err)
2122 __tm->tm_wday = __tmpwday;
2123 }
2124 if (__beg == __end)
2125 __err |= ios_base::eofbit;
2126 return __beg;
2127 }
2128
2129 template<typename _CharT, typename _InIter>
2130 _InIter
2131 time_get<_CharT, _InIter>::
2132 do_get_monthname(iter_type __beg, iter_type __end,
2133 ios_base& __io, ios_base::iostate& __err, tm* __tm) const
2134 {
2135 typedef char_traits<_CharT> __traits_type;
2136 const locale& __loc = __io._M_getloc();
2137 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
2138 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
2139 const char_type* __months[12];
2140 __tp._M_months_abbreviated(__months);
2141 int __tmpmon;
2142 __beg = _M_extract_name(__beg, __end, __tmpmon, __months, 12,
2143 __io, __err);
2144
2145 // Check to see if non-abbreviated name exists, and extract.
2146 // NB: Assumes both _M_months and _M_months_abbreviated organized in
2147 // exact same order, first to last, such that the resulting
2148 // __months array with the same index points to a month, and that
2149 // month's abbreviated form.
2150 // NB: Also assumes that an abbreviated name is a subset of the name.
2151 if (!__err)
2152 {
2153 size_t __pos = __traits_type::length(__months[__tmpmon]);
2154 __tp._M_months(__months);
2155 const char_type* __name = __months[__tmpmon];
2156 if (__name[__pos] == *__beg)
2157 {
2158 // Extract the rest of it.
2159 const size_t __len = __traits_type::length(__name);
2160 while (__pos < __len && __beg != __end
2161 && __name[__pos] == *__beg)
2162 ++__beg, ++__pos;
2163 if (__len != __pos)
2164 __err |= ios_base::failbit;
2165 }
2166 if (!__err)
2167 __tm->tm_mon = __tmpmon;
2168 }
2169
2170 if (__beg == __end)
2171 __err |= ios_base::eofbit;
2172 return __beg;
2173 }
2174
2175 template<typename _CharT, typename _InIter>
2176 _InIter
2177 time_get<_CharT, _InIter>::
2178 do_get_year(iter_type __beg, iter_type __end, ios_base& __io,
2179 ios_base::iostate& __err, tm* __tm) const
2180 {
2181 const locale& __loc = __io._M_getloc();
2182 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
2183
2184 size_t __i = 0;
2185 int __value = 0;
2186 for (; __beg != __end && __i < 4; ++__beg, ++__i)
2187 {
2188 const char __c = __ctype.narrow(*__beg, '*');
2189 if (__c >= '0' && __c <= '9')
2190 __value = __value * 10 + (__c - '0');
2191 else
2192 break;
2193 }
2194 if (__i == 2 || __i == 4)
2195 __tm->tm_year = __i == 2 ? __value : __value - 1900;
2196 else
2197 __err |= ios_base::failbit;
2198 if (__beg == __end)
2199 __err |= ios_base::eofbit;
2200 return __beg;
2201 }
2202
2203 template<typename _CharT, typename _OutIter>
2204 _OutIter
2205 time_put<_CharT, _OutIter>::
2206 put(iter_type __s, ios_base& __io, char_type __fill, const tm* __tm,
2207 const _CharT* __beg, const _CharT* __end) const
2208 {
2209 const locale& __loc = __io._M_getloc();
2210 ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
2211 for (; __beg != __end; ++__beg)
2212 if (__ctype.narrow(*__beg, 0) != '%')
2213 {
2214 *__s = *__beg;
2215 ++__s;
2216 }
2217 else if (++__beg != __end)
2218 {
2219 char __format;
2220 char __mod = 0;
2221 const char __c = __ctype.narrow(*__beg, 0);
2222 if (__c != 'E' && __c != 'O')
2223 __format = __c;
2224 else if (++__beg != __end)
2225 {
2226 __mod = __c;
2227 __format = __ctype.narrow(*__beg, 0);
2228 }
2229 else
2230 break;
2231 __s = this->do_put(__s, __io, __fill, __tm, __format, __mod);
2232 }
2233 else
2234 break;
2235 return __s;
2236 }
2237
2238 template<typename _CharT, typename _OutIter>
2239 _OutIter
2240 time_put<_CharT, _OutIter>::
2241 do_put(iter_type __s, ios_base& __io, char_type, const tm* __tm,
2242 char __format, char __mod) const
2243 {
2244 const locale& __loc = __io._M_getloc();
2245 ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
2246 __timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
2247
2248 // NB: This size is arbitrary. Should this be a data member,
2249 // initialized at construction?
2250 const size_t __maxlen = 64;
2251 char_type* __res =
2252 static_cast<char_type*>(__builtin_alloca(sizeof(char_type) * __maxlen));
2253
2254 // NB: In IEE 1003.1-200x, and perhaps other locale models, it
2255 // is possible that the format character will be longer than one
2256 // character. Possibilities include 'E' or 'O' followed by a
2257 // format character: if __mod is not the default argument, assume
2258 // it's a valid modifier.
2259 char_type __fmt[4];
2260 __fmt[0] = __ctype.widen('%');
2261 if (!__mod)
2262 {
2263 __fmt[1] = __format;
2264 __fmt[2] = char_type();
2265 }
2266 else
2267 {
2268 __fmt[1] = __mod;
2269 __fmt[2] = __format;
2270 __fmt[3] = char_type();
2271 }
2272
2273 __tp._M_put(__res, __maxlen, __fmt, __tm);
2274
2275 // Write resulting, fully-formatted string to output iterator.
2276 return std::__write(__s, __res, char_traits<char_type>::length(__res));
2277 }
2278
2279 // Generic version does nothing.
2280 template<typename _CharT>
2281 int
2282 collate<_CharT>::_M_compare(const _CharT*, const _CharT*) const
2283 { return 0; }
2284
2285 // Generic version does nothing.
2286 template<typename _CharT>
2287 size_t
2288 collate<_CharT>::_M_transform(_CharT*, const _CharT*, size_t) const
2289 { return 0; }
2290
2291 template<typename _CharT>
2292 int
2293 collate<_CharT>::
2294 do_compare(const _CharT* __lo1, const _CharT* __hi1,
2295 const _CharT* __lo2, const _CharT* __hi2) const
2296 {
2297 // strcoll assumes zero-terminated strings so we make a copy
2298 // and then put a zero at the end.
2299 const string_type __one(__lo1, __hi1);
2300 const string_type __two(__lo2, __hi2);
2301
2302 const _CharT* __p = __one.c_str();
2303 const _CharT* __pend = __one.data() + __one.length();
2304 const _CharT* __q = __two.c_str();
2305 const _CharT* __qend = __two.data() + __two.length();
2306
2307 // strcoll stops when it sees a nul character so we break
2308 // the strings into zero-terminated substrings and pass those
2309 // to strcoll.
2310 for (;;)
2311 {
2312 const int __res = _M_compare(__p, __q);
2313 if (__res)
2314 return __res;
2315
2316 __p += char_traits<_CharT>::length(__p);
2317 __q += char_traits<_CharT>::length(__q);
2318 if (__p == __pend && __q == __qend)
2319 return 0;
2320 else if (__p == __pend)
2321 return -1;
2322 else if (__q == __qend)
2323 return 1;
2324
2325 __p++;
2326 __q++;
2327 }
2328 }
2329
2330 template<typename _CharT>
2331 typename collate<_CharT>::string_type
2332 collate<_CharT>::
2333 do_transform(const _CharT* __lo, const _CharT* __hi) const
2334 {
2335 // strxfrm assumes zero-terminated strings so we make a copy
2336 string_type __str(__lo, __hi);
2337
2338 const _CharT* __p = __str.c_str();
2339 const _CharT* __pend = __str.data() + __str.length();
2340
2341 size_t __len = (__hi - __lo) * 2;
2342
2343 string_type __ret;
2344
2345 // strxfrm stops when it sees a nul character so we break
2346 // the string into zero-terminated substrings and pass those
2347 // to strxfrm.
2348 for (;;)
2349 {
2350 // First try a buffer perhaps big enough.
2351 _CharT* __c =
2352 static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __len));
2353 size_t __res = _M_transform(__c, __p, __len);
2354 // If the buffer was not large enough, try again with the
2355 // correct size.
2356 if (__res >= __len)
2357 {
2358 __len = __res + 1;
2359 __c = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
2360 * __len));
2361 __res = _M_transform(__c, __p, __len);
2362 }
2363
2364 __ret.append(__c, __res);
2365 __p += char_traits<_CharT>::length(__p);
2366 if (__p == __pend)
2367 return __ret;
2368
2369 __p++;
2370 __ret.push_back(_CharT());
2371 }
2372 }
2373
2374 template<typename _CharT>
2375 long
2376 collate<_CharT>::
2377 do_hash(const _CharT* __lo, const _CharT* __hi) const
2378 {
2379 unsigned long __val = 0;
2380 for (; __lo < __hi; ++__lo)
2381 __val = *__lo + ((__val << 7) |
2382 (__val >> (numeric_limits<unsigned long>::digits - 7)));
2383 return static_cast<long>(__val);
2384 }
2385
2386 // Construct correctly padded string, as per 22.2.2.2.2
2387 // Assumes
2388 // __newlen > __oldlen
2389 // __news is allocated for __newlen size
2390 // Used by both num_put and ostream inserters: if __num,
2391 // internal-adjusted objects are padded according to the rules below
2392 // concerning 0[xX] and +-, otherwise, exactly as right-adjusted
2393 // ones are.
2394
2395 // NB: Of the two parameters, _CharT can be deduced from the
2396 // function arguments. The other (_Traits) has to be explicitly specified.
2397 template<typename _CharT, typename _Traits>
2398 void
2399 __pad<_CharT, _Traits>::_S_pad(ios_base& __io, _CharT __fill,
2400 _CharT* __news, const _CharT* __olds,
2401 const streamsize __newlen,
2402 const streamsize __oldlen, const bool __num)
2403 {
2404 const size_t __plen = static_cast<size_t>(__newlen - __oldlen);
2405 const ios_base::fmtflags __adjust = __io.flags() & ios_base::adjustfield;
2406
2407 // Padding last.
2408 if (__adjust == ios_base::left)
2409 {
2410 _Traits::copy(__news, const_cast<_CharT*>(__olds), __oldlen);
2411 _Traits::assign(__news + __oldlen, __plen, __fill);
2412 return;
2413 }
2414
2415 size_t __mod = 0;
2416 if (__adjust == ios_base::internal && __num)
2417 {
2418 // Pad after the sign, if there is one.
2419 // Pad after 0[xX], if there is one.
2420 // Who came up with these rules, anyway? Jeeze.
2421 const locale& __loc = __io._M_getloc();
2422 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
2423
2424 const bool __testsign = (__ctype.widen('-') == __olds[0]
2425 || __ctype.widen('+') == __olds[0]);
2426 const bool __testhex = (__ctype.widen('0') == __olds[0]
2427 && __oldlen > 1
2428 && (__ctype.widen('x') == __olds[1]
2429 || __ctype.widen('X') == __olds[1]));
2430 if (__testhex)
2431 {
2432 __news[0] = __olds[0];
2433 __news[1] = __olds[1];
2434 __mod = 2;
2435 __news += 2;
2436 }
2437 else if (__testsign)
2438 {
2439 __news[0] = __olds[0];
2440 __mod = 1;
2441 ++__news;
2442 }
2443 // else Padding first.
2444 }
2445 _Traits::assign(__news, __plen, __fill);
2446 _Traits::copy(__news + __plen, const_cast<_CharT*>(__olds + __mod),
2447 __oldlen - __mod);
2448 }
2449
2450 bool
2451 __verify_grouping(const char* __grouping, size_t __grouping_size,
2452 const string& __grouping_tmp)
2453 {
2454 const size_t __n = __grouping_tmp.size() - 1;
2455 const size_t __min = std::min(__n, size_t(__grouping_size - 1));
2456 size_t __i = __n;
2457 bool __test = true;
2458
2459 // Parsed number groupings have to match the
2460 // numpunct::grouping string exactly, starting at the
2461 // right-most point of the parsed sequence of elements ...
2462 for (size_t __j = 0; __j < __min && __test; --__i, ++__j)
2463 __test = __grouping_tmp[__i] == __grouping[__j];
2464 for (; __i && __test; --__i)
2465 __test = __grouping_tmp[__i] == __grouping[__min];
2466 // ... but the last parsed grouping can be <= numpunct
2467 // grouping.
2468 __test &= __grouping_tmp[0] <= __grouping[__min];
2469 return __test;
2470 }
2471
2472 template<typename _CharT>
2473 _CharT*
2474 __add_grouping(_CharT* __s, _CharT __sep,
2475 const char* __gbeg, size_t __gsize,
2476 const _CharT* __first, const _CharT* __last)
2477 {
2478 if (__last - __first > *__gbeg)
2479 {
2480 const bool __bump = __gsize != 1;
2481 __s = std::__add_grouping(__s, __sep, __gbeg + __bump,
2482 __gsize - __bump, __first,
2483 __last - *__gbeg);
2484 __first = __last - *__gbeg;
2485 *__s++ = __sep;
2486 }
2487 do
2488 *__s++ = *__first++;
2489 while (__first != __last);
2490 return __s;
2491 }
2492
2493 // Inhibit implicit instantiations for required instantiations,
2494 // which are defined via explicit instantiations elsewhere.
2495 // NB: This syntax is a GNU extension.
2496 #if _GLIBCXX_EXTERN_TEMPLATE
2497 extern template class moneypunct<char, false>;
2498 extern template class moneypunct<char, true>;
2499 extern template class moneypunct_byname<char, false>;
2500 extern template class moneypunct_byname<char, true>;
2501 extern template class money_get<char>;
2502 extern template class money_put<char>;
2503 extern template class numpunct<char>;
2504 extern template class numpunct_byname<char>;
2505 extern template class num_get<char>;
2506 extern template class num_put<char>;
2507 extern template class __timepunct<char>;
2508 extern template class time_put<char>;
2509 extern template class time_put_byname<char>;
2510 extern template class time_get<char>;
2511 extern template class time_get_byname<char>;
2512 extern template class messages<char>;
2513 extern template class messages_byname<char>;
2514 extern template class ctype_byname<char>;
2515 extern template class codecvt_byname<char, char, mbstate_t>;
2516 extern template class collate<char>;
2517 extern template class collate_byname<char>;
2518
2519 extern template
2520 const codecvt<char, char, mbstate_t>&
2521 use_facet<codecvt<char, char, mbstate_t> >(const locale&);
2522
2523 extern template
2524 const collate<char>&
2525 use_facet<collate<char> >(const locale&);
2526
2527 extern template
2528 const numpunct<char>&
2529 use_facet<numpunct<char> >(const locale&);
2530
2531 extern template
2532 const num_put<char>&
2533 use_facet<num_put<char> >(const locale&);
2534
2535 extern template
2536 const num_get<char>&
2537 use_facet<num_get<char> >(const locale&);
2538
2539 extern template
2540 const moneypunct<char, true>&
2541 use_facet<moneypunct<char, true> >(const locale&);
2542
2543 extern template
2544 const moneypunct<char, false>&
2545 use_facet<moneypunct<char, false> >(const locale&);
2546
2547 extern template
2548 const money_put<char>&
2549 use_facet<money_put<char> >(const locale&);
2550
2551 extern template
2552 const money_get<char>&
2553 use_facet<money_get<char> >(const locale&);
2554
2555 extern template
2556 const __timepunct<char>&
2557 use_facet<__timepunct<char> >(const locale&);
2558
2559 extern template
2560 const time_put<char>&
2561 use_facet<time_put<char> >(const locale&);
2562
2563 extern template
2564 const time_get<char>&
2565 use_facet<time_get<char> >(const locale&);
2566
2567 extern template
2568 const messages<char>&
2569 use_facet<messages<char> >(const locale&);
2570
2571 extern template
2572 bool
2573 has_facet<ctype<char> >(const locale&);
2574
2575 extern template
2576 bool
2577 has_facet<codecvt<char, char, mbstate_t> >(const locale&);
2578
2579 extern template
2580 bool
2581 has_facet<collate<char> >(const locale&);
2582
2583 extern template
2584 bool
2585 has_facet<numpunct<char> >(const locale&);
2586
2587 extern template
2588 bool
2589 has_facet<num_put<char> >(const locale&);
2590
2591 extern template
2592 bool
2593 has_facet<num_get<char> >(const locale&);
2594
2595 extern template
2596 bool
2597 has_facet<moneypunct<char> >(const locale&);
2598
2599 extern template
2600 bool
2601 has_facet<money_put<char> >(const locale&);
2602
2603 extern template
2604 bool
2605 has_facet<money_get<char> >(const locale&);
2606
2607 extern template
2608 bool
2609 has_facet<__timepunct<char> >(const locale&);
2610
2611 extern template
2612 bool
2613 has_facet<time_put<char> >(const locale&);
2614
2615 extern template
2616 bool
2617 has_facet<time_get<char> >(const locale&);
2618
2619 extern template
2620 bool
2621 has_facet<messages<char> >(const locale&);
2622
2623 #ifdef _GLIBCXX_USE_WCHAR_T
2624 extern template class moneypunct<wchar_t, false>;
2625 extern template class moneypunct<wchar_t, true>;
2626 extern template class moneypunct_byname<wchar_t, false>;
2627 extern template class moneypunct_byname<wchar_t, true>;
2628 extern template class money_get<wchar_t>;
2629 extern template class money_put<wchar_t>;
2630 extern template class numpunct<wchar_t>;
2631 extern template class numpunct_byname<wchar_t>;
2632 extern template class num_get<wchar_t>;
2633 extern template class num_put<wchar_t>;
2634 extern template class __timepunct<wchar_t>;
2635 extern template class time_put<wchar_t>;
2636 extern template class time_put_byname<wchar_t>;
2637 extern template class time_get<wchar_t>;
2638 extern template class time_get_byname<wchar_t>;
2639 extern template class messages<wchar_t>;
2640 extern template class messages_byname<wchar_t>;
2641 extern template class ctype_byname<wchar_t>;
2642 extern template class codecvt_byname<wchar_t, char, mbstate_t>;
2643 extern template class collate<wchar_t>;
2644 extern template class collate_byname<wchar_t>;
2645
2646 extern template
2647 const codecvt<wchar_t, char, mbstate_t>&
2648 use_facet<codecvt<wchar_t, char, mbstate_t> >(locale const&);
2649
2650 extern template
2651 const collate<wchar_t>&
2652 use_facet<collate<wchar_t> >(const locale&);
2653
2654 extern template
2655 const numpunct<wchar_t>&
2656 use_facet<numpunct<wchar_t> >(const locale&);
2657
2658 extern template
2659 const num_put<wchar_t>&
2660 use_facet<num_put<wchar_t> >(const locale&);
2661
2662 extern template
2663 const num_get<wchar_t>&
2664 use_facet<num_get<wchar_t> >(const locale&);
2665
2666 extern template
2667 const moneypunct<wchar_t, true>&
2668 use_facet<moneypunct<wchar_t, true> >(const locale&);
2669
2670 extern template
2671 const moneypunct<wchar_t, false>&
2672 use_facet<moneypunct<wchar_t, false> >(const locale&);
2673
2674 extern template
2675 const money_put<wchar_t>&
2676 use_facet<money_put<wchar_t> >(const locale&);
2677
2678 extern template
2679 const money_get<wchar_t>&
2680 use_facet<money_get<wchar_t> >(const locale&);
2681
2682 extern template
2683 const __timepunct<wchar_t>&
2684 use_facet<__timepunct<wchar_t> >(const locale&);
2685
2686 extern template
2687 const time_put<wchar_t>&
2688 use_facet<time_put<wchar_t> >(const locale&);
2689
2690 extern template
2691 const time_get<wchar_t>&
2692 use_facet<time_get<wchar_t> >(const locale&);
2693
2694 extern template
2695 const messages<wchar_t>&
2696 use_facet<messages<wchar_t> >(const locale&);
2697
2698 extern template
2699 bool
2700 has_facet<ctype<wchar_t> >(const locale&);
2701
2702 extern template
2703 bool
2704 has_facet<codecvt<wchar_t, char, mbstate_t> >(const locale&);
2705
2706 extern template
2707 bool
2708 has_facet<collate<wchar_t> >(const locale&);
2709
2710 extern template
2711 bool
2712 has_facet<numpunct<wchar_t> >(const locale&);
2713
2714 extern template
2715 bool
2716 has_facet<num_put<wchar_t> >(const locale&);
2717
2718 extern template
2719 bool
2720 has_facet<num_get<wchar_t> >(const locale&);
2721
2722 extern template
2723 bool
2724 has_facet<moneypunct<wchar_t> >(const locale&);
2725
2726 extern template
2727 bool
2728 has_facet<money_put<wchar_t> >(const locale&);
2729
2730 extern template
2731 bool
2732 has_facet<money_get<wchar_t> >(const locale&);
2733
2734 extern template
2735 bool
2736 has_facet<__timepunct<wchar_t> >(const locale&);
2737
2738 extern template
2739 bool
2740 has_facet<time_put<wchar_t> >(const locale&);
2741
2742 extern template
2743 bool
2744 has_facet<time_get<wchar_t> >(const locale&);
2745
2746 extern template
2747 bool
2748 has_facet<messages<wchar_t> >(const locale&);
2749 #endif
2750 #endif
2751 } // namespace std
2752
2753 #endif