locale_facets.tcc (num_put<>::do_put(bool)): Cast to a signed type, long according...
[gcc.git] / libstdc++-v3 / include / bits / locale_facets.tcc
1 // Locale support -*- C++ -*-
2
3 // Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 // USA.
21
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
30
31 // Warning: this file is not meant for user inclusion. Use <locale>.
32
33 #ifndef _LOCALE_FACETS_TCC
34 #define _LOCALE_FACETS_TCC 1
35
36 #pragma GCC system_header
37
38 #include <limits> // For numeric_limits
39 #include <typeinfo> // For bad_cast.
40 #include <bits/streambuf_iterator.h>
41
42 namespace std
43 {
44 template<typename _Facet>
45 locale
46 locale::combine(const locale& __other) const
47 {
48 _Impl* __tmp = new _Impl(*_M_impl, 1);
49 try
50 {
51 __tmp->_M_replace_facet(__other._M_impl, &_Facet::id);
52 }
53 catch(...)
54 {
55 __tmp->_M_remove_reference();
56 __throw_exception_again;
57 }
58 return locale(__tmp);
59 }
60
61 template<typename _CharT, typename _Traits, typename _Alloc>
62 bool
63 locale::operator()(const basic_string<_CharT, _Traits, _Alloc>& __s1,
64 const basic_string<_CharT, _Traits, _Alloc>& __s2) const
65 {
66 typedef std::collate<_CharT> __collate_type;
67 const __collate_type& __collate = use_facet<__collate_type>(*this);
68 return (__collate.compare(__s1.data(), __s1.data() + __s1.length(),
69 __s2.data(), __s2.data() + __s2.length()) < 0);
70 }
71
72 /**
73 * @brief Test for the presence of a facet.
74 *
75 * has_facet tests the locale argument for the presence of the facet type
76 * provided as the template parameter. Facets derived from the facet
77 * parameter will also return true.
78 *
79 * @param Facet The facet type to test the presence of.
80 * @param locale The locale to test.
81 * @return true if locale contains a facet of type Facet, else false.
82 */
83 template<typename _Facet>
84 inline bool
85 has_facet(const locale& __loc) throw()
86 {
87 const size_t __i = _Facet::id._M_id();
88 const locale::facet** __facets = __loc._M_impl->_M_facets;
89 return (__i < __loc._M_impl->_M_facets_size && __facets[__i]);
90 }
91
92 /**
93 * @brief Return a facet.
94 *
95 * use_facet looks for and returns a reference to a facet of type Facet
96 * where Facet is the template parameter. If has_facet(locale) is true,
97 * there is a suitable facet to return. It throws std::bad_cast if the
98 * locale doesn't contain a facet of type Facet.
99 *
100 * @param Facet The facet type to access.
101 * @param locale The locale to use.
102 * @return Reference to facet of type Facet.
103 * @throw std::bad_cast if locale doesn't contain a facet of type Facet.
104 */
105 template<typename _Facet>
106 inline const _Facet&
107 use_facet(const locale& __loc)
108 {
109 const size_t __i = _Facet::id._M_id();
110 const locale::facet** __facets = __loc._M_impl->_M_facets;
111 if (!(__i < __loc._M_impl->_M_facets_size && __facets[__i]))
112 __throw_bad_cast();
113 return static_cast<const _Facet&>(*__facets[__i]);
114 }
115
116 // Routine to access a cache for the facet. If the cache didn't
117 // exist before, it gets constructed on the fly.
118 template<typename _Facet>
119 struct __use_cache
120 {
121 const _Facet*
122 operator() (const locale& __loc) const;
123 };
124
125 // Specializations.
126 template<typename _CharT>
127 struct __use_cache<__numpunct_cache<_CharT> >
128 {
129 const __numpunct_cache<_CharT>*
130 operator() (const locale& __loc) const
131 {
132 const size_t __i = numpunct<_CharT>::id._M_id();
133 const locale::facet** __caches = __loc._M_impl->_M_caches;
134 if (!__caches[__i])
135 {
136 __numpunct_cache<_CharT>* __tmp = NULL;
137 try
138 {
139 __tmp = new __numpunct_cache<_CharT>;
140 __tmp->_M_cache(__loc);
141 }
142 catch(...)
143 {
144 delete __tmp;
145 __throw_exception_again;
146 }
147 __loc._M_impl->_M_install_cache(__tmp, __i);
148 }
149 return static_cast<const __numpunct_cache<_CharT>*>(__caches[__i]);
150 }
151 };
152
153 template<typename _CharT, bool _Intl>
154 struct __use_cache<__moneypunct_cache<_CharT, _Intl> >
155 {
156 const __moneypunct_cache<_CharT, _Intl>*
157 operator() (const locale& __loc) const
158 {
159 const size_t __i = moneypunct<_CharT, _Intl>::id._M_id();
160 const locale::facet** __caches = __loc._M_impl->_M_caches;
161 if (!__caches[__i])
162 {
163 __moneypunct_cache<_CharT, _Intl>* __tmp = NULL;
164 try
165 {
166 __tmp = new __moneypunct_cache<_CharT, _Intl>;
167 __tmp->_M_cache(__loc);
168 }
169 catch(...)
170 {
171 delete __tmp;
172 __throw_exception_again;
173 }
174 __loc._M_impl->_M_install_cache(__tmp, __i);
175 }
176 return static_cast<
177 const __moneypunct_cache<_CharT, _Intl>*>(__caches[__i]);
178 }
179 };
180
181 template<typename _CharT>
182 void
183 __numpunct_cache<_CharT>::_M_cache(const locale& __loc)
184 {
185 _M_allocated = true;
186
187 const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
188
189 _M_grouping_size = __np.grouping().size();
190 char* __grouping = new char[_M_grouping_size];
191 __np.grouping().copy(__grouping, _M_grouping_size);
192 _M_grouping = __grouping;
193 _M_use_grouping = _M_grouping_size && __np.grouping()[0] != 0;
194
195 _M_truename_size = __np.truename().size();
196 _CharT* __truename = new _CharT[_M_truename_size];
197 __np.truename().copy(__truename, _M_truename_size);
198 _M_truename = __truename;
199
200 _M_falsename_size = __np.falsename().size();
201 _CharT* __falsename = new _CharT[_M_falsename_size];
202 __np.falsename().copy(__falsename, _M_falsename_size);
203 _M_falsename = __falsename;
204
205 _M_decimal_point = __np.decimal_point();
206 _M_thousands_sep = __np.thousands_sep();
207
208 const ctype<_CharT>& __ct = use_facet<ctype<_CharT> >(__loc);
209 __ct.widen(__num_base::_S_atoms_out,
210 __num_base::_S_atoms_out + __num_base::_S_oend, _M_atoms_out);
211 __ct.widen(__num_base::_S_atoms_in,
212 __num_base::_S_atoms_in + __num_base::_S_iend, _M_atoms_in);
213 }
214
215 template<typename _CharT, bool _Intl>
216 void
217 __moneypunct_cache<_CharT, _Intl>::_M_cache(const locale& __loc)
218 {
219 _M_allocated = true;
220
221 const moneypunct<_CharT, _Intl>& __mp =
222 use_facet<moneypunct<_CharT, _Intl> >(__loc);
223
224 _M_grouping_size = __mp.grouping().size();
225 char* __grouping = new char[_M_grouping_size];
226 __mp.grouping().copy(__grouping, _M_grouping_size);
227 _M_grouping = __grouping;
228 _M_use_grouping = _M_grouping_size && __mp.grouping()[0] != 0;
229
230 _M_decimal_point = __mp.decimal_point();
231 _M_thousands_sep = __mp.thousands_sep();
232 _M_frac_digits = __mp.frac_digits();
233
234 _M_curr_symbol_size = __mp.curr_symbol().size();
235 _CharT* __curr_symbol = new _CharT[_M_curr_symbol_size];
236 __mp.curr_symbol().copy(__curr_symbol, _M_curr_symbol_size);
237 _M_curr_symbol = __curr_symbol;
238
239 _M_positive_sign_size = __mp.positive_sign().size();
240 _CharT* __positive_sign = new _CharT[_M_positive_sign_size];
241 __mp.positive_sign().copy(__positive_sign, _M_positive_sign_size);
242 _M_positive_sign = __positive_sign;
243
244 _M_negative_sign_size = __mp.negative_sign().size();
245 _CharT* __negative_sign = new _CharT[_M_negative_sign_size];
246 __mp.negative_sign().copy(__negative_sign, _M_negative_sign_size);
247 _M_negative_sign = __negative_sign;
248
249 _M_pos_format = __mp.pos_format();
250 _M_neg_format = __mp.neg_format();
251
252 const ctype<_CharT>& __ct = use_facet<ctype<_CharT> >(__loc);
253 __ct.widen(money_base::_S_atoms,
254 money_base::_S_atoms + money_base::_S_end, _M_atoms);
255 }
256
257
258 // Used by both numeric and monetary facets.
259 // Check to make sure that the __grouping_tmp string constructed in
260 // money_get or num_get matches the canonical grouping for a given
261 // locale.
262 // __grouping_tmp is parsed L to R
263 // 1,222,444 == __grouping_tmp of "\1\3\3"
264 // __grouping is parsed R to L
265 // 1,222,444 == __grouping of "\3" == "\3\3\3"
266 static bool
267 __verify_grouping(const char* __grouping, size_t __grouping_size,
268 const string& __grouping_tmp);
269
270 template<typename _CharT, typename _InIter>
271 _InIter
272 num_get<_CharT, _InIter>::
273 _M_extract_float(_InIter __beg, _InIter __end, ios_base& __io,
274 ios_base::iostate& __err, string& __xtrc) const
275 {
276 typedef char_traits<_CharT> __traits_type;
277 typedef typename numpunct<_CharT>::__cache_type __cache_type;
278 __use_cache<__cache_type> __uc;
279 const locale& __loc = __io._M_getloc();
280 const __cache_type* __lc = __uc(__loc);
281 const _CharT* __lit = __lc->_M_atoms_in;
282
283 // True if a mantissa is found.
284 bool __found_mantissa = false;
285
286 // First check for sign.
287 if (__beg != __end)
288 {
289 const char_type __c = *__beg;
290 const bool __plus = __c == __lit[__num_base::_S_iplus];
291 if ((__plus || __c == __lit[__num_base::_S_iminus])
292 && !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
293 && !(__c == __lc->_M_decimal_point))
294 {
295 __xtrc += __plus ? '+' : '-';
296 ++__beg;
297 }
298 }
299
300 // Next, look for leading zeros.
301 while (__beg != __end)
302 {
303 const char_type __c = *__beg;
304 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep
305 || __c == __lc->_M_decimal_point)
306 break;
307 else if (__c == __lit[__num_base::_S_izero])
308 {
309 if (!__found_mantissa)
310 {
311 __xtrc += '0';
312 __found_mantissa = true;
313 }
314 ++__beg;
315 }
316 else
317 break;
318 }
319
320 // Only need acceptable digits for floating point numbers.
321 bool __found_dec = false;
322 bool __found_sci = false;
323 string __found_grouping;
324 if (__lc->_M_use_grouping)
325 __found_grouping.reserve(32);
326 int __sep_pos = 0;
327 const char_type* __lit_zero = __lit + __num_base::_S_izero;
328 while (__beg != __end)
329 {
330 // According to 22.2.2.1.2, p8-9, first look for thousands_sep
331 // and decimal_point.
332 const char_type __c = *__beg;
333 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
334 {
335 if (!__found_dec && !__found_sci)
336 {
337 // NB: Thousands separator at the beginning of a string
338 // is a no-no, as is two consecutive thousands separators.
339 if (__sep_pos)
340 {
341 __found_grouping += static_cast<char>(__sep_pos);
342 __sep_pos = 0;
343 ++__beg;
344 }
345 else
346 {
347 __err |= ios_base::failbit;
348 break;
349 }
350 }
351 else
352 break;
353 }
354 else if (__c == __lc->_M_decimal_point)
355 {
356 if (!__found_dec && !__found_sci)
357 {
358 // If no grouping chars are seen, no grouping check
359 // is applied. Therefore __found_grouping is adjusted
360 // only if decimal_point comes after some thousands_sep.
361 if (__found_grouping.size())
362 __found_grouping += static_cast<char>(__sep_pos);
363 __xtrc += '.';
364 __found_dec = true;
365 ++__beg;
366 }
367 else
368 break;
369 }
370 else
371 {
372 const char_type* __q = __traits_type::find(__lit_zero, 10, __c);
373 if (__q)
374 {
375 __xtrc += __num_base::_S_atoms_in[__q - __lit];
376 __found_mantissa = true;
377 ++__sep_pos;
378 ++__beg;
379 }
380 else if ((__c == __lit[__num_base::_S_ie]
381 || __c == __lit[__num_base::_S_iE])
382 && __found_mantissa && !__found_sci)
383 {
384 // Scientific notation.
385 if (__found_grouping.size() && !__found_dec)
386 __found_grouping += static_cast<char>(__sep_pos);
387 __xtrc += 'e';
388 __found_sci = true;
389
390 // Remove optional plus or minus sign, if they exist.
391 if (++__beg != __end)
392 {
393 const bool __plus = *__beg == __lit[__num_base::_S_iplus];
394 if ((__plus || *__beg == __lit[__num_base::_S_iminus])
395 && !(__lc->_M_use_grouping
396 && *__beg == __lc->_M_thousands_sep)
397 && !(*__beg == __lc->_M_decimal_point))
398 {
399 __xtrc += __plus ? '+' : '-';
400 ++__beg;
401 }
402 }
403 }
404 else
405 // Not a valid input item.
406 break;
407 }
408 }
409
410 // Digit grouping is checked. If grouping and found_grouping don't
411 // match, then get very very upset, and set failbit.
412 if (__found_grouping.size())
413 {
414 // Add the ending grouping if a decimal or 'e'/'E' wasn't found.
415 if (!__found_dec && !__found_sci)
416 __found_grouping += static_cast<char>(__sep_pos);
417
418 if (!std::__verify_grouping(__lc->_M_grouping,
419 __lc->_M_grouping_size,
420 __found_grouping))
421 __err |= ios_base::failbit;
422 }
423
424 // Finish up.
425 if (__beg == __end)
426 __err |= ios_base::eofbit;
427 return __beg;
428 }
429
430 template<typename _CharT, typename _InIter>
431 template<typename _ValueT>
432 _InIter
433 num_get<_CharT, _InIter>::
434 _M_extract_int(_InIter __beg, _InIter __end, ios_base& __io,
435 ios_base::iostate& __err, _ValueT& __v) const
436 {
437 typedef char_traits<_CharT> __traits_type;
438 typedef typename numpunct<_CharT>::__cache_type __cache_type;
439 __use_cache<__cache_type> __uc;
440 const locale& __loc = __io._M_getloc();
441 const __cache_type* __lc = __uc(__loc);
442 const _CharT* __lit = __lc->_M_atoms_in;
443
444 // NB: Iff __basefield == 0, __base can change based on contents.
445 const ios_base::fmtflags __basefield = __io.flags()
446 & ios_base::basefield;
447 const bool __oct = __basefield == ios_base::oct;
448 int __base = __oct ? 8 : (__basefield == ios_base::hex ? 16 : 10);
449
450 // True if numeric digits are found.
451 bool __found_num = false;
452
453 // First check for sign.
454 bool __negative = false;
455 if (__beg != __end)
456 {
457 const char_type __c = *__beg;
458 if (numeric_limits<_ValueT>::is_signed)
459 __negative = __c == __lit[__num_base::_S_iminus];
460 if ((__negative || __c == __lit[__num_base::_S_iplus])
461 && !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
462 && !(__c == __lc->_M_decimal_point))
463 ++__beg;
464 }
465
466 // Next, look for leading zeros and check required digits
467 // for base formats.
468 while (__beg != __end)
469 {
470 const char_type __c = *__beg;
471 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep
472 || __c == __lc->_M_decimal_point)
473 break;
474 else if (__c == __lit[__num_base::_S_izero]
475 && (!__found_num || __base == 10))
476 {
477 __found_num = true;
478 ++__beg;
479 }
480 else if (__found_num)
481 {
482 if (__c == __lit[__num_base::_S_ix]
483 || __c == __lit[__num_base::_S_iX])
484 {
485 if (__basefield == 0)
486 __base = 16;
487 if (__base == 16)
488 {
489 __found_num = false;
490 ++__beg;
491 }
492 }
493 else if (__basefield == 0)
494 __base = 8;
495 break;
496 }
497 else
498 break;
499 }
500
501 // At this point, base is determined. If not hex, only allow
502 // base digits as valid input.
503 const size_t __len = (__base == 16 ? __num_base::_S_iend
504 - __num_base::_S_izero : __base);
505
506 // Extract.
507 string __found_grouping;
508 if (__lc->_M_use_grouping)
509 __found_grouping.reserve(32);
510 int __sep_pos = 0;
511 bool __overflow = false;
512 _ValueT __result = 0;
513 const char_type* __lit_zero = __lit + __num_base::_S_izero;
514 if (__negative)
515 {
516 const _ValueT __min = numeric_limits<_ValueT>::min() / __base;
517 for (; __beg != __end; ++__beg)
518 {
519 // According to 22.2.2.1.2, p8-9, first look for thousands_sep
520 // and decimal_point.
521 const char_type __c = *__beg;
522 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
523 {
524 // NB: Thousands separator at the beginning of a string
525 // is a no-no, as is two consecutive thousands separators.
526 if (__sep_pos)
527 {
528 __found_grouping += static_cast<char>(__sep_pos);
529 __sep_pos = 0;
530 }
531 else
532 {
533 __err |= ios_base::failbit;
534 break;
535 }
536 }
537 else if (__c == __lc->_M_decimal_point)
538 break;
539 else
540 {
541 const char_type* __q = __traits_type::find(__lit_zero,
542 __len, __c);
543 if (__q)
544 {
545 int __digit = __q - __lit_zero;
546 if (__digit > 15)
547 __digit -= 6;
548 if (__result < __min)
549 __overflow = true;
550 else
551 {
552 const _ValueT __new_result = (__result * __base
553 - __digit);
554 __overflow |= __new_result > __result;
555 __result = __new_result;
556 ++__sep_pos;
557 __found_num = true;
558 }
559 }
560 else
561 // Not a valid input item.
562 break;
563 }
564 }
565 }
566 else
567 {
568 const _ValueT __max = numeric_limits<_ValueT>::max() / __base;
569 for (; __beg != __end; ++__beg)
570 {
571 const char_type __c = *__beg;
572 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
573 {
574 if (__sep_pos)
575 {
576 __found_grouping += static_cast<char>(__sep_pos);
577 __sep_pos = 0;
578 }
579 else
580 {
581 __err |= ios_base::failbit;
582 break;
583 }
584 }
585 else if (__c == __lc->_M_decimal_point)
586 break;
587 else
588 {
589 const char_type* __q = __traits_type::find(__lit_zero,
590 __len, __c);
591 if (__q)
592 {
593 int __digit = __q - __lit_zero;
594 if (__digit > 15)
595 __digit -= 6;
596 if (__result > __max)
597 __overflow = true;
598 else
599 {
600 const _ValueT __new_result = (__result * __base
601 + __digit);
602 __overflow |= __new_result < __result;
603 __result = __new_result;
604 ++__sep_pos;
605 __found_num = true;
606 }
607 }
608 else
609 break;
610 }
611 }
612 }
613
614 // Digit grouping is checked. If grouping and found_grouping don't
615 // match, then get very very upset, and set failbit.
616 if (__found_grouping.size())
617 {
618 // Add the ending grouping.
619 __found_grouping += static_cast<char>(__sep_pos);
620
621 if (!std::__verify_grouping(__lc->_M_grouping,
622 __lc->_M_grouping_size,
623 __found_grouping))
624 __err |= ios_base::failbit;
625 }
626
627 if (!(__err & ios_base::failbit) && !__overflow
628 && __found_num)
629 __v = __result;
630 else
631 __err |= ios_base::failbit;
632
633 if (__beg == __end)
634 __err |= ios_base::eofbit;
635 return __beg;
636 }
637
638 // _GLIBCXX_RESOLVE_LIB_DEFECTS
639 // 17. Bad bool parsing
640 template<typename _CharT, typename _InIter>
641 _InIter
642 num_get<_CharT, _InIter>::
643 do_get(iter_type __beg, iter_type __end, ios_base& __io,
644 ios_base::iostate& __err, bool& __v) const
645 {
646 if (!(__io.flags() & ios_base::boolalpha))
647 {
648 // Parse bool values as long.
649 // NB: We can't just call do_get(long) here, as it might
650 // refer to a derived class.
651 long __l = -1;
652 __beg = _M_extract_int(__beg, __end, __io, __err, __l);
653 if (__l == 0 || __l == 1)
654 __v = __l;
655 else
656 __err |= ios_base::failbit;
657 }
658 else
659 {
660 // Parse bool values as alphanumeric.
661 typedef typename numpunct<_CharT>::__cache_type __cache_type;
662 __use_cache<__cache_type> __uc;
663 const locale& __loc = __io._M_getloc();
664 const __cache_type* __lc = __uc(__loc);
665
666 bool __testf = true;
667 bool __testt = true;
668 size_t __n;
669 for (__n = 0; __beg != __end; ++__n, ++__beg)
670 {
671 if (__testf)
672 if (__n < __lc->_M_falsename_size)
673 __testf = *__beg == __lc->_M_falsename[__n];
674 else
675 break;
676
677 if (__testt)
678 if (__n < __lc->_M_truename_size)
679 __testt = *__beg == __lc->_M_truename[__n];
680 else
681 break;
682
683 if (!__testf && !__testt)
684 break;
685 }
686 if (__testf && __n == __lc->_M_falsename_size)
687 __v = 0;
688 else if (__testt && __n == __lc->_M_truename_size)
689 __v = 1;
690 else
691 __err |= ios_base::failbit;
692
693 if (__beg == __end)
694 __err |= ios_base::eofbit;
695 }
696 return __beg;
697 }
698
699 template<typename _CharT, typename _InIter>
700 _InIter
701 num_get<_CharT, _InIter>::
702 do_get(iter_type __beg, iter_type __end, ios_base& __io,
703 ios_base::iostate& __err, long& __v) const
704 { return _M_extract_int(__beg, __end, __io, __err, __v); }
705
706 template<typename _CharT, typename _InIter>
707 _InIter
708 num_get<_CharT, _InIter>::
709 do_get(iter_type __beg, iter_type __end, ios_base& __io,
710 ios_base::iostate& __err, unsigned short& __v) const
711 { return _M_extract_int(__beg, __end, __io, __err, __v); }
712
713 template<typename _CharT, typename _InIter>
714 _InIter
715 num_get<_CharT, _InIter>::
716 do_get(iter_type __beg, iter_type __end, ios_base& __io,
717 ios_base::iostate& __err, unsigned int& __v) const
718 { return _M_extract_int(__beg, __end, __io, __err, __v); }
719
720 template<typename _CharT, typename _InIter>
721 _InIter
722 num_get<_CharT, _InIter>::
723 do_get(iter_type __beg, iter_type __end, ios_base& __io,
724 ios_base::iostate& __err, unsigned long& __v) const
725 { return _M_extract_int(__beg, __end, __io, __err, __v); }
726
727 #ifdef _GLIBCXX_USE_LONG_LONG
728 template<typename _CharT, typename _InIter>
729 _InIter
730 num_get<_CharT, _InIter>::
731 do_get(iter_type __beg, iter_type __end, ios_base& __io,
732 ios_base::iostate& __err, long long& __v) const
733 { return _M_extract_int(__beg, __end, __io, __err, __v); }
734
735 template<typename _CharT, typename _InIter>
736 _InIter
737 num_get<_CharT, _InIter>::
738 do_get(iter_type __beg, iter_type __end, ios_base& __io,
739 ios_base::iostate& __err, unsigned long long& __v) const
740 { return _M_extract_int(__beg, __end, __io, __err, __v); }
741 #endif
742
743 template<typename _CharT, typename _InIter>
744 _InIter
745 num_get<_CharT, _InIter>::
746 do_get(iter_type __beg, iter_type __end, ios_base& __io,
747 ios_base::iostate& __err, float& __v) const
748 {
749 string __xtrc;
750 __xtrc.reserve(32);
751 __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
752 std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
753 return __beg;
754 }
755
756 template<typename _CharT, typename _InIter>
757 _InIter
758 num_get<_CharT, _InIter>::
759 do_get(iter_type __beg, iter_type __end, ios_base& __io,
760 ios_base::iostate& __err, double& __v) const
761 {
762 string __xtrc;
763 __xtrc.reserve(32);
764 __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
765 std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
766 return __beg;
767 }
768
769 template<typename _CharT, typename _InIter>
770 _InIter
771 num_get<_CharT, _InIter>::
772 do_get(iter_type __beg, iter_type __end, ios_base& __io,
773 ios_base::iostate& __err, long double& __v) const
774 {
775 string __xtrc;
776 __xtrc.reserve(32);
777 __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
778 std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
779 return __beg;
780 }
781
782 template<typename _CharT, typename _InIter>
783 _InIter
784 num_get<_CharT, _InIter>::
785 do_get(iter_type __beg, iter_type __end, ios_base& __io,
786 ios_base::iostate& __err, void*& __v) const
787 {
788 // Prepare for hex formatted input.
789 typedef ios_base::fmtflags fmtflags;
790 const fmtflags __fmt = __io.flags();
791 __io.flags(__fmt & ~ios_base::basefield | ios_base::hex);
792
793 unsigned long __ul;
794 __beg = _M_extract_int(__beg, __end, __io, __err, __ul);
795
796 // Reset from hex formatted input.
797 __io.flags(__fmt);
798
799 if (!(__err & ios_base::failbit))
800 __v = reinterpret_cast<void*>(__ul);
801 else
802 __err |= ios_base::failbit;
803 return __beg;
804 }
805
806 // For use by integer and floating-point types after they have been
807 // converted into a char_type string.
808 template<typename _CharT, typename _OutIter>
809 void
810 num_put<_CharT, _OutIter>::
811 _M_pad(_CharT __fill, streamsize __w, ios_base& __io,
812 _CharT* __new, const _CharT* __cs, int& __len) const
813 {
814 // [22.2.2.2.2] Stage 3.
815 // If necessary, pad.
816 __pad<_CharT, char_traits<_CharT> >::_S_pad(__io, __fill, __new, __cs,
817 __w, __len, true);
818 __len = static_cast<int>(__w);
819 }
820
821 // Forwarding functions to peel signed from unsigned integer types.
822 template<typename _CharT>
823 inline int
824 __int_to_char(_CharT* __bufend, long __v, const _CharT* __lit,
825 ios_base::fmtflags __flags)
826 {
827 unsigned long __ul = static_cast<unsigned long>(__v);
828 bool __neg = false;
829 if (__v < 0)
830 {
831 __ul = -__ul;
832 __neg = true;
833 }
834 return __int_to_char(__bufend, __ul, __lit, __flags, __neg);
835 }
836
837 template<typename _CharT>
838 inline int
839 __int_to_char(_CharT* __bufend, unsigned long __v, const _CharT* __lit,
840 ios_base::fmtflags __flags)
841 {
842 // About showpos, see Table 60 and C99 7.19.6.1, p6 (+).
843 return __int_to_char(__bufend, __v, __lit,
844 __flags & ~ios_base::showpos, false);
845 }
846
847 #ifdef _GLIBCXX_USE_LONG_LONG
848 template<typename _CharT>
849 inline int
850 __int_to_char(_CharT* __bufend, long long __v, const _CharT* __lit,
851 ios_base::fmtflags __flags)
852 {
853 unsigned long long __ull = static_cast<unsigned long long>(__v);
854 bool __neg = false;
855 if (__v < 0)
856 {
857 __ull = -__ull;
858 __neg = true;
859 }
860 return __int_to_char(__bufend, __ull, __lit, __flags, __neg);
861 }
862
863 template<typename _CharT>
864 inline int
865 __int_to_char(_CharT* __bufend, unsigned long long __v,
866 const _CharT* __lit, ios_base::fmtflags __flags)
867 { return __int_to_char(__bufend, __v, __lit,
868 __flags & ~ios_base::showpos, false); }
869 #endif
870
871 template<typename _CharT, typename _ValueT>
872 int
873 __int_to_char(_CharT* __bufend, _ValueT __v, const _CharT* __lit,
874 ios_base::fmtflags __flags, bool __neg)
875 {
876 // Don't write base if already 0.
877 const bool __showbase = (__flags & ios_base::showbase) && __v;
878 const ios_base::fmtflags __basefield = __flags & ios_base::basefield;
879 _CharT* __buf = __bufend - 1;
880
881 if (__builtin_expect(__basefield != ios_base::oct &&
882 __basefield != ios_base::hex, true))
883 {
884 // Decimal.
885 do
886 {
887 *__buf-- = __lit[(__v % 10) + __num_base::_S_odigits];
888 __v /= 10;
889 }
890 while (__v != 0);
891 if (__neg)
892 *__buf-- = __lit[__num_base::_S_ominus];
893 else if (__flags & ios_base::showpos)
894 *__buf-- = __lit[__num_base::_S_oplus];
895 }
896 else if (__basefield == ios_base::oct)
897 {
898 // Octal.
899 do
900 {
901 *__buf-- = __lit[(__v & 0x7) + __num_base::_S_odigits];
902 __v >>= 3;
903 }
904 while (__v != 0);
905 if (__showbase)
906 *__buf-- = __lit[__num_base::_S_odigits];
907 }
908 else
909 {
910 // Hex.
911 const bool __uppercase = __flags & ios_base::uppercase;
912 const int __case_offset = __uppercase ? __num_base::_S_oudigits
913 : __num_base::_S_odigits;
914 do
915 {
916 *__buf-- = __lit[(__v & 0xf) + __case_offset];
917 __v >>= 4;
918 }
919 while (__v != 0);
920 if (__showbase)
921 {
922 // 'x' or 'X'
923 *__buf-- = __lit[__num_base::_S_ox + __uppercase];
924 // '0'
925 *__buf-- = __lit[__num_base::_S_odigits];
926 }
927 }
928 return __bufend - __buf - 1;
929 }
930
931 template<typename _CharT, typename _OutIter>
932 void
933 num_put<_CharT, _OutIter>::
934 _M_group_int(const char* __grouping, size_t __grouping_size, _CharT __sep,
935 ios_base& __io, _CharT* __new, _CharT* __cs, int& __len) const
936 {
937 // By itself __add_grouping cannot deal correctly with __cs when
938 // ios::showbase is set and ios_base::oct || ios_base::hex.
939 // Therefore we take care "by hand" of the initial 0, 0x or 0X.
940 // However, remember that the latter do not occur if the number
941 // printed is '0' (__len == 1).
942 streamsize __off = 0;
943 const ios_base::fmtflags __basefield = __io.flags()
944 & ios_base::basefield;
945 if ((__io.flags() & ios_base::showbase) && __len > 1)
946 if (__basefield == ios_base::oct)
947 {
948 __off = 1;
949 __new[0] = __cs[0];
950 }
951 else if (__basefield == ios_base::hex)
952 {
953 __off = 2;
954 __new[0] = __cs[0];
955 __new[1] = __cs[1];
956 }
957 _CharT* __p = std::__add_grouping(__new + __off, __sep, __grouping,
958 __grouping_size, __cs + __off,
959 __cs + __len);
960 __len = __p - __new;
961 }
962
963 template<typename _CharT, typename _OutIter>
964 template<typename _ValueT>
965 _OutIter
966 num_put<_CharT, _OutIter>::
967 _M_insert_int(_OutIter __s, ios_base& __io, _CharT __fill,
968 _ValueT __v) const
969 {
970 typedef typename numpunct<_CharT>::__cache_type __cache_type;
971 __use_cache<__cache_type> __uc;
972 const locale& __loc = __io._M_getloc();
973 const __cache_type* __lc = __uc(__loc);
974 const _CharT* __lit = __lc->_M_atoms_out;
975
976 // Long enough to hold hex, dec, and octal representations.
977 const int __ilen = 4 * sizeof(_ValueT);
978 _CharT* __cs = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
979 * __ilen));
980
981 // [22.2.2.2.2] Stage 1, numeric conversion to character.
982 // Result is returned right-justified in the buffer.
983 int __len;
984 __len = __int_to_char(__cs + __ilen, __v, __lit, __io.flags());
985 __cs += __ilen - __len;
986
987 // Add grouping, if necessary.
988 if (__lc->_M_use_grouping)
989 {
990 // Grouping can add (almost) as many separators as the
991 // number of digits, but no more.
992 _CharT* __cs2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
993 * __len * 2));
994 _M_group_int(__lc->_M_grouping, __lc->_M_grouping_size,
995 __lc->_M_thousands_sep, __io, __cs2, __cs, __len);
996 __cs = __cs2;
997 }
998
999 // Pad.
1000 const streamsize __w = __io.width();
1001 if (__w > static_cast<streamsize>(__len))
1002 {
1003 _CharT* __cs3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1004 * __w));
1005 _M_pad(__fill, __w, __io, __cs3, __cs, __len);
1006 __cs = __cs3;
1007 }
1008 __io.width(0);
1009
1010 // [22.2.2.2.2] Stage 4.
1011 // Write resulting, fully-formatted string to output iterator.
1012 return std::__write(__s, __cs, __len);
1013 }
1014
1015 template<typename _CharT, typename _OutIter>
1016 void
1017 num_put<_CharT, _OutIter>::
1018 _M_group_float(const char* __grouping, size_t __grouping_size,
1019 _CharT __sep, const _CharT* __p, _CharT* __new,
1020 _CharT* __cs, int& __len) const
1021 {
1022 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1023 // 282. What types does numpunct grouping refer to?
1024 // Add grouping, if necessary.
1025 const int __declen = __p ? __p - __cs : __len;
1026 _CharT* __p2 = std::__add_grouping(__new, __sep, __grouping,
1027 __grouping_size,
1028 __cs, __cs + __declen);
1029
1030 // Tack on decimal part.
1031 int __newlen = __p2 - __new;
1032 if (__p)
1033 {
1034 char_traits<_CharT>::copy(__p2, __p, __len - __declen);
1035 __newlen += __len - __declen;
1036 }
1037 __len = __newlen;
1038 }
1039
1040 // The following code uses snprintf (or sprintf(), when
1041 // _GLIBCXX_USE_C99 is not defined) to convert floating point values
1042 // for insertion into a stream. An optimization would be to replace
1043 // them with code that works directly on a wide buffer and then use
1044 // __pad to do the padding. It would be good to replace them anyway
1045 // to gain back the efficiency that C++ provides by knowing up front
1046 // the type of the values to insert. Also, sprintf is dangerous
1047 // since may lead to accidental buffer overruns. This
1048 // implementation follows the C++ standard fairly directly as
1049 // outlined in 22.2.2.2 [lib.locale.num.put]
1050 template<typename _CharT, typename _OutIter>
1051 template<typename _ValueT>
1052 _OutIter
1053 num_put<_CharT, _OutIter>::
1054 _M_insert_float(_OutIter __s, ios_base& __io, _CharT __fill, char __mod,
1055 _ValueT __v) const
1056 {
1057 typedef typename numpunct<_CharT>::__cache_type __cache_type;
1058 __use_cache<__cache_type> __uc;
1059 const locale& __loc = __io._M_getloc();
1060 const __cache_type* __lc = __uc(__loc);
1061
1062 // Use default precision if out of range.
1063 streamsize __prec = __io.precision();
1064 if (__prec < static_cast<streamsize>(0))
1065 __prec = static_cast<streamsize>(6);
1066
1067 const int __max_digits = numeric_limits<_ValueT>::digits10;
1068
1069 // [22.2.2.2.2] Stage 1, numeric conversion to character.
1070 int __len;
1071 // Long enough for the max format spec.
1072 char __fbuf[16];
1073
1074 #ifdef _GLIBCXX_USE_C99
1075 // First try a buffer perhaps big enough (most probably sufficient
1076 // for non-ios_base::fixed outputs)
1077 int __cs_size = __max_digits * 3;
1078 char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1079
1080 __num_base::_S_format_float(__io, __fbuf, __mod);
1081 __len = std::__convert_from_v(__cs, __cs_size, __fbuf, __v,
1082 _S_get_c_locale(), __prec);
1083
1084 // If the buffer was not large enough, try again with the correct size.
1085 if (__len >= __cs_size)
1086 {
1087 __cs_size = __len + 1;
1088 __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1089 __len = std::__convert_from_v(__cs, __cs_size, __fbuf, __v,
1090 _S_get_c_locale(), __prec);
1091 }
1092 #else
1093 // Consider the possibility of long ios_base::fixed outputs
1094 const bool __fixed = __io.flags() & ios_base::fixed;
1095 const int __max_exp = numeric_limits<_ValueT>::max_exponent10;
1096
1097 // The size of the output string is computed as follows.
1098 // ios_base::fixed outputs may need up to __max_exp + 1 chars
1099 // for the integer part + __prec chars for the fractional part
1100 // + 3 chars for sign, decimal point, '\0'. On the other hand,
1101 // for non-fixed outputs __max_digits * 2 + __prec chars are
1102 // largely sufficient.
1103 const int __cs_size = __fixed ? __max_exp + __prec + 4
1104 : __max_digits * 2 + __prec;
1105 char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1106
1107 __num_base::_S_format_float(__io, __fbuf, __mod);
1108 __len = std::__convert_from_v(__cs, 0, __fbuf, __v,
1109 _S_get_c_locale(), __prec);
1110 #endif
1111
1112 // [22.2.2.2.2] Stage 2, convert to char_type, using correct
1113 // numpunct.decimal_point() values for '.' and adding grouping.
1114 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1115
1116 _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1117 * __len));
1118 __ctype.widen(__cs, __cs + __len, __ws);
1119
1120 // Replace decimal point.
1121 const _CharT __cdec = __ctype.widen('.');
1122 const _CharT __dec = __lc->_M_decimal_point;
1123 const _CharT* __p = char_traits<_CharT>::find(__ws, __len, __cdec);
1124 if (__p)
1125 __ws[__p - __ws] = __dec;
1126
1127 // Add grouping, if necessary.
1128 if (__lc->_M_use_grouping)
1129 {
1130 // Grouping can add (almost) as many separators as the
1131 // number of digits, but no more.
1132 _CharT* __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1133 * __len * 2));
1134 _M_group_float(__lc->_M_grouping, __lc->_M_grouping_size,
1135 __lc->_M_thousands_sep, __p, __ws2, __ws, __len);
1136 __ws = __ws2;
1137 }
1138
1139 // Pad.
1140 const streamsize __w = __io.width();
1141 if (__w > static_cast<streamsize>(__len))
1142 {
1143 _CharT* __ws3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1144 * __w));
1145 _M_pad(__fill, __w, __io, __ws3, __ws, __len);
1146 __ws = __ws3;
1147 }
1148 __io.width(0);
1149
1150 // [22.2.2.2.2] Stage 4.
1151 // Write resulting, fully-formatted string to output iterator.
1152 return std::__write(__s, __ws, __len);
1153 }
1154
1155 template<typename _CharT, typename _OutIter>
1156 _OutIter
1157 num_put<_CharT, _OutIter>::
1158 do_put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const
1159 {
1160 const ios_base::fmtflags __flags = __io.flags();
1161 if ((__flags & ios_base::boolalpha) == 0)
1162 {
1163 const long __l = __v;
1164 __s = _M_insert_int(__s, __io, __fill, __l);
1165 }
1166 else
1167 {
1168 typedef typename numpunct<_CharT>::__cache_type __cache_type;
1169 __use_cache<__cache_type> __uc;
1170 const locale& __loc = __io._M_getloc();
1171 const __cache_type* __lc = __uc(__loc);
1172
1173 const _CharT* __name = __v ? __lc->_M_truename
1174 : __lc->_M_falsename;
1175 int __len = __v ? __lc->_M_truename_size
1176 : __lc->_M_falsename_size;
1177
1178 const streamsize __w = __io.width();
1179 if (__w > static_cast<streamsize>(__len))
1180 {
1181 _CharT* __cs
1182 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1183 * __w));
1184 _M_pad(__fill, __w, __io, __cs, __name, __len);
1185 __name = __cs;
1186 }
1187 __io.width(0);
1188 __s = std::__write(__s, __name, __len);
1189 }
1190 return __s;
1191 }
1192
1193 template<typename _CharT, typename _OutIter>
1194 _OutIter
1195 num_put<_CharT, _OutIter>::
1196 do_put(iter_type __s, ios_base& __io, char_type __fill, long __v) const
1197 { return _M_insert_int(__s, __io, __fill, __v); }
1198
1199 template<typename _CharT, typename _OutIter>
1200 _OutIter
1201 num_put<_CharT, _OutIter>::
1202 do_put(iter_type __s, ios_base& __io, char_type __fill,
1203 unsigned long __v) const
1204 { return _M_insert_int(__s, __io, __fill, __v); }
1205
1206 #ifdef _GLIBCXX_USE_LONG_LONG
1207 template<typename _CharT, typename _OutIter>
1208 _OutIter
1209 num_put<_CharT, _OutIter>::
1210 do_put(iter_type __s, ios_base& __b, char_type __fill, long long __v) const
1211 { return _M_insert_int(__s, __b, __fill, __v); }
1212
1213 template<typename _CharT, typename _OutIter>
1214 _OutIter
1215 num_put<_CharT, _OutIter>::
1216 do_put(iter_type __s, ios_base& __io, char_type __fill,
1217 unsigned long long __v) const
1218 { return _M_insert_int(__s, __io, __fill, __v); }
1219 #endif
1220
1221 template<typename _CharT, typename _OutIter>
1222 _OutIter
1223 num_put<_CharT, _OutIter>::
1224 do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const
1225 { return _M_insert_float(__s, __io, __fill, char(), __v); }
1226
1227 template<typename _CharT, typename _OutIter>
1228 _OutIter
1229 num_put<_CharT, _OutIter>::
1230 do_put(iter_type __s, ios_base& __io, char_type __fill,
1231 long double __v) const
1232 { return _M_insert_float(__s, __io, __fill, 'L', __v); }
1233
1234 template<typename _CharT, typename _OutIter>
1235 _OutIter
1236 num_put<_CharT, _OutIter>::
1237 do_put(iter_type __s, ios_base& __io, char_type __fill,
1238 const void* __v) const
1239 {
1240 const ios_base::fmtflags __flags = __io.flags();
1241 const ios_base::fmtflags __fmt = ~(ios_base::basefield
1242 | ios_base::uppercase
1243 | ios_base::internal);
1244 __io.flags(__flags & __fmt | (ios_base::hex | ios_base::showbase));
1245
1246 __s = _M_insert_int(__s, __io, __fill,
1247 reinterpret_cast<unsigned long>(__v));
1248 __io.flags(__flags);
1249 return __s;
1250 }
1251
1252 template<typename _CharT, typename _InIter>
1253 template<bool _Intl>
1254 _InIter
1255 money_get<_CharT, _InIter>::
1256 _M_extract(iter_type __beg, iter_type __end, ios_base& __io,
1257 ios_base::iostate& __err, string& __units) const
1258 {
1259 typedef char_traits<_CharT> __traits_type;
1260 typedef typename string_type::size_type size_type;
1261 typedef money_base::part part;
1262 typedef moneypunct<_CharT, _Intl> __moneypunct_type;
1263 typedef typename __moneypunct_type::__cache_type __cache_type;
1264
1265 const locale& __loc = __io._M_getloc();
1266 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1267
1268 __use_cache<__cache_type> __uc;
1269 const __cache_type* __lc = __uc(__loc);
1270 const char_type* __lit = __lc->_M_atoms;
1271
1272 // Deduced sign.
1273 bool __negative = false;
1274 // Sign size.
1275 size_type __sign_size = 0;
1276 // True if sign is mandatory.
1277 const bool __mandatory_sign = (__lc->_M_positive_sign_size
1278 && __lc->_M_negative_sign_size);
1279 // String of grouping info from thousands_sep plucked from __units.
1280 string __grouping_tmp;
1281 if (__lc->_M_use_grouping)
1282 __grouping_tmp.reserve(32);
1283 // Last position before the decimal point.
1284 int __last_pos = 0;
1285 // Separator positions, then, possibly, fractional digits.
1286 int __n = 0;
1287 // If input iterator is in a valid state.
1288 bool __testvalid = true;
1289 // Flag marking when a decimal point is found.
1290 bool __testdecfound = false;
1291
1292 // The tentative returned string is stored here.
1293 string __res;
1294 __res.reserve(32);
1295
1296 const char_type* __lit_zero = __lit + money_base::_S_zero;
1297 const money_base::pattern __p = __lc->_M_neg_format;
1298 for (int __i = 0; __i < 4 && __testvalid; ++__i)
1299 {
1300 const part __which = static_cast<part>(__p.field[__i]);
1301 switch (__which)
1302 {
1303 case money_base::symbol:
1304 // According to 22.2.6.1.2, p2, symbol is required
1305 // if (__io.flags() & ios_base::showbase), otherwise
1306 // is optional and consumed only if other characters
1307 // are needed to complete the format.
1308 if (__io.flags() & ios_base::showbase || __sign_size > 1
1309 || __i == 0
1310 || (__i == 1 && (__mandatory_sign
1311 || (static_cast<part>(__p.field[0])
1312 == money_base::sign)
1313 || (static_cast<part>(__p.field[2])
1314 == money_base::space)))
1315 || (__i == 2 && ((static_cast<part>(__p.field[3])
1316 == money_base::value)
1317 || __mandatory_sign
1318 && (static_cast<part>(__p.field[3])
1319 == money_base::sign))))
1320 {
1321 const size_type __len = __lc->_M_curr_symbol_size;
1322 size_type __j = 0;
1323 for (; __beg != __end && __j < __len
1324 && *__beg == __lc->_M_curr_symbol[__j];
1325 ++__beg, ++__j);
1326 if (__j != __len
1327 && (__j || __io.flags() & ios_base::showbase))
1328 __testvalid = false;
1329 }
1330 break;
1331 case money_base::sign:
1332 // Sign might not exist, or be more than one character long.
1333 if (__lc->_M_positive_sign_size && __beg != __end
1334 && *__beg == __lc->_M_positive_sign[0])
1335 {
1336 __sign_size = __lc->_M_positive_sign_size;
1337 ++__beg;
1338 }
1339 else if (__lc->_M_negative_sign_size && __beg != __end
1340 && *__beg == __lc->_M_negative_sign[0])
1341 {
1342 __negative = true;
1343 __sign_size = __lc->_M_negative_sign_size;
1344 ++__beg;
1345 }
1346 else if (__lc->_M_positive_sign_size
1347 && !__lc->_M_negative_sign_size)
1348 // "... if no sign is detected, the result is given the sign
1349 // that corresponds to the source of the empty string"
1350 __negative = true;
1351 else if (__mandatory_sign)
1352 __testvalid = false;
1353 break;
1354 case money_base::value:
1355 // Extract digits, remove and stash away the
1356 // grouping of found thousands separators.
1357 for (; __beg != __end; ++__beg)
1358 {
1359 const char_type* __q = __traits_type::find(__lit_zero,
1360 10, *__beg);
1361 if (__q != 0)
1362 {
1363 __res += money_base::_S_atoms[__q - __lit];
1364 ++__n;
1365 }
1366 else if (*__beg == __lc->_M_decimal_point
1367 && !__testdecfound)
1368 {
1369 __last_pos = __n;
1370 __n = 0;
1371 __testdecfound = true;
1372 }
1373 else if (__lc->_M_use_grouping
1374 && *__beg == __lc->_M_thousands_sep
1375 && !__testdecfound)
1376 {
1377 if (__n)
1378 {
1379 // Mark position for later analysis.
1380 __grouping_tmp += static_cast<char>(__n);
1381 __n = 0;
1382 }
1383 else
1384 {
1385 __testvalid = false;
1386 break;
1387 }
1388 }
1389 else
1390 break;
1391 }
1392 if (__res.empty())
1393 __testvalid = false;
1394 break;
1395 case money_base::space:
1396 // At least one space is required.
1397 if (__beg != __end && __ctype.is(ctype_base::space, *__beg))
1398 ++__beg;
1399 else
1400 __testvalid = false;
1401 case money_base::none:
1402 // Only if not at the end of the pattern.
1403 if (__i != 3)
1404 for (; __beg != __end
1405 && __ctype.is(ctype_base::space, *__beg); ++__beg);
1406 break;
1407 }
1408 }
1409
1410 // Need to get the rest of the sign characters, if they exist.
1411 if (__sign_size > 1 && __testvalid)
1412 {
1413 const char_type* __sign = __negative ? __lc->_M_negative_sign
1414 : __lc->_M_positive_sign;
1415 size_type __i = 1;
1416 for (; __beg != __end && __i < __sign_size
1417 && *__beg == __sign[__i]; ++__beg, ++__i);
1418
1419 if (__i != __sign_size)
1420 __testvalid = false;
1421 }
1422
1423 if (__testvalid)
1424 {
1425 // Strip leading zeros.
1426 if (__res.size() > 1)
1427 {
1428 const size_type __first = __res.find_first_not_of('0');
1429 const bool __only_zeros = __first == string::npos;
1430 if (__first)
1431 __res.erase(0, __only_zeros ? __res.size() - 1 : __first);
1432 }
1433
1434 // 22.2.6.1.2, p4
1435 if (__negative && __res[0] != '0')
1436 __res.insert(__res.begin(), '-');
1437
1438 // Test for grouping fidelity.
1439 if (__grouping_tmp.size())
1440 {
1441 // Add the ending grouping.
1442 __grouping_tmp += static_cast<char>(__testdecfound ? __last_pos
1443 : __n);
1444 if (!std::__verify_grouping(__lc->_M_grouping,
1445 __lc->_M_grouping_size,
1446 __grouping_tmp))
1447 __testvalid = false;
1448 }
1449
1450 // Iff not enough digits were supplied after the decimal-point.
1451 if (__testdecfound && __lc->_M_frac_digits > 0
1452 && __n != __lc->_M_frac_digits)
1453 __testvalid = false;
1454 }
1455
1456 // Iff no more characters are available.
1457 if (__beg == __end)
1458 __err |= ios_base::eofbit;
1459
1460 // Iff valid sequence is not recognized.
1461 if (!__testvalid)
1462 __err |= ios_base::failbit;
1463 else
1464 __units.swap(__res);
1465
1466 return __beg;
1467 }
1468
1469 template<typename _CharT, typename _InIter>
1470 _InIter
1471 money_get<_CharT, _InIter>::
1472 do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
1473 ios_base::iostate& __err, long double& __units) const
1474 {
1475 string __str;
1476 if (__intl)
1477 __beg = _M_extract<true>(__beg, __end, __io, __err, __str);
1478 else
1479 __beg = _M_extract<false>(__beg, __end, __io, __err, __str);
1480 std::__convert_to_v(__str.c_str(), __units, __err, _S_get_c_locale());
1481 return __beg;
1482 }
1483
1484 template<typename _CharT, typename _InIter>
1485 _InIter
1486 money_get<_CharT, _InIter>::
1487 do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
1488 ios_base::iostate& __err, string_type& __units) const
1489 {
1490 typedef typename string::size_type size_type;
1491
1492 const locale& __loc = __io._M_getloc();
1493 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1494
1495 string __str;
1496 const iter_type __ret = __intl ? _M_extract<true>(__beg, __end, __io,
1497 __err, __str)
1498 : _M_extract<false>(__beg, __end, __io,
1499 __err, __str);
1500 const size_type __len = __str.size();
1501 if (__len)
1502 {
1503 _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1504 * __len));
1505 __ctype.widen(__str.data(), __str.data() + __len, __ws);
1506 __units.assign(__ws, __len);
1507 }
1508
1509 return __ret;
1510 }
1511
1512 template<typename _CharT, typename _OutIter>
1513 template<bool _Intl>
1514 _OutIter
1515 money_put<_CharT, _OutIter>::
1516 _M_insert(iter_type __s, ios_base& __io, char_type __fill,
1517 const string_type& __digits) const
1518 {
1519 typedef typename string_type::size_type size_type;
1520 typedef money_base::part part;
1521 typedef moneypunct<_CharT, _Intl> __moneypunct_type;
1522 typedef typename __moneypunct_type::__cache_type __cache_type;
1523
1524 const locale& __loc = __io._M_getloc();
1525 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1526
1527 __use_cache<__cache_type> __uc;
1528 const __cache_type* __lc = __uc(__loc);
1529 const char_type* __lit = __lc->_M_atoms;
1530
1531 // Determine if negative or positive formats are to be used, and
1532 // discard leading negative_sign if it is present.
1533 const char_type* __beg = __digits.data();
1534
1535 money_base::pattern __p;
1536 const char_type* __sign;
1537 size_type __sign_size;
1538 if (*__beg != __lit[money_base::_S_minus])
1539 {
1540 __p = __lc->_M_pos_format;
1541 __sign = __lc->_M_positive_sign;
1542 __sign_size = __lc->_M_positive_sign_size;
1543 }
1544 else
1545 {
1546 __p = __lc->_M_neg_format;
1547 __sign = __lc->_M_negative_sign;
1548 __sign_size = __lc->_M_negative_sign_size;
1549 if (__digits.size())
1550 ++__beg;
1551 }
1552
1553 // Look for valid numbers in the ctype facet within input digits.
1554 size_type __len = __ctype.scan_not(ctype_base::digit, __beg,
1555 __beg + __digits.size()) - __beg;
1556 if (__len)
1557 {
1558 // Assume valid input, and attempt to format.
1559 // Break down input numbers into base components, as follows:
1560 // final_value = grouped units + (decimal point) + (digits)
1561 string_type __value;
1562 __value.reserve(2 * __len);
1563
1564 // Add thousands separators to non-decimal digits, per
1565 // grouping rules.
1566 int __paddec = __len - __lc->_M_frac_digits;
1567 if (__paddec > 0)
1568 {
1569 if (__lc->_M_frac_digits < 0)
1570 __paddec = __len;
1571 if (__lc->_M_grouping_size)
1572 {
1573 _CharT* __ws =
1574 static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1575 * 2 * __len));
1576 _CharT* __ws_end =
1577 std::__add_grouping(__ws, __lc->_M_thousands_sep,
1578 __lc->_M_grouping,
1579 __lc->_M_grouping_size,
1580 __beg, __beg + __paddec);
1581 __value.assign(__ws, __ws_end - __ws);
1582 }
1583 else
1584 __value.assign(__beg, __paddec);
1585 }
1586
1587 // Deal with decimal point, decimal digits.
1588 if (__lc->_M_frac_digits > 0)
1589 {
1590 __value += __lc->_M_decimal_point;
1591 if (__paddec >= 0)
1592 __value.append(__beg + __paddec, __lc->_M_frac_digits);
1593 else
1594 {
1595 // Have to pad zeros in the decimal position.
1596 __value.append(-__paddec, __lit[money_base::_S_zero]);
1597 __value.append(__beg, __len);
1598 }
1599 }
1600
1601 // Calculate length of resulting string.
1602 const ios_base::fmtflags __f = __io.flags()
1603 & ios_base::adjustfield;
1604 __len = __value.size() + __sign_size;
1605 __len += ((__io.flags() & ios_base::showbase)
1606 ? __lc->_M_curr_symbol_size : 0);
1607
1608 string_type __res;
1609 __res.reserve(2 * __len);
1610
1611 const size_type __width = static_cast<size_type>(__io.width());
1612 const bool __testipad = (__f == ios_base::internal
1613 && __len < __width);
1614 // Fit formatted digits into the required pattern.
1615 for (int __i = 0; __i < 4; ++__i)
1616 {
1617 const part __which = static_cast<part>(__p.field[__i]);
1618 switch (__which)
1619 {
1620 case money_base::symbol:
1621 if (__io.flags() & ios_base::showbase)
1622 __res.append(__lc->_M_curr_symbol,
1623 __lc->_M_curr_symbol_size);
1624 break;
1625 case money_base::sign:
1626 // Sign might not exist, or be more than one
1627 // charater long. In that case, add in the rest
1628 // below.
1629 if (__sign_size)
1630 __res += __sign[0];
1631 break;
1632 case money_base::value:
1633 __res += __value;
1634 break;
1635 case money_base::space:
1636 // At least one space is required, but if internal
1637 // formatting is required, an arbitrary number of
1638 // fill spaces will be necessary.
1639 if (__testipad)
1640 __res.append(__width - __len, __fill);
1641 else
1642 __res += __fill;
1643 break;
1644 case money_base::none:
1645 if (__testipad)
1646 __res.append(__width - __len, __fill);
1647 break;
1648 }
1649 }
1650
1651 // Special case of multi-part sign parts.
1652 if (__sign_size > 1)
1653 __res.append(__sign + 1, __sign_size - 1);
1654
1655 // Pad, if still necessary.
1656 __len = __res.size();
1657 if (__width > __len)
1658 {
1659 if (__f == ios_base::left)
1660 // After.
1661 __res.append(__width - __len, __fill);
1662 else
1663 // Before.
1664 __res.insert(0, __width - __len, __fill);
1665 __len = __width;
1666 }
1667
1668 // Write resulting, fully-formatted string to output iterator.
1669 __s = std::__write(__s, __res.data(), __len);
1670 }
1671 __io.width(0);
1672 return __s;
1673 }
1674
1675 template<typename _CharT, typename _OutIter>
1676 _OutIter
1677 money_put<_CharT, _OutIter>::
1678 do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
1679 long double __units) const
1680 {
1681 const locale __loc = __io.getloc();
1682 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1683 #ifdef _GLIBCXX_USE_C99
1684 // First try a buffer perhaps big enough.
1685 int __cs_size = 64;
1686 char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1687 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1688 // 328. Bad sprintf format modifier in money_put<>::do_put()
1689 int __len = std::__convert_from_v(__cs, __cs_size, "%.*Lf", __units,
1690 _S_get_c_locale(), 0);
1691 // If the buffer was not large enough, try again with the correct size.
1692 if (__len >= __cs_size)
1693 {
1694 __cs_size = __len + 1;
1695 __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1696 __len = std::__convert_from_v(__cs, __cs_size, "%.*Lf", __units,
1697 _S_get_c_locale(), 0);
1698 }
1699 #else
1700 // max_exponent10 + 1 for the integer part, + 2 for sign and '\0'.
1701 const int __cs_size = numeric_limits<long double>::max_exponent10 + 3;
1702 char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1703 int __len = std::__convert_from_v(__cs, 0, "%.*Lf", __units,
1704 _S_get_c_locale(), 0);
1705 #endif
1706 _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1707 * __cs_size));
1708 __ctype.widen(__cs, __cs + __len, __ws);
1709 const string_type __digits(__ws, __len);
1710 return __intl ? _M_insert<true>(__s, __io, __fill, __digits)
1711 : _M_insert<false>(__s, __io, __fill, __digits);
1712 }
1713
1714 template<typename _CharT, typename _OutIter>
1715 _OutIter
1716 money_put<_CharT, _OutIter>::
1717 do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
1718 const string_type& __digits) const
1719 { return __intl ? _M_insert<true>(__s, __io, __fill, __digits)
1720 : _M_insert<false>(__s, __io, __fill, __digits); }
1721
1722
1723 // NB: Not especially useful. Without an ios_base object or some
1724 // kind of locale reference, we are left clawing at the air where
1725 // the side of the mountain used to be...
1726 template<typename _CharT, typename _InIter>
1727 time_base::dateorder
1728 time_get<_CharT, _InIter>::do_date_order() const
1729 { return time_base::no_order; }
1730
1731 // Expand a strftime format string and parse it. E.g., do_get_date() may
1732 // pass %m/%d/%Y => extracted characters.
1733 template<typename _CharT, typename _InIter>
1734 _InIter
1735 time_get<_CharT, _InIter>::
1736 _M_extract_via_format(iter_type __beg, iter_type __end, ios_base& __io,
1737 ios_base::iostate& __err, tm* __tm,
1738 const _CharT* __format) const
1739 {
1740 const locale& __loc = __io._M_getloc();
1741 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
1742 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1743 const size_t __len = char_traits<_CharT>::length(__format);
1744
1745 for (size_t __i = 0; __beg != __end && __i < __len && !__err; ++__i)
1746 {
1747 if (__ctype.narrow(__format[__i], 0) == '%')
1748 {
1749 // Verify valid formatting code, attempt to extract.
1750 char __c = __ctype.narrow(__format[++__i], 0);
1751 int __mem = 0;
1752 if (__c == 'E' || __c == 'O')
1753 __c = __ctype.narrow(__format[++__i], 0);
1754 switch (__c)
1755 {
1756 const char* __cs;
1757 _CharT __wcs[10];
1758 case 'a':
1759 // Abbreviated weekday name [tm_wday]
1760 const char_type* __days1[7];
1761 __tp._M_days_abbreviated(__days1);
1762 __beg = _M_extract_name(__beg, __end, __tm->tm_wday, __days1,
1763 7, __io, __err);
1764 break;
1765 case 'A':
1766 // Weekday name [tm_wday].
1767 const char_type* __days2[7];
1768 __tp._M_days(__days2);
1769 __beg = _M_extract_name(__beg, __end, __tm->tm_wday, __days2,
1770 7, __io, __err);
1771 break;
1772 case 'h':
1773 case 'b':
1774 // Abbreviated month name [tm_mon]
1775 const char_type* __months1[12];
1776 __tp._M_months_abbreviated(__months1);
1777 __beg = _M_extract_name(__beg, __end, __tm->tm_mon,
1778 __months1, 12, __io, __err);
1779 break;
1780 case 'B':
1781 // Month name [tm_mon].
1782 const char_type* __months2[12];
1783 __tp._M_months(__months2);
1784 __beg = _M_extract_name(__beg, __end, __tm->tm_mon,
1785 __months2, 12, __io, __err);
1786 break;
1787 case 'c':
1788 // Default time and date representation.
1789 const char_type* __dt[2];
1790 __tp._M_date_time_formats(__dt);
1791 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1792 __tm, __dt[0]);
1793 break;
1794 case 'd':
1795 // Day [01, 31]. [tm_mday]
1796 __beg = _M_extract_num(__beg, __end, __tm->tm_mday, 1, 31, 2,
1797 __io, __err);
1798 break;
1799 case 'e':
1800 // Day [1, 31], with single digits preceded by
1801 // space. [tm_mday]
1802 if (__ctype.is(ctype_base::space, *__beg))
1803 __beg = _M_extract_num(++__beg, __end, __tm->tm_mday, 1, 9,
1804 1, __io, __err);
1805 else
1806 __beg = _M_extract_num(__beg, __end, __tm->tm_mday, 10, 31,
1807 2, __io, __err);
1808 break;
1809 case 'D':
1810 // Equivalent to %m/%d/%y.[tm_mon, tm_mday, tm_year]
1811 __cs = "%m/%d/%y";
1812 __ctype.widen(__cs, __cs + 9, __wcs);
1813 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1814 __tm, __wcs);
1815 break;
1816 case 'H':
1817 // Hour [00, 23]. [tm_hour]
1818 __beg = _M_extract_num(__beg, __end, __tm->tm_hour, 0, 23, 2,
1819 __io, __err);
1820 break;
1821 case 'I':
1822 // Hour [01, 12]. [tm_hour]
1823 __beg = _M_extract_num(__beg, __end, __tm->tm_hour, 1, 12, 2,
1824 __io, __err);
1825 break;
1826 case 'm':
1827 // Month [01, 12]. [tm_mon]
1828 __beg = _M_extract_num(__beg, __end, __mem, 1, 12, 2,
1829 __io, __err);
1830 if (!__err)
1831 __tm->tm_mon = __mem - 1;
1832 break;
1833 case 'M':
1834 // Minute [00, 59]. [tm_min]
1835 __beg = _M_extract_num(__beg, __end, __tm->tm_min, 0, 59, 2,
1836 __io, __err);
1837 break;
1838 case 'n':
1839 if (__ctype.narrow(*__beg, 0) == '\n')
1840 ++__beg;
1841 else
1842 __err |= ios_base::failbit;
1843 break;
1844 case 'R':
1845 // Equivalent to (%H:%M).
1846 __cs = "%H:%M";
1847 __ctype.widen(__cs, __cs + 6, __wcs);
1848 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1849 __tm, __wcs);
1850 break;
1851 case 'S':
1852 // Seconds.
1853 __beg = _M_extract_num(__beg, __end, __tm->tm_sec, 0, 59, 2,
1854 __io, __err);
1855 break;
1856 case 't':
1857 if (__ctype.narrow(*__beg, 0) == '\t')
1858 ++__beg;
1859 else
1860 __err |= ios_base::failbit;
1861 break;
1862 case 'T':
1863 // Equivalent to (%H:%M:%S).
1864 __cs = "%H:%M:%S";
1865 __ctype.widen(__cs, __cs + 9, __wcs);
1866 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1867 __tm, __wcs);
1868 break;
1869 case 'x':
1870 // Locale's date.
1871 const char_type* __dates[2];
1872 __tp._M_date_formats(__dates);
1873 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1874 __tm, __dates[0]);
1875 break;
1876 case 'X':
1877 // Locale's time.
1878 const char_type* __times[2];
1879 __tp._M_time_formats(__times);
1880 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1881 __tm, __times[0]);
1882 break;
1883 case 'y':
1884 case 'C': // C99
1885 // Two digit year. [tm_year]
1886 __beg = _M_extract_num(__beg, __end, __tm->tm_year, 0, 99, 2,
1887 __io, __err);
1888 break;
1889 case 'Y':
1890 // Year [1900). [tm_year]
1891 __beg = _M_extract_num(__beg, __end, __mem, 0, 9999, 4,
1892 __io, __err);
1893 if (!__err)
1894 __tm->tm_year = __mem - 1900;
1895 break;
1896 case 'Z':
1897 // Timezone info.
1898 if (__ctype.is(ctype_base::upper, *__beg))
1899 {
1900 int __tmp;
1901 __beg = _M_extract_name(__beg, __end, __tmp,
1902 __timepunct_cache<_CharT>::_S_timezones,
1903 14, __io, __err);
1904
1905 // GMT requires special effort.
1906 if (__beg != __end && !__err && __tmp == 0
1907 && (*__beg == __ctype.widen('-')
1908 || *__beg == __ctype.widen('+')))
1909 {
1910 __beg = _M_extract_num(__beg, __end, __tmp, 0, 23, 2,
1911 __io, __err);
1912 __beg = _M_extract_num(__beg, __end, __tmp, 0, 59, 2,
1913 __io, __err);
1914 }
1915 }
1916 else
1917 __err |= ios_base::failbit;
1918 break;
1919 default:
1920 // Not recognized.
1921 __err |= ios_base::failbit;
1922 }
1923 }
1924 else
1925 {
1926 // Verify format and input match, extract and discard.
1927 if (__format[__i] == *__beg)
1928 ++__beg;
1929 else
1930 __err |= ios_base::failbit;
1931 }
1932 }
1933 return __beg;
1934 }
1935
1936 template<typename _CharT, typename _InIter>
1937 _InIter
1938 time_get<_CharT, _InIter>::
1939 _M_extract_num(iter_type __beg, iter_type __end, int& __member,
1940 int __min, int __max, size_t __len,
1941 ios_base& __io, ios_base::iostate& __err) const
1942 {
1943 const locale& __loc = __io._M_getloc();
1944 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1945
1946 // As-is works for __len = 1, 2, 4, the values actually used.
1947 int __mult = __len == 2 ? 10 : (__len == 4 ? 1000 : 1);
1948
1949 ++__min;
1950 size_t __i = 0;
1951 int __value = 0;
1952 for (; __beg != __end && __i < __len; ++__beg, ++__i)
1953 {
1954 const char __c = __ctype.narrow(*__beg, '*');
1955 if (__c >= '0' && __c <= '9')
1956 {
1957 __value = __value * 10 + (__c - '0');
1958 const int __valuec = __value * __mult;
1959 if (__valuec > __max || __valuec + __mult < __min)
1960 break;
1961 __mult /= 10;
1962 }
1963 else
1964 break;
1965 }
1966 if (__i == __len)
1967 __member = __value;
1968 else
1969 __err |= ios_base::failbit;
1970 return __beg;
1971 }
1972
1973 // Assumptions:
1974 // All elements in __names are unique.
1975 template<typename _CharT, typename _InIter>
1976 _InIter
1977 time_get<_CharT, _InIter>::
1978 _M_extract_name(iter_type __beg, iter_type __end, int& __member,
1979 const _CharT** __names, size_t __indexlen,
1980 ios_base& __io, ios_base::iostate& __err) const
1981 {
1982 typedef char_traits<_CharT> __traits_type;
1983 const locale& __loc = __io._M_getloc();
1984 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1985
1986 int* __matches = static_cast<int*>(__builtin_alloca(sizeof(int)
1987 * __indexlen));
1988 size_t __nmatches = 0;
1989 size_t __pos = 0;
1990 bool __testvalid = true;
1991 const char_type* __name;
1992
1993 // Look for initial matches.
1994 // NB: Some of the locale data is in the form of all lowercase
1995 // names, and some is in the form of initially-capitalized
1996 // names. Look for both.
1997 if (__beg != __end)
1998 {
1999 const char_type __c = *__beg;
2000 for (size_t __i1 = 0; __i1 < __indexlen; ++__i1)
2001 if (__c == __names[__i1][0]
2002 || __c == __ctype.toupper(__names[__i1][0]))
2003 __matches[__nmatches++] = __i1;
2004 }
2005
2006 while (__nmatches > 1)
2007 {
2008 // Find smallest matching string.
2009 size_t __minlen = __traits_type::length(__names[__matches[0]]);
2010 for (size_t __i2 = 1; __i2 < __nmatches; ++__i2)
2011 __minlen = std::min(__minlen,
2012 __traits_type::length(__names[__matches[__i2]]));
2013 ++__pos;
2014 ++__beg;
2015 if (__pos < __minlen && __beg != __end)
2016 for (size_t __i3 = 0; __i3 < __nmatches;)
2017 {
2018 __name = __names[__matches[__i3]];
2019 if (__name[__pos] != *__beg)
2020 __matches[__i3] = __matches[--__nmatches];
2021 else
2022 ++__i3;
2023 }
2024 else
2025 break;
2026 }
2027
2028 if (__nmatches == 1)
2029 {
2030 // Make sure found name is completely extracted.
2031 ++__pos;
2032 ++__beg;
2033 __name = __names[__matches[0]];
2034 const size_t __len = __traits_type::length(__name);
2035 while (__pos < __len && __beg != __end && __name[__pos] == *__beg)
2036 ++__beg, ++__pos;
2037
2038 if (__len == __pos)
2039 __member = __matches[0];
2040 else
2041 __testvalid = false;
2042 }
2043 else
2044 __testvalid = false;
2045 if (!__testvalid)
2046 __err |= ios_base::failbit;
2047 return __beg;
2048 }
2049
2050 template<typename _CharT, typename _InIter>
2051 _InIter
2052 time_get<_CharT, _InIter>::
2053 do_get_time(iter_type __beg, iter_type __end, ios_base& __io,
2054 ios_base::iostate& __err, tm* __tm) const
2055 {
2056 const locale& __loc = __io._M_getloc();
2057 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
2058 const char_type* __times[2];
2059 __tp._M_time_formats(__times);
2060 __beg = _M_extract_via_format(__beg, __end, __io, __err,
2061 __tm, __times[0]);
2062 if (__beg == __end)
2063 __err |= ios_base::eofbit;
2064 return __beg;
2065 }
2066
2067 template<typename _CharT, typename _InIter>
2068 _InIter
2069 time_get<_CharT, _InIter>::
2070 do_get_date(iter_type __beg, iter_type __end, ios_base& __io,
2071 ios_base::iostate& __err, tm* __tm) const
2072 {
2073 const locale& __loc = __io._M_getloc();
2074 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
2075 const char_type* __dates[2];
2076 __tp._M_date_formats(__dates);
2077 __beg = _M_extract_via_format(__beg, __end, __io, __err,
2078 __tm, __dates[0]);
2079 if (__beg == __end)
2080 __err |= ios_base::eofbit;
2081 return __beg;
2082 }
2083
2084 template<typename _CharT, typename _InIter>
2085 _InIter
2086 time_get<_CharT, _InIter>::
2087 do_get_weekday(iter_type __beg, iter_type __end, ios_base& __io,
2088 ios_base::iostate& __err, tm* __tm) const
2089 {
2090 typedef char_traits<_CharT> __traits_type;
2091 const locale& __loc = __io._M_getloc();
2092 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
2093 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
2094 const char_type* __days[7];
2095 __tp._M_days_abbreviated(__days);
2096 int __tmpwday;
2097 __beg = _M_extract_name(__beg, __end, __tmpwday, __days, 7, __io, __err);
2098
2099 // Check to see if non-abbreviated name exists, and extract.
2100 // NB: Assumes both _M_days and _M_days_abbreviated organized in
2101 // exact same order, first to last, such that the resulting
2102 // __days array with the same index points to a day, and that
2103 // day's abbreviated form.
2104 // NB: Also assumes that an abbreviated name is a subset of the name.
2105 if (!__err)
2106 {
2107 size_t __pos = __traits_type::length(__days[__tmpwday]);
2108 __tp._M_days(__days);
2109 const char_type* __name = __days[__tmpwday];
2110 if (__name[__pos] == *__beg)
2111 {
2112 // Extract the rest of it.
2113 const size_t __len = __traits_type::length(__name);
2114 while (__pos < __len && __beg != __end
2115 && __name[__pos] == *__beg)
2116 ++__beg, ++__pos;
2117 if (__len != __pos)
2118 __err |= ios_base::failbit;
2119 }
2120 if (!__err)
2121 __tm->tm_wday = __tmpwday;
2122 }
2123 if (__beg == __end)
2124 __err |= ios_base::eofbit;
2125 return __beg;
2126 }
2127
2128 template<typename _CharT, typename _InIter>
2129 _InIter
2130 time_get<_CharT, _InIter>::
2131 do_get_monthname(iter_type __beg, iter_type __end,
2132 ios_base& __io, ios_base::iostate& __err, tm* __tm) const
2133 {
2134 typedef char_traits<_CharT> __traits_type;
2135 const locale& __loc = __io._M_getloc();
2136 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
2137 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
2138 const char_type* __months[12];
2139 __tp._M_months_abbreviated(__months);
2140 int __tmpmon;
2141 __beg = _M_extract_name(__beg, __end, __tmpmon, __months, 12,
2142 __io, __err);
2143
2144 // Check to see if non-abbreviated name exists, and extract.
2145 // NB: Assumes both _M_months and _M_months_abbreviated organized in
2146 // exact same order, first to last, such that the resulting
2147 // __months array with the same index points to a month, and that
2148 // month's abbreviated form.
2149 // NB: Also assumes that an abbreviated name is a subset of the name.
2150 if (!__err)
2151 {
2152 size_t __pos = __traits_type::length(__months[__tmpmon]);
2153 __tp._M_months(__months);
2154 const char_type* __name = __months[__tmpmon];
2155 if (__name[__pos] == *__beg)
2156 {
2157 // Extract the rest of it.
2158 const size_t __len = __traits_type::length(__name);
2159 while (__pos < __len && __beg != __end
2160 && __name[__pos] == *__beg)
2161 ++__beg, ++__pos;
2162 if (__len != __pos)
2163 __err |= ios_base::failbit;
2164 }
2165 if (!__err)
2166 __tm->tm_mon = __tmpmon;
2167 }
2168
2169 if (__beg == __end)
2170 __err |= ios_base::eofbit;
2171 return __beg;
2172 }
2173
2174 template<typename _CharT, typename _InIter>
2175 _InIter
2176 time_get<_CharT, _InIter>::
2177 do_get_year(iter_type __beg, iter_type __end, ios_base& __io,
2178 ios_base::iostate& __err, tm* __tm) const
2179 {
2180 const locale& __loc = __io._M_getloc();
2181 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
2182
2183 size_t __i = 0;
2184 int __value = 0;
2185 for (; __beg != __end && __i < 4; ++__beg, ++__i)
2186 {
2187 const char __c = __ctype.narrow(*__beg, '*');
2188 if (__c >= '0' && __c <= '9')
2189 __value = __value * 10 + (__c - '0');
2190 else
2191 break;
2192 }
2193 if (__i == 2 || __i == 4)
2194 __tm->tm_year = __i == 2 ? __value : __value - 1900;
2195 else
2196 __err |= ios_base::failbit;
2197 if (__beg == __end)
2198 __err |= ios_base::eofbit;
2199 return __beg;
2200 }
2201
2202 template<typename _CharT, typename _OutIter>
2203 _OutIter
2204 time_put<_CharT, _OutIter>::
2205 put(iter_type __s, ios_base& __io, char_type __fill, const tm* __tm,
2206 const _CharT* __beg, const _CharT* __end) const
2207 {
2208 const locale& __loc = __io._M_getloc();
2209 ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
2210 for (; __beg != __end; ++__beg)
2211 if (__ctype.narrow(*__beg, 0) != '%')
2212 {
2213 *__s = *__beg;
2214 ++__s;
2215 }
2216 else if (++__beg != __end)
2217 {
2218 char __format;
2219 char __mod = 0;
2220 const char __c = __ctype.narrow(*__beg, 0);
2221 if (__c != 'E' && __c != 'O')
2222 __format = __c;
2223 else if (++__beg != __end)
2224 {
2225 __mod = __c;
2226 __format = __ctype.narrow(*__beg, 0);
2227 }
2228 else
2229 break;
2230 __s = this->do_put(__s, __io, __fill, __tm, __format, __mod);
2231 }
2232 else
2233 break;
2234 return __s;
2235 }
2236
2237 template<typename _CharT, typename _OutIter>
2238 _OutIter
2239 time_put<_CharT, _OutIter>::
2240 do_put(iter_type __s, ios_base& __io, char_type, const tm* __tm,
2241 char __format, char __mod) const
2242 {
2243 const locale& __loc = __io._M_getloc();
2244 ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
2245 __timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
2246
2247 // NB: This size is arbitrary. Should this be a data member,
2248 // initialized at construction?
2249 const size_t __maxlen = 64;
2250 char_type* __res =
2251 static_cast<char_type*>(__builtin_alloca(sizeof(char_type) * __maxlen));
2252
2253 // NB: In IEE 1003.1-200x, and perhaps other locale models, it
2254 // is possible that the format character will be longer than one
2255 // character. Possibilities include 'E' or 'O' followed by a
2256 // format character: if __mod is not the default argument, assume
2257 // it's a valid modifier.
2258 char_type __fmt[4];
2259 __fmt[0] = __ctype.widen('%');
2260 if (!__mod)
2261 {
2262 __fmt[1] = __format;
2263 __fmt[2] = char_type();
2264 }
2265 else
2266 {
2267 __fmt[1] = __mod;
2268 __fmt[2] = __format;
2269 __fmt[3] = char_type();
2270 }
2271
2272 __tp._M_put(__res, __maxlen, __fmt, __tm);
2273
2274 // Write resulting, fully-formatted string to output iterator.
2275 return std::__write(__s, __res, char_traits<char_type>::length(__res));
2276 }
2277
2278 // Generic version does nothing.
2279 template<typename _CharT>
2280 int
2281 collate<_CharT>::_M_compare(const _CharT*, const _CharT*) const
2282 { return 0; }
2283
2284 // Generic version does nothing.
2285 template<typename _CharT>
2286 size_t
2287 collate<_CharT>::_M_transform(_CharT*, const _CharT*, size_t) const
2288 { return 0; }
2289
2290 template<typename _CharT>
2291 int
2292 collate<_CharT>::
2293 do_compare(const _CharT* __lo1, const _CharT* __hi1,
2294 const _CharT* __lo2, const _CharT* __hi2) const
2295 {
2296 // strcoll assumes zero-terminated strings so we make a copy
2297 // and then put a zero at the end.
2298 const string_type __one(__lo1, __hi1);
2299 const string_type __two(__lo2, __hi2);
2300
2301 const _CharT* __p = __one.c_str();
2302 const _CharT* __pend = __one.data() + __one.length();
2303 const _CharT* __q = __two.c_str();
2304 const _CharT* __qend = __two.data() + __two.length();
2305
2306 // strcoll stops when it sees a nul character so we break
2307 // the strings into zero-terminated substrings and pass those
2308 // to strcoll.
2309 for (;;)
2310 {
2311 const int __res = _M_compare(__p, __q);
2312 if (__res)
2313 return __res;
2314
2315 __p += char_traits<_CharT>::length(__p);
2316 __q += char_traits<_CharT>::length(__q);
2317 if (__p == __pend && __q == __qend)
2318 return 0;
2319 else if (__p == __pend)
2320 return -1;
2321 else if (__q == __qend)
2322 return 1;
2323
2324 __p++;
2325 __q++;
2326 }
2327 }
2328
2329 template<typename _CharT>
2330 typename collate<_CharT>::string_type
2331 collate<_CharT>::
2332 do_transform(const _CharT* __lo, const _CharT* __hi) const
2333 {
2334 // strxfrm assumes zero-terminated strings so we make a copy
2335 string_type __str(__lo, __hi);
2336
2337 const _CharT* __p = __str.c_str();
2338 const _CharT* __pend = __str.data() + __str.length();
2339
2340 size_t __len = (__hi - __lo) * 2;
2341
2342 string_type __ret;
2343
2344 // strxfrm stops when it sees a nul character so we break
2345 // the string into zero-terminated substrings and pass those
2346 // to strxfrm.
2347 for (;;)
2348 {
2349 // First try a buffer perhaps big enough.
2350 _CharT* __c =
2351 static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __len));
2352 size_t __res = _M_transform(__c, __p, __len);
2353 // If the buffer was not large enough, try again with the
2354 // correct size.
2355 if (__res >= __len)
2356 {
2357 __len = __res + 1;
2358 __c = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
2359 * __len));
2360 __res = _M_transform(__c, __p, __len);
2361 }
2362
2363 __ret.append(__c, __res);
2364 __p += char_traits<_CharT>::length(__p);
2365 if (__p == __pend)
2366 return __ret;
2367
2368 __p++;
2369 __ret.push_back(_CharT());
2370 }
2371 }
2372
2373 template<typename _CharT>
2374 long
2375 collate<_CharT>::
2376 do_hash(const _CharT* __lo, const _CharT* __hi) const
2377 {
2378 unsigned long __val = 0;
2379 for (; __lo < __hi; ++__lo)
2380 __val = *__lo + ((__val << 7) |
2381 (__val >> (numeric_limits<unsigned long>::digits - 7)));
2382 return static_cast<long>(__val);
2383 }
2384
2385 // Construct correctly padded string, as per 22.2.2.2.2
2386 // Assumes
2387 // __newlen > __oldlen
2388 // __news is allocated for __newlen size
2389 // Used by both num_put and ostream inserters: if __num,
2390 // internal-adjusted objects are padded according to the rules below
2391 // concerning 0[xX] and +-, otherwise, exactly as right-adjusted
2392 // ones are.
2393
2394 // NB: Of the two parameters, _CharT can be deduced from the
2395 // function arguments. The other (_Traits) has to be explicitly specified.
2396 template<typename _CharT, typename _Traits>
2397 void
2398 __pad<_CharT, _Traits>::_S_pad(ios_base& __io, _CharT __fill,
2399 _CharT* __news, const _CharT* __olds,
2400 const streamsize __newlen,
2401 const streamsize __oldlen, const bool __num)
2402 {
2403 const size_t __plen = static_cast<size_t>(__newlen - __oldlen);
2404 const ios_base::fmtflags __adjust = __io.flags() & ios_base::adjustfield;
2405
2406 // Padding last.
2407 if (__adjust == ios_base::left)
2408 {
2409 _Traits::copy(__news, const_cast<_CharT*>(__olds), __oldlen);
2410 _Traits::assign(__news + __oldlen, __plen, __fill);
2411 return;
2412 }
2413
2414 size_t __mod = 0;
2415 if (__adjust == ios_base::internal && __num)
2416 {
2417 // Pad after the sign, if there is one.
2418 // Pad after 0[xX], if there is one.
2419 // Who came up with these rules, anyway? Jeeze.
2420 const locale& __loc = __io._M_getloc();
2421 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
2422
2423 const bool __testsign = (__ctype.widen('-') == __olds[0]
2424 || __ctype.widen('+') == __olds[0]);
2425 const bool __testhex = (__ctype.widen('0') == __olds[0]
2426 && __oldlen > 1
2427 && (__ctype.widen('x') == __olds[1]
2428 || __ctype.widen('X') == __olds[1]));
2429 if (__testhex)
2430 {
2431 __news[0] = __olds[0];
2432 __news[1] = __olds[1];
2433 __mod = 2;
2434 __news += 2;
2435 }
2436 else if (__testsign)
2437 {
2438 __news[0] = __olds[0];
2439 __mod = 1;
2440 ++__news;
2441 }
2442 // else Padding first.
2443 }
2444 _Traits::assign(__news, __plen, __fill);
2445 _Traits::copy(__news + __plen, const_cast<_CharT*>(__olds + __mod),
2446 __oldlen - __mod);
2447 }
2448
2449 bool
2450 __verify_grouping(const char* __grouping, size_t __grouping_size,
2451 const string& __grouping_tmp)
2452 {
2453 const size_t __n = __grouping_tmp.size() - 1;
2454 const size_t __min = std::min(__n, size_t(__grouping_size - 1));
2455 size_t __i = __n;
2456 bool __test = true;
2457
2458 // Parsed number groupings have to match the
2459 // numpunct::grouping string exactly, starting at the
2460 // right-most point of the parsed sequence of elements ...
2461 for (size_t __j = 0; __j < __min && __test; --__i, ++__j)
2462 __test = __grouping_tmp[__i] == __grouping[__j];
2463 for (; __i && __test; --__i)
2464 __test = __grouping_tmp[__i] == __grouping[__min];
2465 // ... but the last parsed grouping can be <= numpunct
2466 // grouping.
2467 __test &= __grouping_tmp[0] <= __grouping[__min];
2468 return __test;
2469 }
2470
2471 template<typename _CharT>
2472 _CharT*
2473 __add_grouping(_CharT* __s, _CharT __sep,
2474 const char* __gbeg, size_t __gsize,
2475 const _CharT* __first, const _CharT* __last)
2476 {
2477 if (__last - __first > *__gbeg)
2478 {
2479 const bool __bump = __gsize != 1;
2480 __s = std::__add_grouping(__s, __sep, __gbeg + __bump,
2481 __gsize - __bump, __first,
2482 __last - *__gbeg);
2483 __first = __last - *__gbeg;
2484 *__s++ = __sep;
2485 }
2486 do
2487 *__s++ = *__first++;
2488 while (__first != __last);
2489 return __s;
2490 }
2491
2492 // Inhibit implicit instantiations for required instantiations,
2493 // which are defined via explicit instantiations elsewhere.
2494 // NB: This syntax is a GNU extension.
2495 #if _GLIBCXX_EXTERN_TEMPLATE
2496 extern template class moneypunct<char, false>;
2497 extern template class moneypunct<char, true>;
2498 extern template class moneypunct_byname<char, false>;
2499 extern template class moneypunct_byname<char, true>;
2500 extern template class money_get<char>;
2501 extern template class money_put<char>;
2502 extern template class numpunct<char>;
2503 extern template class numpunct_byname<char>;
2504 extern template class num_get<char>;
2505 extern template class num_put<char>;
2506 extern template class __timepunct<char>;
2507 extern template class time_put<char>;
2508 extern template class time_put_byname<char>;
2509 extern template class time_get<char>;
2510 extern template class time_get_byname<char>;
2511 extern template class messages<char>;
2512 extern template class messages_byname<char>;
2513 extern template class ctype_byname<char>;
2514 extern template class codecvt_byname<char, char, mbstate_t>;
2515 extern template class collate<char>;
2516 extern template class collate_byname<char>;
2517
2518 extern template
2519 const codecvt<char, char, mbstate_t>&
2520 use_facet<codecvt<char, char, mbstate_t> >(const locale&);
2521
2522 extern template
2523 const collate<char>&
2524 use_facet<collate<char> >(const locale&);
2525
2526 extern template
2527 const numpunct<char>&
2528 use_facet<numpunct<char> >(const locale&);
2529
2530 extern template
2531 const num_put<char>&
2532 use_facet<num_put<char> >(const locale&);
2533
2534 extern template
2535 const num_get<char>&
2536 use_facet<num_get<char> >(const locale&);
2537
2538 extern template
2539 const moneypunct<char, true>&
2540 use_facet<moneypunct<char, true> >(const locale&);
2541
2542 extern template
2543 const moneypunct<char, false>&
2544 use_facet<moneypunct<char, false> >(const locale&);
2545
2546 extern template
2547 const money_put<char>&
2548 use_facet<money_put<char> >(const locale&);
2549
2550 extern template
2551 const money_get<char>&
2552 use_facet<money_get<char> >(const locale&);
2553
2554 extern template
2555 const __timepunct<char>&
2556 use_facet<__timepunct<char> >(const locale&);
2557
2558 extern template
2559 const time_put<char>&
2560 use_facet<time_put<char> >(const locale&);
2561
2562 extern template
2563 const time_get<char>&
2564 use_facet<time_get<char> >(const locale&);
2565
2566 extern template
2567 const messages<char>&
2568 use_facet<messages<char> >(const locale&);
2569
2570 extern template
2571 bool
2572 has_facet<ctype<char> >(const locale&);
2573
2574 extern template
2575 bool
2576 has_facet<codecvt<char, char, mbstate_t> >(const locale&);
2577
2578 extern template
2579 bool
2580 has_facet<collate<char> >(const locale&);
2581
2582 extern template
2583 bool
2584 has_facet<numpunct<char> >(const locale&);
2585
2586 extern template
2587 bool
2588 has_facet<num_put<char> >(const locale&);
2589
2590 extern template
2591 bool
2592 has_facet<num_get<char> >(const locale&);
2593
2594 extern template
2595 bool
2596 has_facet<moneypunct<char> >(const locale&);
2597
2598 extern template
2599 bool
2600 has_facet<money_put<char> >(const locale&);
2601
2602 extern template
2603 bool
2604 has_facet<money_get<char> >(const locale&);
2605
2606 extern template
2607 bool
2608 has_facet<__timepunct<char> >(const locale&);
2609
2610 extern template
2611 bool
2612 has_facet<time_put<char> >(const locale&);
2613
2614 extern template
2615 bool
2616 has_facet<time_get<char> >(const locale&);
2617
2618 extern template
2619 bool
2620 has_facet<messages<char> >(const locale&);
2621
2622 #ifdef _GLIBCXX_USE_WCHAR_T
2623 extern template class moneypunct<wchar_t, false>;
2624 extern template class moneypunct<wchar_t, true>;
2625 extern template class moneypunct_byname<wchar_t, false>;
2626 extern template class moneypunct_byname<wchar_t, true>;
2627 extern template class money_get<wchar_t>;
2628 extern template class money_put<wchar_t>;
2629 extern template class numpunct<wchar_t>;
2630 extern template class numpunct_byname<wchar_t>;
2631 extern template class num_get<wchar_t>;
2632 extern template class num_put<wchar_t>;
2633 extern template class __timepunct<wchar_t>;
2634 extern template class time_put<wchar_t>;
2635 extern template class time_put_byname<wchar_t>;
2636 extern template class time_get<wchar_t>;
2637 extern template class time_get_byname<wchar_t>;
2638 extern template class messages<wchar_t>;
2639 extern template class messages_byname<wchar_t>;
2640 extern template class ctype_byname<wchar_t>;
2641 extern template class codecvt_byname<wchar_t, char, mbstate_t>;
2642 extern template class collate<wchar_t>;
2643 extern template class collate_byname<wchar_t>;
2644
2645 extern template
2646 const codecvt<wchar_t, char, mbstate_t>&
2647 use_facet<codecvt<wchar_t, char, mbstate_t> >(locale const&);
2648
2649 extern template
2650 const collate<wchar_t>&
2651 use_facet<collate<wchar_t> >(const locale&);
2652
2653 extern template
2654 const numpunct<wchar_t>&
2655 use_facet<numpunct<wchar_t> >(const locale&);
2656
2657 extern template
2658 const num_put<wchar_t>&
2659 use_facet<num_put<wchar_t> >(const locale&);
2660
2661 extern template
2662 const num_get<wchar_t>&
2663 use_facet<num_get<wchar_t> >(const locale&);
2664
2665 extern template
2666 const moneypunct<wchar_t, true>&
2667 use_facet<moneypunct<wchar_t, true> >(const locale&);
2668
2669 extern template
2670 const moneypunct<wchar_t, false>&
2671 use_facet<moneypunct<wchar_t, false> >(const locale&);
2672
2673 extern template
2674 const money_put<wchar_t>&
2675 use_facet<money_put<wchar_t> >(const locale&);
2676
2677 extern template
2678 const money_get<wchar_t>&
2679 use_facet<money_get<wchar_t> >(const locale&);
2680
2681 extern template
2682 const __timepunct<wchar_t>&
2683 use_facet<__timepunct<wchar_t> >(const locale&);
2684
2685 extern template
2686 const time_put<wchar_t>&
2687 use_facet<time_put<wchar_t> >(const locale&);
2688
2689 extern template
2690 const time_get<wchar_t>&
2691 use_facet<time_get<wchar_t> >(const locale&);
2692
2693 extern template
2694 const messages<wchar_t>&
2695 use_facet<messages<wchar_t> >(const locale&);
2696
2697 extern template
2698 bool
2699 has_facet<ctype<wchar_t> >(const locale&);
2700
2701 extern template
2702 bool
2703 has_facet<codecvt<wchar_t, char, mbstate_t> >(const locale&);
2704
2705 extern template
2706 bool
2707 has_facet<collate<wchar_t> >(const locale&);
2708
2709 extern template
2710 bool
2711 has_facet<numpunct<wchar_t> >(const locale&);
2712
2713 extern template
2714 bool
2715 has_facet<num_put<wchar_t> >(const locale&);
2716
2717 extern template
2718 bool
2719 has_facet<num_get<wchar_t> >(const locale&);
2720
2721 extern template
2722 bool
2723 has_facet<moneypunct<wchar_t> >(const locale&);
2724
2725 extern template
2726 bool
2727 has_facet<money_put<wchar_t> >(const locale&);
2728
2729 extern template
2730 bool
2731 has_facet<money_get<wchar_t> >(const locale&);
2732
2733 extern template
2734 bool
2735 has_facet<__timepunct<wchar_t> >(const locale&);
2736
2737 extern template
2738 bool
2739 has_facet<time_put<wchar_t> >(const locale&);
2740
2741 extern template
2742 bool
2743 has_facet<time_get<wchar_t> >(const locale&);
2744
2745 extern template
2746 bool
2747 has_facet<messages<wchar_t> >(const locale&);
2748 #endif
2749 #endif
2750 } // namespace std
2751
2752 #endif