re PR libstdc++/22131 (std::num_get fails for input with invalid groups)
[gcc.git] / libstdc++-v3 / include / bits / locale_facets.tcc
1 // Locale support -*- C++ -*-
2
3 // Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 // USA.
21
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
30
31 /** @file locale_facets.tcc
32 * This is an internal header file, included by other library headers.
33 * You should not attempt to use it directly.
34 */
35
36 #ifndef _LOCALE_FACETS_TCC
37 #define _LOCALE_FACETS_TCC 1
38
39 #pragma GCC system_header
40
41 #include <limits> // For numeric_limits
42 #include <typeinfo> // For bad_cast.
43 #include <bits/streambuf_iterator.h>
44
45 namespace std
46 {
47 template<typename _Facet>
48 locale
49 locale::combine(const locale& __other) const
50 {
51 _Impl* __tmp = new _Impl(*_M_impl, 1);
52 try
53 {
54 __tmp->_M_replace_facet(__other._M_impl, &_Facet::id);
55 }
56 catch(...)
57 {
58 __tmp->_M_remove_reference();
59 __throw_exception_again;
60 }
61 return locale(__tmp);
62 }
63
64 template<typename _CharT, typename _Traits, typename _Alloc>
65 bool
66 locale::operator()(const basic_string<_CharT, _Traits, _Alloc>& __s1,
67 const basic_string<_CharT, _Traits, _Alloc>& __s2) const
68 {
69 typedef std::collate<_CharT> __collate_type;
70 const __collate_type& __collate = use_facet<__collate_type>(*this);
71 return (__collate.compare(__s1.data(), __s1.data() + __s1.length(),
72 __s2.data(), __s2.data() + __s2.length()) < 0);
73 }
74
75 /**
76 * @brief Test for the presence of a facet.
77 *
78 * has_facet tests the locale argument for the presence of the facet type
79 * provided as the template parameter. Facets derived from the facet
80 * parameter will also return true.
81 *
82 * @param Facet The facet type to test the presence of.
83 * @param locale The locale to test.
84 * @return true if locale contains a facet of type Facet, else false.
85 */
86 template<typename _Facet>
87 inline bool
88 has_facet(const locale& __loc) throw()
89 {
90 const size_t __i = _Facet::id._M_id();
91 const locale::facet** __facets = __loc._M_impl->_M_facets;
92 return (__i < __loc._M_impl->_M_facets_size && __facets[__i]);
93 }
94
95 /**
96 * @brief Return a facet.
97 *
98 * use_facet looks for and returns a reference to a facet of type Facet
99 * where Facet is the template parameter. If has_facet(locale) is true,
100 * there is a suitable facet to return. It throws std::bad_cast if the
101 * locale doesn't contain a facet of type Facet.
102 *
103 * @param Facet The facet type to access.
104 * @param locale The locale to use.
105 * @return Reference to facet of type Facet.
106 * @throw std::bad_cast if locale doesn't contain a facet of type Facet.
107 */
108 template<typename _Facet>
109 inline const _Facet&
110 use_facet(const locale& __loc)
111 {
112 const size_t __i = _Facet::id._M_id();
113 const locale::facet** __facets = __loc._M_impl->_M_facets;
114 if (!(__i < __loc._M_impl->_M_facets_size && __facets[__i]))
115 __throw_bad_cast();
116 return static_cast<const _Facet&>(*__facets[__i]);
117 }
118
119 // Routine to access a cache for the facet. If the cache didn't
120 // exist before, it gets constructed on the fly.
121 template<typename _Facet>
122 struct __use_cache
123 {
124 const _Facet*
125 operator() (const locale& __loc) const;
126 };
127
128 // Specializations.
129 template<typename _CharT>
130 struct __use_cache<__numpunct_cache<_CharT> >
131 {
132 const __numpunct_cache<_CharT>*
133 operator() (const locale& __loc) const
134 {
135 const size_t __i = numpunct<_CharT>::id._M_id();
136 const locale::facet** __caches = __loc._M_impl->_M_caches;
137 if (!__caches[__i])
138 {
139 __numpunct_cache<_CharT>* __tmp = NULL;
140 try
141 {
142 __tmp = new __numpunct_cache<_CharT>;
143 __tmp->_M_cache(__loc);
144 }
145 catch(...)
146 {
147 delete __tmp;
148 __throw_exception_again;
149 }
150 __loc._M_impl->_M_install_cache(__tmp, __i);
151 }
152 return static_cast<const __numpunct_cache<_CharT>*>(__caches[__i]);
153 }
154 };
155
156 template<typename _CharT, bool _Intl>
157 struct __use_cache<__moneypunct_cache<_CharT, _Intl> >
158 {
159 const __moneypunct_cache<_CharT, _Intl>*
160 operator() (const locale& __loc) const
161 {
162 const size_t __i = moneypunct<_CharT, _Intl>::id._M_id();
163 const locale::facet** __caches = __loc._M_impl->_M_caches;
164 if (!__caches[__i])
165 {
166 __moneypunct_cache<_CharT, _Intl>* __tmp = NULL;
167 try
168 {
169 __tmp = new __moneypunct_cache<_CharT, _Intl>;
170 __tmp->_M_cache(__loc);
171 }
172 catch(...)
173 {
174 delete __tmp;
175 __throw_exception_again;
176 }
177 __loc._M_impl->_M_install_cache(__tmp, __i);
178 }
179 return static_cast<
180 const __moneypunct_cache<_CharT, _Intl>*>(__caches[__i]);
181 }
182 };
183
184 template<typename _CharT>
185 void
186 __numpunct_cache<_CharT>::_M_cache(const locale& __loc)
187 {
188 _M_allocated = true;
189
190 const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
191
192 _M_grouping_size = __np.grouping().size();
193 char* __grouping = new char[_M_grouping_size];
194 __np.grouping().copy(__grouping, _M_grouping_size);
195 _M_grouping = __grouping;
196 _M_use_grouping = _M_grouping_size && __np.grouping()[0] != 0;
197
198 _M_truename_size = __np.truename().size();
199 _CharT* __truename = new _CharT[_M_truename_size];
200 __np.truename().copy(__truename, _M_truename_size);
201 _M_truename = __truename;
202
203 _M_falsename_size = __np.falsename().size();
204 _CharT* __falsename = new _CharT[_M_falsename_size];
205 __np.falsename().copy(__falsename, _M_falsename_size);
206 _M_falsename = __falsename;
207
208 _M_decimal_point = __np.decimal_point();
209 _M_thousands_sep = __np.thousands_sep();
210
211 const ctype<_CharT>& __ct = use_facet<ctype<_CharT> >(__loc);
212 __ct.widen(__num_base::_S_atoms_out,
213 __num_base::_S_atoms_out + __num_base::_S_oend, _M_atoms_out);
214 __ct.widen(__num_base::_S_atoms_in,
215 __num_base::_S_atoms_in + __num_base::_S_iend, _M_atoms_in);
216 }
217
218 template<typename _CharT, bool _Intl>
219 void
220 __moneypunct_cache<_CharT, _Intl>::_M_cache(const locale& __loc)
221 {
222 _M_allocated = true;
223
224 const moneypunct<_CharT, _Intl>& __mp =
225 use_facet<moneypunct<_CharT, _Intl> >(__loc);
226
227 _M_grouping_size = __mp.grouping().size();
228 char* __grouping = new char[_M_grouping_size];
229 __mp.grouping().copy(__grouping, _M_grouping_size);
230 _M_grouping = __grouping;
231 _M_use_grouping = _M_grouping_size && __mp.grouping()[0] != 0;
232
233 _M_decimal_point = __mp.decimal_point();
234 _M_thousands_sep = __mp.thousands_sep();
235 _M_frac_digits = __mp.frac_digits();
236
237 _M_curr_symbol_size = __mp.curr_symbol().size();
238 _CharT* __curr_symbol = new _CharT[_M_curr_symbol_size];
239 __mp.curr_symbol().copy(__curr_symbol, _M_curr_symbol_size);
240 _M_curr_symbol = __curr_symbol;
241
242 _M_positive_sign_size = __mp.positive_sign().size();
243 _CharT* __positive_sign = new _CharT[_M_positive_sign_size];
244 __mp.positive_sign().copy(__positive_sign, _M_positive_sign_size);
245 _M_positive_sign = __positive_sign;
246
247 _M_negative_sign_size = __mp.negative_sign().size();
248 _CharT* __negative_sign = new _CharT[_M_negative_sign_size];
249 __mp.negative_sign().copy(__negative_sign, _M_negative_sign_size);
250 _M_negative_sign = __negative_sign;
251
252 _M_pos_format = __mp.pos_format();
253 _M_neg_format = __mp.neg_format();
254
255 const ctype<_CharT>& __ct = use_facet<ctype<_CharT> >(__loc);
256 __ct.widen(money_base::_S_atoms,
257 money_base::_S_atoms + money_base::_S_end, _M_atoms);
258 }
259
260
261 // Used by both numeric and monetary facets.
262 // Check to make sure that the __grouping_tmp string constructed in
263 // money_get or num_get matches the canonical grouping for a given
264 // locale.
265 // __grouping_tmp is parsed L to R
266 // 1,222,444 == __grouping_tmp of "\1\3\3"
267 // __grouping is parsed R to L
268 // 1,222,444 == __grouping of "\3" == "\3\3\3"
269 static bool
270 __verify_grouping(const char* __grouping, size_t __grouping_size,
271 const string& __grouping_tmp);
272
273 template<typename _CharT, typename _InIter>
274 _InIter
275 num_get<_CharT, _InIter>::
276 _M_extract_float(_InIter __beg, _InIter __end, ios_base& __io,
277 ios_base::iostate& __err, string& __xtrc) const
278 {
279 typedef char_traits<_CharT> __traits_type;
280 typedef __numpunct_cache<_CharT> __cache_type;
281 __use_cache<__cache_type> __uc;
282 const locale& __loc = __io._M_getloc();
283 const __cache_type* __lc = __uc(__loc);
284 const _CharT* __lit = __lc->_M_atoms_in;
285 char_type __c = char_type();
286
287 // True if __beg becomes equal to __end.
288 bool __testeof = __beg == __end;
289
290 // First check for sign.
291 if (!__testeof)
292 {
293 __c = *__beg;
294 const bool __plus = __c == __lit[__num_base::_S_iplus];
295 if ((__plus || __c == __lit[__num_base::_S_iminus])
296 && !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
297 && !(__c == __lc->_M_decimal_point))
298 {
299 __xtrc += __plus ? '+' : '-';
300 if (++__beg != __end)
301 __c = *__beg;
302 else
303 __testeof = true;
304 }
305 }
306
307 // Next, look for leading zeros.
308 bool __found_mantissa = false;
309 int __sep_pos = 0;
310 while (!__testeof)
311 {
312 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep
313 || __c == __lc->_M_decimal_point)
314 break;
315 else if (__c == __lit[__num_base::_S_izero])
316 {
317 if (!__found_mantissa)
318 {
319 __xtrc += '0';
320 __found_mantissa = true;
321 }
322 ++__sep_pos;
323
324 if (++__beg != __end)
325 __c = *__beg;
326 else
327 __testeof = true;
328 }
329 else
330 break;
331 }
332
333 // Only need acceptable digits for floating point numbers.
334 bool __found_dec = false;
335 bool __found_sci = false;
336 string __found_grouping;
337 if (__lc->_M_use_grouping)
338 __found_grouping.reserve(32);
339 const char_type* __q;
340 const char_type* __lit_zero = __lit + __num_base::_S_izero;
341 while (!__testeof)
342 {
343 // According to 22.2.2.1.2, p8-9, first look for thousands_sep
344 // and decimal_point.
345 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
346 {
347 if (!__found_dec && !__found_sci)
348 {
349 // NB: Thousands separator at the beginning of a string
350 // is a no-no, as is two consecutive thousands separators.
351 if (__sep_pos)
352 {
353 __found_grouping += static_cast<char>(__sep_pos);
354 __sep_pos = 0;
355 }
356 else
357 {
358 // NB: __convert_to_v will not assign __v and will
359 // set the failbit.
360 __xtrc.clear();
361 break;
362 }
363 }
364 else
365 break;
366 }
367 else if (__c == __lc->_M_decimal_point)
368 {
369 if (!__found_dec && !__found_sci)
370 {
371 // If no grouping chars are seen, no grouping check
372 // is applied. Therefore __found_grouping is adjusted
373 // only if decimal_point comes after some thousands_sep.
374 if (__found_grouping.size())
375 __found_grouping += static_cast<char>(__sep_pos);
376 __xtrc += '.';
377 __found_dec = true;
378 }
379 else
380 break;
381 }
382 else if ((__q = __traits_type::find(__lit_zero, 10, __c)))
383 {
384 __xtrc += __num_base::_S_atoms_in[__q - __lit];
385 __found_mantissa = true;
386 ++__sep_pos;
387 }
388 else if ((__c == __lit[__num_base::_S_ie]
389 || __c == __lit[__num_base::_S_iE])
390 && !__found_sci && __found_mantissa)
391 {
392 // Scientific notation.
393 if (__found_grouping.size() && !__found_dec)
394 __found_grouping += static_cast<char>(__sep_pos);
395 __xtrc += 'e';
396 __found_sci = true;
397
398 // Remove optional plus or minus sign, if they exist.
399 if (++__beg != __end)
400 {
401 __c = *__beg;
402 const bool __plus = __c == __lit[__num_base::_S_iplus];
403 if ((__plus || __c == __lit[__num_base::_S_iminus])
404 && !(__lc->_M_use_grouping
405 && __c == __lc->_M_thousands_sep)
406 && !(__c == __lc->_M_decimal_point))
407 __xtrc += __plus ? '+' : '-';
408 else
409 continue;
410 }
411 else
412 {
413 __testeof = true;
414 break;
415 }
416 }
417 else
418 // Not a valid input item.
419 break;
420
421 if (++__beg != __end)
422 __c = *__beg;
423 else
424 __testeof = true;
425 }
426
427 // Digit grouping is checked. If grouping and found_grouping don't
428 // match, then get very very upset, and set failbit.
429 if (__found_grouping.size())
430 {
431 // Add the ending grouping if a decimal or 'e'/'E' wasn't found.
432 if (!__found_dec && !__found_sci)
433 __found_grouping += static_cast<char>(__sep_pos);
434
435 if (!std::__verify_grouping(__lc->_M_grouping,
436 __lc->_M_grouping_size,
437 __found_grouping))
438 __err |= ios_base::failbit;
439 }
440
441 // Finish up.
442 if (__testeof)
443 __err |= ios_base::eofbit;
444 return __beg;
445 }
446
447 template<typename _ValueT>
448 struct __to_unsigned_type
449 { typedef _ValueT __type; };
450
451 template<>
452 struct __to_unsigned_type<long>
453 { typedef unsigned long __type; };
454
455 #ifdef _GLIBCXX_USE_LONG_LONG
456 template<>
457 struct __to_unsigned_type<long long>
458 { typedef unsigned long long __type; };
459 #endif
460
461 template<typename _CharT, typename _InIter>
462 template<typename _ValueT>
463 _InIter
464 num_get<_CharT, _InIter>::
465 _M_extract_int(_InIter __beg, _InIter __end, ios_base& __io,
466 ios_base::iostate& __err, _ValueT& __v) const
467 {
468 typedef char_traits<_CharT> __traits_type;
469 typedef typename __to_unsigned_type<_ValueT>::__type __unsigned_type;
470 typedef __numpunct_cache<_CharT> __cache_type;
471 __use_cache<__cache_type> __uc;
472 const locale& __loc = __io._M_getloc();
473 const __cache_type* __lc = __uc(__loc);
474 const _CharT* __lit = __lc->_M_atoms_in;
475 char_type __c = char_type();
476
477 // NB: Iff __basefield == 0, __base can change based on contents.
478 const ios_base::fmtflags __basefield = __io.flags()
479 & ios_base::basefield;
480 const bool __oct = __basefield == ios_base::oct;
481 int __base = __oct ? 8 : (__basefield == ios_base::hex ? 16 : 10);
482
483 // True if __beg becomes equal to __end.
484 bool __testeof = __beg == __end;
485
486 // First check for sign.
487 bool __negative = false;
488 if (!__testeof)
489 {
490 __c = *__beg;
491 if (numeric_limits<_ValueT>::is_signed)
492 __negative = __c == __lit[__num_base::_S_iminus];
493 if ((__negative || __c == __lit[__num_base::_S_iplus])
494 && !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
495 && !(__c == __lc->_M_decimal_point))
496 {
497 if (++__beg != __end)
498 __c = *__beg;
499 else
500 __testeof = true;
501 }
502 }
503
504 // Next, look for leading zeros and check required digits
505 // for base formats.
506 bool __found_zero = false;
507 int __sep_pos = 0;
508 while (!__testeof)
509 {
510 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep
511 || __c == __lc->_M_decimal_point)
512 break;
513 else if (__c == __lit[__num_base::_S_izero]
514 && (!__found_zero || __base == 10))
515 {
516 __found_zero = true;
517 ++__sep_pos;
518 if (__basefield == 0)
519 __base = 8;
520 if (__base == 8)
521 __sep_pos = 0;
522 }
523 else if (__found_zero
524 && (__c == __lit[__num_base::_S_ix]
525 || __c == __lit[__num_base::_S_iX]))
526 {
527 if (__basefield == 0)
528 __base = 16;
529 if (__base == 16)
530 {
531 __found_zero = false;
532 __sep_pos = 0;
533 }
534 else
535 break;
536 }
537 else
538 break;
539
540 if (++__beg != __end)
541 {
542 __c = *__beg;
543 if (!__found_zero)
544 break;
545 }
546 else
547 __testeof = true;
548 }
549
550 // At this point, base is determined. If not hex, only allow
551 // base digits as valid input.
552 const size_t __len = (__base == 16 ? __num_base::_S_iend
553 - __num_base::_S_izero : __base);
554
555 // Extract.
556 string __found_grouping;
557 if (__lc->_M_use_grouping)
558 __found_grouping.reserve(32);
559 bool __testfail = false;
560 const __unsigned_type __max = __negative ?
561 -numeric_limits<_ValueT>::min() : numeric_limits<_ValueT>::max();
562 const __unsigned_type __smax = __max / __base;
563 __unsigned_type __result = 0;
564 const char_type* __q;
565 const char_type* __lit_zero = __lit + __num_base::_S_izero;
566 while (!__testeof)
567 {
568 // According to 22.2.2.1.2, p8-9, first look for thousands_sep
569 // and decimal_point.
570 if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
571 {
572 // NB: Thousands separator at the beginning of a string
573 // is a no-no, as is two consecutive thousands separators.
574 if (__sep_pos)
575 {
576 __found_grouping += static_cast<char>(__sep_pos);
577 __sep_pos = 0;
578 }
579 else
580 {
581 __testfail = true;
582 break;
583 }
584 }
585 else if (__c == __lc->_M_decimal_point)
586 break;
587 else if ((__q = __traits_type::find(__lit_zero, __len, __c)))
588 {
589 int __digit = __q - __lit_zero;
590 if (__digit > 15)
591 __digit -= 6;
592 if (__result > __smax)
593 __testfail = true;
594 else
595 {
596 __result *= __base;
597 __testfail |= __result > __max - __digit;
598 __result += __digit;
599 ++__sep_pos;
600 }
601 }
602 else
603 // Not a valid input item.
604 break;
605
606 if (++__beg != __end)
607 __c = *__beg;
608 else
609 __testeof = true;
610 }
611
612 // Digit grouping is checked. If grouping and found_grouping don't
613 // match, then get very very upset, and set failbit.
614 if (__found_grouping.size())
615 {
616 // Add the ending grouping.
617 __found_grouping += static_cast<char>(__sep_pos);
618
619 if (!std::__verify_grouping(__lc->_M_grouping,
620 __lc->_M_grouping_size,
621 __found_grouping))
622 __err |= ios_base::failbit;
623 }
624
625 if (!__testfail && (__sep_pos || __found_zero
626 || __found_grouping.size()))
627 __v = __negative ? -__result : __result;
628 else
629 __err |= ios_base::failbit;
630
631 if (__testeof)
632 __err |= ios_base::eofbit;
633 return __beg;
634 }
635
636 // _GLIBCXX_RESOLVE_LIB_DEFECTS
637 // 17. Bad bool parsing
638 template<typename _CharT, typename _InIter>
639 _InIter
640 num_get<_CharT, _InIter>::
641 do_get(iter_type __beg, iter_type __end, ios_base& __io,
642 ios_base::iostate& __err, bool& __v) const
643 {
644 if (!(__io.flags() & ios_base::boolalpha))
645 {
646 // Parse bool values as long.
647 // NB: We can't just call do_get(long) here, as it might
648 // refer to a derived class.
649 long __l = -1;
650 __beg = _M_extract_int(__beg, __end, __io, __err, __l);
651 if (__l == 0 || __l == 1)
652 __v = __l;
653 else
654 __err |= ios_base::failbit;
655 }
656 else
657 {
658 // Parse bool values as alphanumeric.
659 typedef __numpunct_cache<_CharT> __cache_type;
660 __use_cache<__cache_type> __uc;
661 const locale& __loc = __io._M_getloc();
662 const __cache_type* __lc = __uc(__loc);
663
664 bool __testf = true;
665 bool __testt = true;
666 size_t __n;
667 bool __testeof = __beg == __end;
668 for (__n = 0; !__testeof; ++__n)
669 {
670 const char_type __c = *__beg;
671
672 if (__testf)
673 if (__n < __lc->_M_falsename_size)
674 __testf = __c == __lc->_M_falsename[__n];
675 else
676 break;
677
678 if (__testt)
679 if (__n < __lc->_M_truename_size)
680 __testt = __c == __lc->_M_truename[__n];
681 else
682 break;
683
684 if (!__testf && !__testt)
685 break;
686
687 if (++__beg == __end)
688 __testeof = true;
689 }
690 if (__testf && __n == __lc->_M_falsename_size)
691 __v = 0;
692 else if (__testt && __n == __lc->_M_truename_size)
693 __v = 1;
694 else
695 __err |= ios_base::failbit;
696
697 if (__testeof)
698 __err |= ios_base::eofbit;
699 }
700 return __beg;
701 }
702
703 template<typename _CharT, typename _InIter>
704 _InIter
705 num_get<_CharT, _InIter>::
706 do_get(iter_type __beg, iter_type __end, ios_base& __io,
707 ios_base::iostate& __err, long& __v) const
708 { return _M_extract_int(__beg, __end, __io, __err, __v); }
709
710 template<typename _CharT, typename _InIter>
711 _InIter
712 num_get<_CharT, _InIter>::
713 do_get(iter_type __beg, iter_type __end, ios_base& __io,
714 ios_base::iostate& __err, unsigned short& __v) const
715 { return _M_extract_int(__beg, __end, __io, __err, __v); }
716
717 template<typename _CharT, typename _InIter>
718 _InIter
719 num_get<_CharT, _InIter>::
720 do_get(iter_type __beg, iter_type __end, ios_base& __io,
721 ios_base::iostate& __err, unsigned int& __v) const
722 { return _M_extract_int(__beg, __end, __io, __err, __v); }
723
724 template<typename _CharT, typename _InIter>
725 _InIter
726 num_get<_CharT, _InIter>::
727 do_get(iter_type __beg, iter_type __end, ios_base& __io,
728 ios_base::iostate& __err, unsigned long& __v) const
729 { return _M_extract_int(__beg, __end, __io, __err, __v); }
730
731 #ifdef _GLIBCXX_USE_LONG_LONG
732 template<typename _CharT, typename _InIter>
733 _InIter
734 num_get<_CharT, _InIter>::
735 do_get(iter_type __beg, iter_type __end, ios_base& __io,
736 ios_base::iostate& __err, long long& __v) const
737 { return _M_extract_int(__beg, __end, __io, __err, __v); }
738
739 template<typename _CharT, typename _InIter>
740 _InIter
741 num_get<_CharT, _InIter>::
742 do_get(iter_type __beg, iter_type __end, ios_base& __io,
743 ios_base::iostate& __err, unsigned long long& __v) const
744 { return _M_extract_int(__beg, __end, __io, __err, __v); }
745 #endif
746
747 template<typename _CharT, typename _InIter>
748 _InIter
749 num_get<_CharT, _InIter>::
750 do_get(iter_type __beg, iter_type __end, ios_base& __io,
751 ios_base::iostate& __err, float& __v) const
752 {
753 string __xtrc;
754 __xtrc.reserve(32);
755 __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
756 std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
757 return __beg;
758 }
759
760 template<typename _CharT, typename _InIter>
761 _InIter
762 num_get<_CharT, _InIter>::
763 do_get(iter_type __beg, iter_type __end, ios_base& __io,
764 ios_base::iostate& __err, double& __v) const
765 {
766 string __xtrc;
767 __xtrc.reserve(32);
768 __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
769 std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
770 return __beg;
771 }
772
773 template<typename _CharT, typename _InIter>
774 _InIter
775 num_get<_CharT, _InIter>::
776 do_get(iter_type __beg, iter_type __end, ios_base& __io,
777 ios_base::iostate& __err, long double& __v) const
778 {
779 string __xtrc;
780 __xtrc.reserve(32);
781 __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
782 std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
783 return __beg;
784 }
785
786 template<typename _CharT, typename _InIter>
787 _InIter
788 num_get<_CharT, _InIter>::
789 do_get(iter_type __beg, iter_type __end, ios_base& __io,
790 ios_base::iostate& __err, void*& __v) const
791 {
792 // Prepare for hex formatted input.
793 typedef ios_base::fmtflags fmtflags;
794 const fmtflags __fmt = __io.flags();
795 __io.flags(__fmt & ~ios_base::basefield | ios_base::hex);
796
797 unsigned long __ul;
798 __beg = _M_extract_int(__beg, __end, __io, __err, __ul);
799
800 // Reset from hex formatted input.
801 __io.flags(__fmt);
802
803 if (!(__err & ios_base::failbit))
804 __v = reinterpret_cast<void*>(__ul);
805 return __beg;
806 }
807
808 // For use by integer and floating-point types after they have been
809 // converted into a char_type string.
810 template<typename _CharT, typename _OutIter>
811 void
812 num_put<_CharT, _OutIter>::
813 _M_pad(_CharT __fill, streamsize __w, ios_base& __io,
814 _CharT* __new, const _CharT* __cs, int& __len) const
815 {
816 // [22.2.2.2.2] Stage 3.
817 // If necessary, pad.
818 __pad<_CharT, char_traits<_CharT> >::_S_pad(__io, __fill, __new, __cs,
819 __w, __len, true);
820 __len = static_cast<int>(__w);
821 }
822
823 // Forwarding functions to peel signed from unsigned integer types.
824 template<typename _CharT>
825 inline int
826 __int_to_char(_CharT* __bufend, long __v, const _CharT* __lit,
827 ios_base::fmtflags __flags)
828 {
829 unsigned long __ul = static_cast<unsigned long>(__v);
830 if (__v < 0)
831 __ul = -__ul;
832 return __int_to_char(__bufend, __ul, __lit, __flags, false);
833 }
834
835 template<typename _CharT>
836 inline int
837 __int_to_char(_CharT* __bufend, unsigned long __v, const _CharT* __lit,
838 ios_base::fmtflags __flags)
839 { return __int_to_char(__bufend, __v, __lit, __flags, false); }
840
841 #ifdef _GLIBCXX_USE_LONG_LONG
842 template<typename _CharT>
843 inline int
844 __int_to_char(_CharT* __bufend, long long __v, const _CharT* __lit,
845 ios_base::fmtflags __flags)
846 {
847 unsigned long long __ull = static_cast<unsigned long long>(__v);
848 if (__v < 0)
849 __ull = -__ull;
850 return __int_to_char(__bufend, __ull, __lit, __flags, false);
851 }
852
853 template<typename _CharT>
854 inline int
855 __int_to_char(_CharT* __bufend, unsigned long long __v,
856 const _CharT* __lit, ios_base::fmtflags __flags)
857 { return __int_to_char(__bufend, __v, __lit, __flags, false); }
858 #endif
859
860 // N.B. The last argument is currently unused (see libstdc++/20914).
861 template<typename _CharT, typename _ValueT>
862 int
863 __int_to_char(_CharT* __bufend, _ValueT __v, const _CharT* __lit,
864 ios_base::fmtflags __flags, bool)
865 {
866 const ios_base::fmtflags __basefield = __flags & ios_base::basefield;
867 _CharT* __buf = __bufend;
868
869 if (__builtin_expect(__basefield != ios_base::oct
870 && __basefield != ios_base::hex, true))
871 {
872 // Decimal.
873 do
874 {
875 *--__buf = __lit[(__v % 10) + __num_base::_S_odigits];
876 __v /= 10;
877 }
878 while (__v != 0);
879 }
880 else if (__basefield == ios_base::oct)
881 {
882 // Octal.
883 do
884 {
885 *--__buf = __lit[(__v & 0x7) + __num_base::_S_odigits];
886 __v >>= 3;
887 }
888 while (__v != 0);
889 }
890 else
891 {
892 // Hex.
893 const bool __uppercase = __flags & ios_base::uppercase;
894 const int __case_offset = __uppercase ? __num_base::_S_oudigits
895 : __num_base::_S_odigits;
896 do
897 {
898 *--__buf = __lit[(__v & 0xf) + __case_offset];
899 __v >>= 4;
900 }
901 while (__v != 0);
902 }
903 return __bufend - __buf;
904 }
905
906 template<typename _CharT, typename _OutIter>
907 void
908 num_put<_CharT, _OutIter>::
909 _M_group_int(const char* __grouping, size_t __grouping_size, _CharT __sep,
910 ios_base&, _CharT* __new, _CharT* __cs, int& __len) const
911 {
912 _CharT* __p = std::__add_grouping(__new, __sep, __grouping,
913 __grouping_size, __cs, __cs + __len);
914 __len = __p - __new;
915 }
916
917 template<typename _CharT, typename _OutIter>
918 template<typename _ValueT>
919 _OutIter
920 num_put<_CharT, _OutIter>::
921 _M_insert_int(_OutIter __s, ios_base& __io, _CharT __fill,
922 _ValueT __v) const
923 {
924 typedef __numpunct_cache<_CharT> __cache_type;
925 __use_cache<__cache_type> __uc;
926 const locale& __loc = __io._M_getloc();
927 const __cache_type* __lc = __uc(__loc);
928 const _CharT* __lit = __lc->_M_atoms_out;
929 const ios_base::fmtflags __flags = __io.flags();
930
931 // Long enough to hold hex, dec, and octal representations.
932 const int __ilen = 5 * sizeof(_ValueT);
933 _CharT* __cs = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
934 * __ilen));
935
936 // [22.2.2.2.2] Stage 1, numeric conversion to character.
937 // Result is returned right-justified in the buffer.
938 int __len = __int_to_char(__cs + __ilen, __v, __lit, __flags);
939 __cs += __ilen - __len;
940
941 // Add grouping, if necessary.
942 if (__lc->_M_use_grouping)
943 {
944 // Grouping can add (almost) as many separators as the number
945 // of digits + space is reserved for numeric base or sign.
946 _CharT* __cs2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
947 * (__len + 1)
948 * 2));
949 _M_group_int(__lc->_M_grouping, __lc->_M_grouping_size,
950 __lc->_M_thousands_sep, __io, __cs2 + 2, __cs, __len);
951 __cs = __cs2 + 2;
952 }
953
954 // Complete Stage 1, prepend numeric base or sign.
955 const ios_base::fmtflags __basefield = __flags & ios_base::basefield;
956 if (__builtin_expect(__basefield != ios_base::oct
957 && __basefield != ios_base::hex, true))
958 {
959 // Decimal.
960 if (__v > 0)
961 {
962 if (__flags & ios_base::showpos
963 && numeric_limits<_ValueT>::is_signed)
964 *--__cs = __lit[__num_base::_S_oplus], ++__len;
965 }
966 else if (__v)
967 *--__cs = __lit[__num_base::_S_ominus], ++__len;
968 }
969 else if (__basefield == ios_base::oct)
970 {
971 // Octal.
972 if (__flags & ios_base::showbase && __v)
973 *--__cs = __lit[__num_base::_S_odigits], ++__len;
974 }
975 else
976 {
977 // Hex.
978 if (__flags & ios_base::showbase && __v)
979 {
980 // 'x' or 'X'
981 const bool __uppercase = __flags & ios_base::uppercase;
982 *--__cs = __lit[__num_base::_S_ox + __uppercase];
983 // '0'
984 *--__cs = __lit[__num_base::_S_odigits];
985 __len += 2;
986 }
987 }
988
989 // Pad.
990 const streamsize __w = __io.width();
991 if (__w > static_cast<streamsize>(__len))
992 {
993 _CharT* __cs3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
994 * __w));
995 _M_pad(__fill, __w, __io, __cs3, __cs, __len);
996 __cs = __cs3;
997 }
998 __io.width(0);
999
1000 // [22.2.2.2.2] Stage 4.
1001 // Write resulting, fully-formatted string to output iterator.
1002 return std::__write(__s, __cs, __len);
1003 }
1004
1005 template<typename _CharT, typename _OutIter>
1006 void
1007 num_put<_CharT, _OutIter>::
1008 _M_group_float(const char* __grouping, size_t __grouping_size,
1009 _CharT __sep, const _CharT* __p, _CharT* __new,
1010 _CharT* __cs, int& __len) const
1011 {
1012 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1013 // 282. What types does numpunct grouping refer to?
1014 // Add grouping, if necessary.
1015 const int __declen = __p ? __p - __cs : __len;
1016 _CharT* __p2 = std::__add_grouping(__new, __sep, __grouping,
1017 __grouping_size,
1018 __cs, __cs + __declen);
1019
1020 // Tack on decimal part.
1021 int __newlen = __p2 - __new;
1022 if (__p)
1023 {
1024 char_traits<_CharT>::copy(__p2, __p, __len - __declen);
1025 __newlen += __len - __declen;
1026 }
1027 __len = __newlen;
1028 }
1029
1030 // The following code uses snprintf (or sprintf(), when
1031 // _GLIBCXX_USE_C99 is not defined) to convert floating point values
1032 // for insertion into a stream. An optimization would be to replace
1033 // them with code that works directly on a wide buffer and then use
1034 // __pad to do the padding. It would be good to replace them anyway
1035 // to gain back the efficiency that C++ provides by knowing up front
1036 // the type of the values to insert. Also, sprintf is dangerous
1037 // since may lead to accidental buffer overruns. This
1038 // implementation follows the C++ standard fairly directly as
1039 // outlined in 22.2.2.2 [lib.locale.num.put]
1040 template<typename _CharT, typename _OutIter>
1041 template<typename _ValueT>
1042 _OutIter
1043 num_put<_CharT, _OutIter>::
1044 _M_insert_float(_OutIter __s, ios_base& __io, _CharT __fill, char __mod,
1045 _ValueT __v) const
1046 {
1047 typedef __numpunct_cache<_CharT> __cache_type;
1048 __use_cache<__cache_type> __uc;
1049 const locale& __loc = __io._M_getloc();
1050 const __cache_type* __lc = __uc(__loc);
1051
1052 // Use default precision if out of range.
1053 streamsize __prec = __io.precision();
1054 if (__prec < static_cast<streamsize>(0))
1055 __prec = static_cast<streamsize>(6);
1056
1057 const int __max_digits = numeric_limits<_ValueT>::digits10;
1058
1059 // [22.2.2.2.2] Stage 1, numeric conversion to character.
1060 int __len;
1061 // Long enough for the max format spec.
1062 char __fbuf[16];
1063
1064 #ifdef _GLIBCXX_USE_C99
1065 // First try a buffer perhaps big enough (most probably sufficient
1066 // for non-ios_base::fixed outputs)
1067 int __cs_size = __max_digits * 3;
1068 char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1069
1070 __num_base::_S_format_float(__io, __fbuf, __mod);
1071 __len = std::__convert_from_v(__cs, __cs_size, __fbuf, __v,
1072 _S_get_c_locale(), __prec);
1073
1074 // If the buffer was not large enough, try again with the correct size.
1075 if (__len >= __cs_size)
1076 {
1077 __cs_size = __len + 1;
1078 __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1079 __len = std::__convert_from_v(__cs, __cs_size, __fbuf, __v,
1080 _S_get_c_locale(), __prec);
1081 }
1082 #else
1083 // Consider the possibility of long ios_base::fixed outputs
1084 const bool __fixed = __io.flags() & ios_base::fixed;
1085 const int __max_exp = numeric_limits<_ValueT>::max_exponent10;
1086
1087 // The size of the output string is computed as follows.
1088 // ios_base::fixed outputs may need up to __max_exp + 1 chars
1089 // for the integer part + __prec chars for the fractional part
1090 // + 3 chars for sign, decimal point, '\0'. On the other hand,
1091 // for non-fixed outputs __max_digits * 2 + __prec chars are
1092 // largely sufficient.
1093 const int __cs_size = __fixed ? __max_exp + __prec + 4
1094 : __max_digits * 2 + __prec;
1095 char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1096
1097 __num_base::_S_format_float(__io, __fbuf, __mod);
1098 __len = std::__convert_from_v(__cs, 0, __fbuf, __v,
1099 _S_get_c_locale(), __prec);
1100 #endif
1101
1102 // [22.2.2.2.2] Stage 2, convert to char_type, using correct
1103 // numpunct.decimal_point() values for '.' and adding grouping.
1104 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1105
1106 _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1107 * __len));
1108 __ctype.widen(__cs, __cs + __len, __ws);
1109
1110 // Replace decimal point.
1111 const _CharT __cdec = __ctype.widen('.');
1112 const _CharT __dec = __lc->_M_decimal_point;
1113 const _CharT* __p = char_traits<_CharT>::find(__ws, __len, __cdec);
1114 if (__p)
1115 __ws[__p - __ws] = __dec;
1116
1117 // Add grouping, if necessary.
1118 // N.B. Make sure to not group things like 2e20, i.e., no decimal
1119 // point, scientific notation.
1120 if (__lc->_M_use_grouping
1121 && (__p || __len < 3 || (__cs[1] <= '9' && __cs[2] <= '9'
1122 && __cs[1] >= '0' && __cs[2] >= '0')))
1123 {
1124 // Grouping can add (almost) as many separators as the
1125 // number of digits, but no more.
1126 _CharT* __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1127 * __len * 2));
1128
1129 streamsize __off = 0;
1130 if (__cs[0] == '-' || __cs[0] == '+')
1131 {
1132 __off = 1;
1133 __ws2[0] = __ws[0];
1134 __len -= 1;
1135 }
1136
1137 _M_group_float(__lc->_M_grouping, __lc->_M_grouping_size,
1138 __lc->_M_thousands_sep, __p, __ws2 + __off,
1139 __ws + __off, __len);
1140 __len += __off;
1141
1142 __ws = __ws2;
1143 }
1144
1145 // Pad.
1146 const streamsize __w = __io.width();
1147 if (__w > static_cast<streamsize>(__len))
1148 {
1149 _CharT* __ws3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1150 * __w));
1151 _M_pad(__fill, __w, __io, __ws3, __ws, __len);
1152 __ws = __ws3;
1153 }
1154 __io.width(0);
1155
1156 // [22.2.2.2.2] Stage 4.
1157 // Write resulting, fully-formatted string to output iterator.
1158 return std::__write(__s, __ws, __len);
1159 }
1160
1161 template<typename _CharT, typename _OutIter>
1162 _OutIter
1163 num_put<_CharT, _OutIter>::
1164 do_put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const
1165 {
1166 const ios_base::fmtflags __flags = __io.flags();
1167 if ((__flags & ios_base::boolalpha) == 0)
1168 {
1169 const long __l = __v;
1170 __s = _M_insert_int(__s, __io, __fill, __l);
1171 }
1172 else
1173 {
1174 typedef __numpunct_cache<_CharT> __cache_type;
1175 __use_cache<__cache_type> __uc;
1176 const locale& __loc = __io._M_getloc();
1177 const __cache_type* __lc = __uc(__loc);
1178
1179 const _CharT* __name = __v ? __lc->_M_truename
1180 : __lc->_M_falsename;
1181 int __len = __v ? __lc->_M_truename_size
1182 : __lc->_M_falsename_size;
1183
1184 const streamsize __w = __io.width();
1185 if (__w > static_cast<streamsize>(__len))
1186 {
1187 _CharT* __cs
1188 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1189 * __w));
1190 _M_pad(__fill, __w, __io, __cs, __name, __len);
1191 __name = __cs;
1192 }
1193 __io.width(0);
1194 __s = std::__write(__s, __name, __len);
1195 }
1196 return __s;
1197 }
1198
1199 template<typename _CharT, typename _OutIter>
1200 _OutIter
1201 num_put<_CharT, _OutIter>::
1202 do_put(iter_type __s, ios_base& __io, char_type __fill, long __v) const
1203 { return _M_insert_int(__s, __io, __fill, __v); }
1204
1205 template<typename _CharT, typename _OutIter>
1206 _OutIter
1207 num_put<_CharT, _OutIter>::
1208 do_put(iter_type __s, ios_base& __io, char_type __fill,
1209 unsigned long __v) const
1210 { return _M_insert_int(__s, __io, __fill, __v); }
1211
1212 #ifdef _GLIBCXX_USE_LONG_LONG
1213 template<typename _CharT, typename _OutIter>
1214 _OutIter
1215 num_put<_CharT, _OutIter>::
1216 do_put(iter_type __s, ios_base& __b, char_type __fill, long long __v) const
1217 { return _M_insert_int(__s, __b, __fill, __v); }
1218
1219 template<typename _CharT, typename _OutIter>
1220 _OutIter
1221 num_put<_CharT, _OutIter>::
1222 do_put(iter_type __s, ios_base& __io, char_type __fill,
1223 unsigned long long __v) const
1224 { return _M_insert_int(__s, __io, __fill, __v); }
1225 #endif
1226
1227 template<typename _CharT, typename _OutIter>
1228 _OutIter
1229 num_put<_CharT, _OutIter>::
1230 do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const
1231 { return _M_insert_float(__s, __io, __fill, char(), __v); }
1232
1233 template<typename _CharT, typename _OutIter>
1234 _OutIter
1235 num_put<_CharT, _OutIter>::
1236 do_put(iter_type __s, ios_base& __io, char_type __fill,
1237 long double __v) const
1238 { return _M_insert_float(__s, __io, __fill, 'L', __v); }
1239
1240 template<typename _CharT, typename _OutIter>
1241 _OutIter
1242 num_put<_CharT, _OutIter>::
1243 do_put(iter_type __s, ios_base& __io, char_type __fill,
1244 const void* __v) const
1245 {
1246 const ios_base::fmtflags __flags = __io.flags();
1247 const ios_base::fmtflags __fmt = ~(ios_base::basefield
1248 | ios_base::uppercase
1249 | ios_base::internal);
1250 __io.flags(__flags & __fmt | (ios_base::hex | ios_base::showbase));
1251
1252 __s = _M_insert_int(__s, __io, __fill,
1253 reinterpret_cast<unsigned long>(__v));
1254 __io.flags(__flags);
1255 return __s;
1256 }
1257
1258 template<typename _CharT, typename _InIter>
1259 template<bool _Intl>
1260 _InIter
1261 money_get<_CharT, _InIter>::
1262 _M_extract(iter_type __beg, iter_type __end, ios_base& __io,
1263 ios_base::iostate& __err, string& __units) const
1264 {
1265 typedef char_traits<_CharT> __traits_type;
1266 typedef typename string_type::size_type size_type;
1267 typedef money_base::part part;
1268 typedef __moneypunct_cache<_CharT, _Intl> __cache_type;
1269
1270 const locale& __loc = __io._M_getloc();
1271 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1272
1273 __use_cache<__cache_type> __uc;
1274 const __cache_type* __lc = __uc(__loc);
1275 const char_type* __lit = __lc->_M_atoms;
1276
1277 // Deduced sign.
1278 bool __negative = false;
1279 // Sign size.
1280 size_type __sign_size = 0;
1281 // True if sign is mandatory.
1282 const bool __mandatory_sign = (__lc->_M_positive_sign_size
1283 && __lc->_M_negative_sign_size);
1284 // String of grouping info from thousands_sep plucked from __units.
1285 string __grouping_tmp;
1286 if (__lc->_M_use_grouping)
1287 __grouping_tmp.reserve(32);
1288 // Last position before the decimal point.
1289 int __last_pos = 0;
1290 // Separator positions, then, possibly, fractional digits.
1291 int __n = 0;
1292 // If input iterator is in a valid state.
1293 bool __testvalid = true;
1294 // Flag marking when a decimal point is found.
1295 bool __testdecfound = false;
1296
1297 // The tentative returned string is stored here.
1298 string __res;
1299 __res.reserve(32);
1300
1301 const char_type* __lit_zero = __lit + money_base::_S_zero;
1302 const money_base::pattern __p = __lc->_M_neg_format;
1303 for (int __i = 0; __i < 4 && __testvalid; ++__i)
1304 {
1305 const part __which = static_cast<part>(__p.field[__i]);
1306 switch (__which)
1307 {
1308 case money_base::symbol:
1309 // According to 22.2.6.1.2, p2, symbol is required
1310 // if (__io.flags() & ios_base::showbase), otherwise
1311 // is optional and consumed only if other characters
1312 // are needed to complete the format.
1313 if (__io.flags() & ios_base::showbase || __sign_size > 1
1314 || __i == 0
1315 || (__i == 1 && (__mandatory_sign
1316 || (static_cast<part>(__p.field[0])
1317 == money_base::sign)
1318 || (static_cast<part>(__p.field[2])
1319 == money_base::space)))
1320 || (__i == 2 && ((static_cast<part>(__p.field[3])
1321 == money_base::value)
1322 || __mandatory_sign
1323 && (static_cast<part>(__p.field[3])
1324 == money_base::sign))))
1325 {
1326 const size_type __len = __lc->_M_curr_symbol_size;
1327 size_type __j = 0;
1328 for (; __beg != __end && __j < __len
1329 && *__beg == __lc->_M_curr_symbol[__j];
1330 ++__beg, ++__j);
1331 if (__j != __len
1332 && (__j || __io.flags() & ios_base::showbase))
1333 __testvalid = false;
1334 }
1335 break;
1336 case money_base::sign:
1337 // Sign might not exist, or be more than one character long.
1338 if (__lc->_M_positive_sign_size && __beg != __end
1339 && *__beg == __lc->_M_positive_sign[0])
1340 {
1341 __sign_size = __lc->_M_positive_sign_size;
1342 ++__beg;
1343 }
1344 else if (__lc->_M_negative_sign_size && __beg != __end
1345 && *__beg == __lc->_M_negative_sign[0])
1346 {
1347 __negative = true;
1348 __sign_size = __lc->_M_negative_sign_size;
1349 ++__beg;
1350 }
1351 else if (__lc->_M_positive_sign_size
1352 && !__lc->_M_negative_sign_size)
1353 // "... if no sign is detected, the result is given the sign
1354 // that corresponds to the source of the empty string"
1355 __negative = true;
1356 else if (__mandatory_sign)
1357 __testvalid = false;
1358 break;
1359 case money_base::value:
1360 // Extract digits, remove and stash away the
1361 // grouping of found thousands separators.
1362 for (; __beg != __end; ++__beg)
1363 {
1364 const char_type __c = *__beg;
1365 const char_type* __q = __traits_type::find(__lit_zero,
1366 10, __c);
1367 if (__q != 0)
1368 {
1369 __res += money_base::_S_atoms[__q - __lit];
1370 ++__n;
1371 }
1372 else if (__c == __lc->_M_decimal_point
1373 && !__testdecfound)
1374 {
1375 __last_pos = __n;
1376 __n = 0;
1377 __testdecfound = true;
1378 }
1379 else if (__lc->_M_use_grouping
1380 && __c == __lc->_M_thousands_sep
1381 && !__testdecfound)
1382 {
1383 if (__n)
1384 {
1385 // Mark position for later analysis.
1386 __grouping_tmp += static_cast<char>(__n);
1387 __n = 0;
1388 }
1389 else
1390 {
1391 __testvalid = false;
1392 break;
1393 }
1394 }
1395 else
1396 break;
1397 }
1398 if (__res.empty())
1399 __testvalid = false;
1400 break;
1401 case money_base::space:
1402 // At least one space is required.
1403 if (__beg != __end && __ctype.is(ctype_base::space, *__beg))
1404 ++__beg;
1405 else
1406 __testvalid = false;
1407 case money_base::none:
1408 // Only if not at the end of the pattern.
1409 if (__i != 3)
1410 for (; __beg != __end
1411 && __ctype.is(ctype_base::space, *__beg); ++__beg);
1412 break;
1413 }
1414 }
1415
1416 // Need to get the rest of the sign characters, if they exist.
1417 if (__sign_size > 1 && __testvalid)
1418 {
1419 const char_type* __sign = __negative ? __lc->_M_negative_sign
1420 : __lc->_M_positive_sign;
1421 size_type __i = 1;
1422 for (; __beg != __end && __i < __sign_size
1423 && *__beg == __sign[__i]; ++__beg, ++__i);
1424
1425 if (__i != __sign_size)
1426 __testvalid = false;
1427 }
1428
1429 if (__testvalid)
1430 {
1431 // Strip leading zeros.
1432 if (__res.size() > 1)
1433 {
1434 const size_type __first = __res.find_first_not_of('0');
1435 const bool __only_zeros = __first == string::npos;
1436 if (__first)
1437 __res.erase(0, __only_zeros ? __res.size() - 1 : __first);
1438 }
1439
1440 // 22.2.6.1.2, p4
1441 if (__negative && __res[0] != '0')
1442 __res.insert(__res.begin(), '-');
1443
1444 // Test for grouping fidelity.
1445 if (__grouping_tmp.size())
1446 {
1447 // Add the ending grouping.
1448 __grouping_tmp += static_cast<char>(__testdecfound ? __last_pos
1449 : __n);
1450 if (!std::__verify_grouping(__lc->_M_grouping,
1451 __lc->_M_grouping_size,
1452 __grouping_tmp))
1453 __err |= ios_base::failbit;
1454 }
1455
1456 // Iff not enough digits were supplied after the decimal-point.
1457 if (__testdecfound && __lc->_M_frac_digits > 0
1458 && __n != __lc->_M_frac_digits)
1459 __testvalid = false;
1460 }
1461
1462 // Iff valid sequence is not recognized.
1463 if (!__testvalid)
1464 __err |= ios_base::failbit;
1465 else
1466 __units.swap(__res);
1467
1468 // Iff no more characters are available.
1469 if (__beg == __end)
1470 __err |= ios_base::eofbit;
1471 return __beg;
1472 }
1473
1474 template<typename _CharT, typename _InIter>
1475 _InIter
1476 money_get<_CharT, _InIter>::
1477 do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
1478 ios_base::iostate& __err, long double& __units) const
1479 {
1480 string __str;
1481 if (__intl)
1482 __beg = _M_extract<true>(__beg, __end, __io, __err, __str);
1483 else
1484 __beg = _M_extract<false>(__beg, __end, __io, __err, __str);
1485 std::__convert_to_v(__str.c_str(), __units, __err, _S_get_c_locale());
1486 return __beg;
1487 }
1488
1489 template<typename _CharT, typename _InIter>
1490 _InIter
1491 money_get<_CharT, _InIter>::
1492 do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
1493 ios_base::iostate& __err, string_type& __units) const
1494 {
1495 typedef typename string::size_type size_type;
1496
1497 const locale& __loc = __io._M_getloc();
1498 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1499
1500 string __str;
1501 const iter_type __ret = __intl ? _M_extract<true>(__beg, __end, __io,
1502 __err, __str)
1503 : _M_extract<false>(__beg, __end, __io,
1504 __err, __str);
1505 const size_type __len = __str.size();
1506 if (__len)
1507 {
1508 _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1509 * __len));
1510 __ctype.widen(__str.data(), __str.data() + __len, __ws);
1511 __units.assign(__ws, __len);
1512 }
1513
1514 return __ret;
1515 }
1516
1517 template<typename _CharT, typename _OutIter>
1518 template<bool _Intl>
1519 _OutIter
1520 money_put<_CharT, _OutIter>::
1521 _M_insert(iter_type __s, ios_base& __io, char_type __fill,
1522 const string_type& __digits) const
1523 {
1524 typedef typename string_type::size_type size_type;
1525 typedef money_base::part part;
1526 typedef __moneypunct_cache<_CharT, _Intl> __cache_type;
1527
1528 const locale& __loc = __io._M_getloc();
1529 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1530
1531 __use_cache<__cache_type> __uc;
1532 const __cache_type* __lc = __uc(__loc);
1533 const char_type* __lit = __lc->_M_atoms;
1534
1535 // Determine if negative or positive formats are to be used, and
1536 // discard leading negative_sign if it is present.
1537 const char_type* __beg = __digits.data();
1538
1539 money_base::pattern __p;
1540 const char_type* __sign;
1541 size_type __sign_size;
1542 if (!(*__beg == __lit[money_base::_S_minus]))
1543 {
1544 __p = __lc->_M_pos_format;
1545 __sign = __lc->_M_positive_sign;
1546 __sign_size = __lc->_M_positive_sign_size;
1547 }
1548 else
1549 {
1550 __p = __lc->_M_neg_format;
1551 __sign = __lc->_M_negative_sign;
1552 __sign_size = __lc->_M_negative_sign_size;
1553 if (__digits.size())
1554 ++__beg;
1555 }
1556
1557 // Look for valid numbers in the ctype facet within input digits.
1558 size_type __len = __ctype.scan_not(ctype_base::digit, __beg,
1559 __beg + __digits.size()) - __beg;
1560 if (__len)
1561 {
1562 // Assume valid input, and attempt to format.
1563 // Break down input numbers into base components, as follows:
1564 // final_value = grouped units + (decimal point) + (digits)
1565 string_type __value;
1566 __value.reserve(2 * __len);
1567
1568 // Add thousands separators to non-decimal digits, per
1569 // grouping rules.
1570 int __paddec = __len - __lc->_M_frac_digits;
1571 if (__paddec > 0)
1572 {
1573 if (__lc->_M_frac_digits < 0)
1574 __paddec = __len;
1575 if (__lc->_M_grouping_size)
1576 {
1577 _CharT* __ws =
1578 static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1579 * 2 * __len));
1580 _CharT* __ws_end =
1581 std::__add_grouping(__ws, __lc->_M_thousands_sep,
1582 __lc->_M_grouping,
1583 __lc->_M_grouping_size,
1584 __beg, __beg + __paddec);
1585 __value.assign(__ws, __ws_end - __ws);
1586 }
1587 else
1588 __value.assign(__beg, __paddec);
1589 }
1590
1591 // Deal with decimal point, decimal digits.
1592 if (__lc->_M_frac_digits > 0)
1593 {
1594 __value += __lc->_M_decimal_point;
1595 if (__paddec >= 0)
1596 __value.append(__beg + __paddec, __lc->_M_frac_digits);
1597 else
1598 {
1599 // Have to pad zeros in the decimal position.
1600 __value.append(-__paddec, __lit[money_base::_S_zero]);
1601 __value.append(__beg, __len);
1602 }
1603 }
1604
1605 // Calculate length of resulting string.
1606 const ios_base::fmtflags __f = __io.flags()
1607 & ios_base::adjustfield;
1608 __len = __value.size() + __sign_size;
1609 __len += ((__io.flags() & ios_base::showbase)
1610 ? __lc->_M_curr_symbol_size : 0);
1611
1612 string_type __res;
1613 __res.reserve(2 * __len);
1614
1615 const size_type __width = static_cast<size_type>(__io.width());
1616 const bool __testipad = (__f == ios_base::internal
1617 && __len < __width);
1618 // Fit formatted digits into the required pattern.
1619 for (int __i = 0; __i < 4; ++__i)
1620 {
1621 const part __which = static_cast<part>(__p.field[__i]);
1622 switch (__which)
1623 {
1624 case money_base::symbol:
1625 if (__io.flags() & ios_base::showbase)
1626 __res.append(__lc->_M_curr_symbol,
1627 __lc->_M_curr_symbol_size);
1628 break;
1629 case money_base::sign:
1630 // Sign might not exist, or be more than one
1631 // charater long. In that case, add in the rest
1632 // below.
1633 if (__sign_size)
1634 __res += __sign[0];
1635 break;
1636 case money_base::value:
1637 __res += __value;
1638 break;
1639 case money_base::space:
1640 // At least one space is required, but if internal
1641 // formatting is required, an arbitrary number of
1642 // fill spaces will be necessary.
1643 if (__testipad)
1644 __res.append(__width - __len, __fill);
1645 else
1646 __res += __fill;
1647 break;
1648 case money_base::none:
1649 if (__testipad)
1650 __res.append(__width - __len, __fill);
1651 break;
1652 }
1653 }
1654
1655 // Special case of multi-part sign parts.
1656 if (__sign_size > 1)
1657 __res.append(__sign + 1, __sign_size - 1);
1658
1659 // Pad, if still necessary.
1660 __len = __res.size();
1661 if (__width > __len)
1662 {
1663 if (__f == ios_base::left)
1664 // After.
1665 __res.append(__width - __len, __fill);
1666 else
1667 // Before.
1668 __res.insert(0, __width - __len, __fill);
1669 __len = __width;
1670 }
1671
1672 // Write resulting, fully-formatted string to output iterator.
1673 __s = std::__write(__s, __res.data(), __len);
1674 }
1675 __io.width(0);
1676 return __s;
1677 }
1678
1679 template<typename _CharT, typename _OutIter>
1680 _OutIter
1681 money_put<_CharT, _OutIter>::
1682 do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
1683 long double __units) const
1684 {
1685 const locale __loc = __io.getloc();
1686 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1687 #ifdef _GLIBCXX_USE_C99
1688 // First try a buffer perhaps big enough.
1689 int __cs_size = 64;
1690 char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1691 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1692 // 328. Bad sprintf format modifier in money_put<>::do_put()
1693 int __len = std::__convert_from_v(__cs, __cs_size, "%.*Lf", __units,
1694 _S_get_c_locale(), 0);
1695 // If the buffer was not large enough, try again with the correct size.
1696 if (__len >= __cs_size)
1697 {
1698 __cs_size = __len + 1;
1699 __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1700 __len = std::__convert_from_v(__cs, __cs_size, "%.*Lf", __units,
1701 _S_get_c_locale(), 0);
1702 }
1703 #else
1704 // max_exponent10 + 1 for the integer part, + 2 for sign and '\0'.
1705 const int __cs_size = numeric_limits<long double>::max_exponent10 + 3;
1706 char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
1707 int __len = std::__convert_from_v(__cs, 0, "%.*Lf", __units,
1708 _S_get_c_locale(), 0);
1709 #endif
1710 _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
1711 * __cs_size));
1712 __ctype.widen(__cs, __cs + __len, __ws);
1713 const string_type __digits(__ws, __len);
1714 return __intl ? _M_insert<true>(__s, __io, __fill, __digits)
1715 : _M_insert<false>(__s, __io, __fill, __digits);
1716 }
1717
1718 template<typename _CharT, typename _OutIter>
1719 _OutIter
1720 money_put<_CharT, _OutIter>::
1721 do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
1722 const string_type& __digits) const
1723 { return __intl ? _M_insert<true>(__s, __io, __fill, __digits)
1724 : _M_insert<false>(__s, __io, __fill, __digits); }
1725
1726
1727 // NB: Not especially useful. Without an ios_base object or some
1728 // kind of locale reference, we are left clawing at the air where
1729 // the side of the mountain used to be...
1730 template<typename _CharT, typename _InIter>
1731 time_base::dateorder
1732 time_get<_CharT, _InIter>::do_date_order() const
1733 { return time_base::no_order; }
1734
1735 // Expand a strftime format string and parse it. E.g., do_get_date() may
1736 // pass %m/%d/%Y => extracted characters.
1737 template<typename _CharT, typename _InIter>
1738 _InIter
1739 time_get<_CharT, _InIter>::
1740 _M_extract_via_format(iter_type __beg, iter_type __end, ios_base& __io,
1741 ios_base::iostate& __err, tm* __tm,
1742 const _CharT* __format) const
1743 {
1744 const locale& __loc = __io._M_getloc();
1745 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
1746 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1747 const size_t __len = char_traits<_CharT>::length(__format);
1748
1749 for (size_t __i = 0; __beg != __end && __i < __len && !__err; ++__i)
1750 {
1751 if (__ctype.narrow(__format[__i], 0) == '%')
1752 {
1753 // Verify valid formatting code, attempt to extract.
1754 char __c = __ctype.narrow(__format[++__i], 0);
1755 int __mem = 0;
1756 if (__c == 'E' || __c == 'O')
1757 __c = __ctype.narrow(__format[++__i], 0);
1758 switch (__c)
1759 {
1760 const char* __cs;
1761 _CharT __wcs[10];
1762 case 'a':
1763 // Abbreviated weekday name [tm_wday]
1764 const char_type* __days1[7];
1765 __tp._M_days_abbreviated(__days1);
1766 __beg = _M_extract_name(__beg, __end, __tm->tm_wday, __days1,
1767 7, __io, __err);
1768 break;
1769 case 'A':
1770 // Weekday name [tm_wday].
1771 const char_type* __days2[7];
1772 __tp._M_days(__days2);
1773 __beg = _M_extract_name(__beg, __end, __tm->tm_wday, __days2,
1774 7, __io, __err);
1775 break;
1776 case 'h':
1777 case 'b':
1778 // Abbreviated month name [tm_mon]
1779 const char_type* __months1[12];
1780 __tp._M_months_abbreviated(__months1);
1781 __beg = _M_extract_name(__beg, __end, __tm->tm_mon,
1782 __months1, 12, __io, __err);
1783 break;
1784 case 'B':
1785 // Month name [tm_mon].
1786 const char_type* __months2[12];
1787 __tp._M_months(__months2);
1788 __beg = _M_extract_name(__beg, __end, __tm->tm_mon,
1789 __months2, 12, __io, __err);
1790 break;
1791 case 'c':
1792 // Default time and date representation.
1793 const char_type* __dt[2];
1794 __tp._M_date_time_formats(__dt);
1795 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1796 __tm, __dt[0]);
1797 break;
1798 case 'd':
1799 // Day [01, 31]. [tm_mday]
1800 __beg = _M_extract_num(__beg, __end, __tm->tm_mday, 1, 31, 2,
1801 __io, __err);
1802 break;
1803 case 'e':
1804 // Day [1, 31], with single digits preceded by
1805 // space. [tm_mday]
1806 if (__ctype.is(ctype_base::space, *__beg))
1807 __beg = _M_extract_num(++__beg, __end, __tm->tm_mday, 1, 9,
1808 1, __io, __err);
1809 else
1810 __beg = _M_extract_num(__beg, __end, __tm->tm_mday, 10, 31,
1811 2, __io, __err);
1812 break;
1813 case 'D':
1814 // Equivalent to %m/%d/%y.[tm_mon, tm_mday, tm_year]
1815 __cs = "%m/%d/%y";
1816 __ctype.widen(__cs, __cs + 9, __wcs);
1817 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1818 __tm, __wcs);
1819 break;
1820 case 'H':
1821 // Hour [00, 23]. [tm_hour]
1822 __beg = _M_extract_num(__beg, __end, __tm->tm_hour, 0, 23, 2,
1823 __io, __err);
1824 break;
1825 case 'I':
1826 // Hour [01, 12]. [tm_hour]
1827 __beg = _M_extract_num(__beg, __end, __tm->tm_hour, 1, 12, 2,
1828 __io, __err);
1829 break;
1830 case 'm':
1831 // Month [01, 12]. [tm_mon]
1832 __beg = _M_extract_num(__beg, __end, __mem, 1, 12, 2,
1833 __io, __err);
1834 if (!__err)
1835 __tm->tm_mon = __mem - 1;
1836 break;
1837 case 'M':
1838 // Minute [00, 59]. [tm_min]
1839 __beg = _M_extract_num(__beg, __end, __tm->tm_min, 0, 59, 2,
1840 __io, __err);
1841 break;
1842 case 'n':
1843 if (__ctype.narrow(*__beg, 0) == '\n')
1844 ++__beg;
1845 else
1846 __err |= ios_base::failbit;
1847 break;
1848 case 'R':
1849 // Equivalent to (%H:%M).
1850 __cs = "%H:%M";
1851 __ctype.widen(__cs, __cs + 6, __wcs);
1852 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1853 __tm, __wcs);
1854 break;
1855 case 'S':
1856 // Seconds. [tm_sec]
1857 // [00, 60] in C99 (one leap-second), [00, 61] in C89.
1858 #ifdef _GLIBCXX_USE_C99
1859 __beg = _M_extract_num(__beg, __end, __tm->tm_sec, 0, 60, 2,
1860 #else
1861 __beg = _M_extract_num(__beg, __end, __tm->tm_sec, 0, 61, 2,
1862 #endif
1863 __io, __err);
1864 break;
1865 case 't':
1866 if (__ctype.narrow(*__beg, 0) == '\t')
1867 ++__beg;
1868 else
1869 __err |= ios_base::failbit;
1870 break;
1871 case 'T':
1872 // Equivalent to (%H:%M:%S).
1873 __cs = "%H:%M:%S";
1874 __ctype.widen(__cs, __cs + 9, __wcs);
1875 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1876 __tm, __wcs);
1877 break;
1878 case 'x':
1879 // Locale's date.
1880 const char_type* __dates[2];
1881 __tp._M_date_formats(__dates);
1882 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1883 __tm, __dates[0]);
1884 break;
1885 case 'X':
1886 // Locale's time.
1887 const char_type* __times[2];
1888 __tp._M_time_formats(__times);
1889 __beg = _M_extract_via_format(__beg, __end, __io, __err,
1890 __tm, __times[0]);
1891 break;
1892 case 'y':
1893 case 'C': // C99
1894 // Two digit year. [tm_year]
1895 __beg = _M_extract_num(__beg, __end, __tm->tm_year, 0, 99, 2,
1896 __io, __err);
1897 break;
1898 case 'Y':
1899 // Year [1900). [tm_year]
1900 __beg = _M_extract_num(__beg, __end, __mem, 0, 9999, 4,
1901 __io, __err);
1902 if (!__err)
1903 __tm->tm_year = __mem - 1900;
1904 break;
1905 case 'Z':
1906 // Timezone info.
1907 if (__ctype.is(ctype_base::upper, *__beg))
1908 {
1909 int __tmp;
1910 __beg = _M_extract_name(__beg, __end, __tmp,
1911 __timepunct_cache<_CharT>::_S_timezones,
1912 14, __io, __err);
1913
1914 // GMT requires special effort.
1915 if (__beg != __end && !__err && __tmp == 0
1916 && (*__beg == __ctype.widen('-')
1917 || *__beg == __ctype.widen('+')))
1918 {
1919 __beg = _M_extract_num(__beg, __end, __tmp, 0, 23, 2,
1920 __io, __err);
1921 __beg = _M_extract_num(__beg, __end, __tmp, 0, 59, 2,
1922 __io, __err);
1923 }
1924 }
1925 else
1926 __err |= ios_base::failbit;
1927 break;
1928 default:
1929 // Not recognized.
1930 __err |= ios_base::failbit;
1931 }
1932 }
1933 else
1934 {
1935 // Verify format and input match, extract and discard.
1936 if (__format[__i] == *__beg)
1937 ++__beg;
1938 else
1939 __err |= ios_base::failbit;
1940 }
1941 }
1942 return __beg;
1943 }
1944
1945 template<typename _CharT, typename _InIter>
1946 _InIter
1947 time_get<_CharT, _InIter>::
1948 _M_extract_num(iter_type __beg, iter_type __end, int& __member,
1949 int __min, int __max, size_t __len,
1950 ios_base& __io, ios_base::iostate& __err) const
1951 {
1952 const locale& __loc = __io._M_getloc();
1953 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1954
1955 // As-is works for __len = 1, 2, 4, the values actually used.
1956 int __mult = __len == 2 ? 10 : (__len == 4 ? 1000 : 1);
1957
1958 ++__min;
1959 size_t __i = 0;
1960 int __value = 0;
1961 for (; __beg != __end && __i < __len; ++__beg, ++__i)
1962 {
1963 const char __c = __ctype.narrow(*__beg, '*');
1964 if (__c >= '0' && __c <= '9')
1965 {
1966 __value = __value * 10 + (__c - '0');
1967 const int __valuec = __value * __mult;
1968 if (__valuec > __max || __valuec + __mult < __min)
1969 break;
1970 __mult /= 10;
1971 }
1972 else
1973 break;
1974 }
1975 if (__i == __len)
1976 __member = __value;
1977 else
1978 __err |= ios_base::failbit;
1979 return __beg;
1980 }
1981
1982 // Assumptions:
1983 // All elements in __names are unique.
1984 template<typename _CharT, typename _InIter>
1985 _InIter
1986 time_get<_CharT, _InIter>::
1987 _M_extract_name(iter_type __beg, iter_type __end, int& __member,
1988 const _CharT** __names, size_t __indexlen,
1989 ios_base& __io, ios_base::iostate& __err) const
1990 {
1991 typedef char_traits<_CharT> __traits_type;
1992 const locale& __loc = __io._M_getloc();
1993 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
1994
1995 int* __matches = static_cast<int*>(__builtin_alloca(sizeof(int)
1996 * __indexlen));
1997 size_t __nmatches = 0;
1998 size_t __pos = 0;
1999 bool __testvalid = true;
2000 const char_type* __name;
2001
2002 // Look for initial matches.
2003 // NB: Some of the locale data is in the form of all lowercase
2004 // names, and some is in the form of initially-capitalized
2005 // names. Look for both.
2006 if (__beg != __end)
2007 {
2008 const char_type __c = *__beg;
2009 for (size_t __i1 = 0; __i1 < __indexlen; ++__i1)
2010 if (__c == __names[__i1][0]
2011 || __c == __ctype.toupper(__names[__i1][0]))
2012 __matches[__nmatches++] = __i1;
2013 }
2014
2015 while (__nmatches > 1)
2016 {
2017 // Find smallest matching string.
2018 size_t __minlen = __traits_type::length(__names[__matches[0]]);
2019 for (size_t __i2 = 1; __i2 < __nmatches; ++__i2)
2020 __minlen = std::min(__minlen,
2021 __traits_type::length(__names[__matches[__i2]]));
2022 ++__beg, ++__pos;
2023 if (__pos < __minlen && __beg != __end)
2024 for (size_t __i3 = 0; __i3 < __nmatches;)
2025 {
2026 __name = __names[__matches[__i3]];
2027 if (!(__name[__pos] == *__beg))
2028 __matches[__i3] = __matches[--__nmatches];
2029 else
2030 ++__i3;
2031 }
2032 else
2033 break;
2034 }
2035
2036 if (__nmatches == 1)
2037 {
2038 // Make sure found name is completely extracted.
2039 ++__beg, ++__pos;
2040 __name = __names[__matches[0]];
2041 const size_t __len = __traits_type::length(__name);
2042 while (__pos < __len && __beg != __end && __name[__pos] == *__beg)
2043 ++__beg, ++__pos;
2044
2045 if (__len == __pos)
2046 __member = __matches[0];
2047 else
2048 __testvalid = false;
2049 }
2050 else
2051 __testvalid = false;
2052 if (!__testvalid)
2053 __err |= ios_base::failbit;
2054 return __beg;
2055 }
2056
2057 template<typename _CharT, typename _InIter>
2058 _InIter
2059 time_get<_CharT, _InIter>::
2060 do_get_time(iter_type __beg, iter_type __end, ios_base& __io,
2061 ios_base::iostate& __err, tm* __tm) const
2062 {
2063 const locale& __loc = __io._M_getloc();
2064 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
2065 const char_type* __times[2];
2066 __tp._M_time_formats(__times);
2067 __beg = _M_extract_via_format(__beg, __end, __io, __err,
2068 __tm, __times[0]);
2069 if (__beg == __end)
2070 __err |= ios_base::eofbit;
2071 return __beg;
2072 }
2073
2074 template<typename _CharT, typename _InIter>
2075 _InIter
2076 time_get<_CharT, _InIter>::
2077 do_get_date(iter_type __beg, iter_type __end, ios_base& __io,
2078 ios_base::iostate& __err, tm* __tm) const
2079 {
2080 const locale& __loc = __io._M_getloc();
2081 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
2082 const char_type* __dates[2];
2083 __tp._M_date_formats(__dates);
2084 __beg = _M_extract_via_format(__beg, __end, __io, __err,
2085 __tm, __dates[0]);
2086 if (__beg == __end)
2087 __err |= ios_base::eofbit;
2088 return __beg;
2089 }
2090
2091 template<typename _CharT, typename _InIter>
2092 _InIter
2093 time_get<_CharT, _InIter>::
2094 do_get_weekday(iter_type __beg, iter_type __end, ios_base& __io,
2095 ios_base::iostate& __err, tm* __tm) const
2096 {
2097 typedef char_traits<_CharT> __traits_type;
2098 const locale& __loc = __io._M_getloc();
2099 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
2100 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
2101 const char_type* __days[7];
2102 __tp._M_days_abbreviated(__days);
2103 int __tmpwday;
2104 __beg = _M_extract_name(__beg, __end, __tmpwday, __days, 7, __io, __err);
2105
2106 // Check to see if non-abbreviated name exists, and extract.
2107 // NB: Assumes both _M_days and _M_days_abbreviated organized in
2108 // exact same order, first to last, such that the resulting
2109 // __days array with the same index points to a day, and that
2110 // day's abbreviated form.
2111 // NB: Also assumes that an abbreviated name is a subset of the name.
2112 if (!__err && __beg != __end)
2113 {
2114 size_t __pos = __traits_type::length(__days[__tmpwday]);
2115 __tp._M_days(__days);
2116 const char_type* __name = __days[__tmpwday];
2117 if (__name[__pos] == *__beg)
2118 {
2119 // Extract the rest of it.
2120 const size_t __len = __traits_type::length(__name);
2121 while (__pos < __len && __beg != __end
2122 && __name[__pos] == *__beg)
2123 ++__beg, ++__pos;
2124 if (__len != __pos)
2125 __err |= ios_base::failbit;
2126 }
2127 }
2128 if (!__err)
2129 __tm->tm_wday = __tmpwday;
2130
2131 if (__beg == __end)
2132 __err |= ios_base::eofbit;
2133 return __beg;
2134 }
2135
2136 template<typename _CharT, typename _InIter>
2137 _InIter
2138 time_get<_CharT, _InIter>::
2139 do_get_monthname(iter_type __beg, iter_type __end,
2140 ios_base& __io, ios_base::iostate& __err, tm* __tm) const
2141 {
2142 typedef char_traits<_CharT> __traits_type;
2143 const locale& __loc = __io._M_getloc();
2144 const __timepunct<_CharT>& __tp = use_facet<__timepunct<_CharT> >(__loc);
2145 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
2146 const char_type* __months[12];
2147 __tp._M_months_abbreviated(__months);
2148 int __tmpmon;
2149 __beg = _M_extract_name(__beg, __end, __tmpmon, __months, 12,
2150 __io, __err);
2151
2152 // Check to see if non-abbreviated name exists, and extract.
2153 // NB: Assumes both _M_months and _M_months_abbreviated organized in
2154 // exact same order, first to last, such that the resulting
2155 // __months array with the same index points to a month, and that
2156 // month's abbreviated form.
2157 // NB: Also assumes that an abbreviated name is a subset of the name.
2158 if (!__err && __beg != __end)
2159 {
2160 size_t __pos = __traits_type::length(__months[__tmpmon]);
2161 __tp._M_months(__months);
2162 const char_type* __name = __months[__tmpmon];
2163 if (__name[__pos] == *__beg)
2164 {
2165 // Extract the rest of it.
2166 const size_t __len = __traits_type::length(__name);
2167 while (__pos < __len && __beg != __end
2168 && __name[__pos] == *__beg)
2169 ++__beg, ++__pos;
2170 if (__len != __pos)
2171 __err |= ios_base::failbit;
2172 }
2173 }
2174 if (!__err)
2175 __tm->tm_mon = __tmpmon;
2176
2177 if (__beg == __end)
2178 __err |= ios_base::eofbit;
2179 return __beg;
2180 }
2181
2182 template<typename _CharT, typename _InIter>
2183 _InIter
2184 time_get<_CharT, _InIter>::
2185 do_get_year(iter_type __beg, iter_type __end, ios_base& __io,
2186 ios_base::iostate& __err, tm* __tm) const
2187 {
2188 const locale& __loc = __io._M_getloc();
2189 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
2190
2191 size_t __i = 0;
2192 int __value = 0;
2193 for (; __beg != __end && __i < 4; ++__beg, ++__i)
2194 {
2195 const char __c = __ctype.narrow(*__beg, '*');
2196 if (__c >= '0' && __c <= '9')
2197 __value = __value * 10 + (__c - '0');
2198 else
2199 break;
2200 }
2201 if (__i == 2 || __i == 4)
2202 __tm->tm_year = __i == 2 ? __value : __value - 1900;
2203 else
2204 __err |= ios_base::failbit;
2205 if (__beg == __end)
2206 __err |= ios_base::eofbit;
2207 return __beg;
2208 }
2209
2210 template<typename _CharT, typename _OutIter>
2211 _OutIter
2212 time_put<_CharT, _OutIter>::
2213 put(iter_type __s, ios_base& __io, char_type __fill, const tm* __tm,
2214 const _CharT* __beg, const _CharT* __end) const
2215 {
2216 const locale& __loc = __io._M_getloc();
2217 ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
2218 for (; __beg != __end; ++__beg)
2219 if (__ctype.narrow(*__beg, 0) != '%')
2220 {
2221 *__s = *__beg;
2222 ++__s;
2223 }
2224 else if (++__beg != __end)
2225 {
2226 char __format;
2227 char __mod = 0;
2228 const char __c = __ctype.narrow(*__beg, 0);
2229 if (__c != 'E' && __c != 'O')
2230 __format = __c;
2231 else if (++__beg != __end)
2232 {
2233 __mod = __c;
2234 __format = __ctype.narrow(*__beg, 0);
2235 }
2236 else
2237 break;
2238 __s = this->do_put(__s, __io, __fill, __tm, __format, __mod);
2239 }
2240 else
2241 break;
2242 return __s;
2243 }
2244
2245 template<typename _CharT, typename _OutIter>
2246 _OutIter
2247 time_put<_CharT, _OutIter>::
2248 do_put(iter_type __s, ios_base& __io, char_type, const tm* __tm,
2249 char __format, char __mod) const
2250 {
2251 const locale& __loc = __io._M_getloc();
2252 ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
2253 __timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
2254
2255 // NB: This size is arbitrary. Should this be a data member,
2256 // initialized at construction?
2257 const size_t __maxlen = 128;
2258 char_type* __res =
2259 static_cast<char_type*>(__builtin_alloca(sizeof(char_type) * __maxlen));
2260
2261 // NB: In IEE 1003.1-200x, and perhaps other locale models, it
2262 // is possible that the format character will be longer than one
2263 // character. Possibilities include 'E' or 'O' followed by a
2264 // format character: if __mod is not the default argument, assume
2265 // it's a valid modifier.
2266 char_type __fmt[4];
2267 __fmt[0] = __ctype.widen('%');
2268 if (!__mod)
2269 {
2270 __fmt[1] = __format;
2271 __fmt[2] = char_type();
2272 }
2273 else
2274 {
2275 __fmt[1] = __mod;
2276 __fmt[2] = __format;
2277 __fmt[3] = char_type();
2278 }
2279
2280 __tp._M_put(__res, __maxlen, __fmt, __tm);
2281
2282 // Write resulting, fully-formatted string to output iterator.
2283 return std::__write(__s, __res, char_traits<char_type>::length(__res));
2284 }
2285
2286 // Generic version does nothing.
2287 template<typename _CharT>
2288 int
2289 collate<_CharT>::_M_compare(const _CharT*, const _CharT*) const
2290 { return 0; }
2291
2292 // Generic version does nothing.
2293 template<typename _CharT>
2294 size_t
2295 collate<_CharT>::_M_transform(_CharT*, const _CharT*, size_t) const
2296 { return 0; }
2297
2298 template<typename _CharT>
2299 int
2300 collate<_CharT>::
2301 do_compare(const _CharT* __lo1, const _CharT* __hi1,
2302 const _CharT* __lo2, const _CharT* __hi2) const
2303 {
2304 // strcoll assumes zero-terminated strings so we make a copy
2305 // and then put a zero at the end.
2306 const string_type __one(__lo1, __hi1);
2307 const string_type __two(__lo2, __hi2);
2308
2309 const _CharT* __p = __one.c_str();
2310 const _CharT* __pend = __one.data() + __one.length();
2311 const _CharT* __q = __two.c_str();
2312 const _CharT* __qend = __two.data() + __two.length();
2313
2314 // strcoll stops when it sees a nul character so we break
2315 // the strings into zero-terminated substrings and pass those
2316 // to strcoll.
2317 for (;;)
2318 {
2319 const int __res = _M_compare(__p, __q);
2320 if (__res)
2321 return __res;
2322
2323 __p += char_traits<_CharT>::length(__p);
2324 __q += char_traits<_CharT>::length(__q);
2325 if (__p == __pend && __q == __qend)
2326 return 0;
2327 else if (__p == __pend)
2328 return -1;
2329 else if (__q == __qend)
2330 return 1;
2331
2332 __p++;
2333 __q++;
2334 }
2335 }
2336
2337 template<typename _CharT>
2338 typename collate<_CharT>::string_type
2339 collate<_CharT>::
2340 do_transform(const _CharT* __lo, const _CharT* __hi) const
2341 {
2342 // strxfrm assumes zero-terminated strings so we make a copy
2343 string_type __str(__lo, __hi);
2344
2345 const _CharT* __p = __str.c_str();
2346 const _CharT* __pend = __str.data() + __str.length();
2347
2348 size_t __len = (__hi - __lo) * 2;
2349
2350 string_type __ret;
2351
2352 // strxfrm stops when it sees a nul character so we break
2353 // the string into zero-terminated substrings and pass those
2354 // to strxfrm.
2355 for (;;)
2356 {
2357 // First try a buffer perhaps big enough.
2358 _CharT* __c =
2359 static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __len));
2360 size_t __res = _M_transform(__c, __p, __len);
2361 // If the buffer was not large enough, try again with the
2362 // correct size.
2363 if (__res >= __len)
2364 {
2365 __len = __res + 1;
2366 __c = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
2367 * __len));
2368 __res = _M_transform(__c, __p, __len);
2369 }
2370
2371 __ret.append(__c, __res);
2372 __p += char_traits<_CharT>::length(__p);
2373 if (__p == __pend)
2374 return __ret;
2375
2376 __p++;
2377 __ret.push_back(_CharT());
2378 }
2379 }
2380
2381 template<typename _CharT>
2382 long
2383 collate<_CharT>::
2384 do_hash(const _CharT* __lo, const _CharT* __hi) const
2385 {
2386 unsigned long __val = 0;
2387 for (; __lo < __hi; ++__lo)
2388 __val = *__lo + ((__val << 7) |
2389 (__val >> (numeric_limits<unsigned long>::digits - 7)));
2390 return static_cast<long>(__val);
2391 }
2392
2393 // Construct correctly padded string, as per 22.2.2.2.2
2394 // Assumes
2395 // __newlen > __oldlen
2396 // __news is allocated for __newlen size
2397 // Used by both num_put and ostream inserters: if __num,
2398 // internal-adjusted objects are padded according to the rules below
2399 // concerning 0[xX] and +-, otherwise, exactly as right-adjusted
2400 // ones are.
2401
2402 // NB: Of the two parameters, _CharT can be deduced from the
2403 // function arguments. The other (_Traits) has to be explicitly specified.
2404 template<typename _CharT, typename _Traits>
2405 void
2406 __pad<_CharT, _Traits>::_S_pad(ios_base& __io, _CharT __fill,
2407 _CharT* __news, const _CharT* __olds,
2408 const streamsize __newlen,
2409 const streamsize __oldlen, const bool __num)
2410 {
2411 const size_t __plen = static_cast<size_t>(__newlen - __oldlen);
2412 const ios_base::fmtflags __adjust = __io.flags() & ios_base::adjustfield;
2413
2414 // Padding last.
2415 if (__adjust == ios_base::left)
2416 {
2417 _Traits::copy(__news, const_cast<_CharT*>(__olds), __oldlen);
2418 _Traits::assign(__news + __oldlen, __plen, __fill);
2419 return;
2420 }
2421
2422 size_t __mod = 0;
2423 if (__adjust == ios_base::internal && __num)
2424 {
2425 // Pad after the sign, if there is one.
2426 // Pad after 0[xX], if there is one.
2427 // Who came up with these rules, anyway? Jeeze.
2428 const locale& __loc = __io._M_getloc();
2429 const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
2430
2431 const bool __testsign = (__ctype.widen('-') == __olds[0]
2432 || __ctype.widen('+') == __olds[0]);
2433 const bool __testhex = (__ctype.widen('0') == __olds[0]
2434 && __oldlen > 1
2435 && (__ctype.widen('x') == __olds[1]
2436 || __ctype.widen('X') == __olds[1]));
2437 if (__testhex)
2438 {
2439 __news[0] = __olds[0];
2440 __news[1] = __olds[1];
2441 __mod = 2;
2442 __news += 2;
2443 }
2444 else if (__testsign)
2445 {
2446 __news[0] = __olds[0];
2447 __mod = 1;
2448 ++__news;
2449 }
2450 // else Padding first.
2451 }
2452 _Traits::assign(__news, __plen, __fill);
2453 _Traits::copy(__news + __plen, const_cast<_CharT*>(__olds + __mod),
2454 __oldlen - __mod);
2455 }
2456
2457 bool
2458 __verify_grouping(const char* __grouping, size_t __grouping_size,
2459 const string& __grouping_tmp)
2460 {
2461 const size_t __n = __grouping_tmp.size() - 1;
2462 const size_t __min = std::min(__n, size_t(__grouping_size - 1));
2463 size_t __i = __n;
2464 bool __test = true;
2465
2466 // Parsed number groupings have to match the
2467 // numpunct::grouping string exactly, starting at the
2468 // right-most point of the parsed sequence of elements ...
2469 for (size_t __j = 0; __j < __min && __test; --__i, ++__j)
2470 __test = __grouping_tmp[__i] == __grouping[__j];
2471 for (; __i && __test; --__i)
2472 __test = __grouping_tmp[__i] == __grouping[__min];
2473 // ... but the last parsed grouping can be <= numpunct
2474 // grouping.
2475 __test &= __grouping_tmp[0] <= __grouping[__min];
2476 return __test;
2477 }
2478
2479 template<typename _CharT>
2480 _CharT*
2481 __add_grouping(_CharT* __s, _CharT __sep,
2482 const char* __gbeg, size_t __gsize,
2483 const _CharT* __first, const _CharT* __last)
2484 {
2485 if (__last - __first > *__gbeg)
2486 {
2487 const bool __bump = __gsize != 1;
2488 __s = std::__add_grouping(__s, __sep, __gbeg + __bump,
2489 __gsize - __bump, __first,
2490 __last - *__gbeg);
2491 __first = __last - *__gbeg;
2492 *__s++ = __sep;
2493 }
2494 do
2495 *__s++ = *__first++;
2496 while (__first != __last);
2497 return __s;
2498 }
2499
2500 // Inhibit implicit instantiations for required instantiations,
2501 // which are defined via explicit instantiations elsewhere.
2502 // NB: This syntax is a GNU extension.
2503 #if _GLIBCXX_EXTERN_TEMPLATE
2504 extern template class moneypunct<char, false>;
2505 extern template class moneypunct<char, true>;
2506 extern template class moneypunct_byname<char, false>;
2507 extern template class moneypunct_byname<char, true>;
2508 extern template class money_get<char>;
2509 extern template class money_put<char>;
2510 extern template class numpunct<char>;
2511 extern template class numpunct_byname<char>;
2512 extern template class num_get<char>;
2513 extern template class num_put<char>;
2514 extern template class __timepunct<char>;
2515 extern template class time_put<char>;
2516 extern template class time_put_byname<char>;
2517 extern template class time_get<char>;
2518 extern template class time_get_byname<char>;
2519 extern template class messages<char>;
2520 extern template class messages_byname<char>;
2521 extern template class ctype_byname<char>;
2522 extern template class codecvt_byname<char, char, mbstate_t>;
2523 extern template class collate<char>;
2524 extern template class collate_byname<char>;
2525
2526 extern template
2527 const codecvt<char, char, mbstate_t>&
2528 use_facet<codecvt<char, char, mbstate_t> >(const locale&);
2529
2530 extern template
2531 const collate<char>&
2532 use_facet<collate<char> >(const locale&);
2533
2534 extern template
2535 const numpunct<char>&
2536 use_facet<numpunct<char> >(const locale&);
2537
2538 extern template
2539 const num_put<char>&
2540 use_facet<num_put<char> >(const locale&);
2541
2542 extern template
2543 const num_get<char>&
2544 use_facet<num_get<char> >(const locale&);
2545
2546 extern template
2547 const moneypunct<char, true>&
2548 use_facet<moneypunct<char, true> >(const locale&);
2549
2550 extern template
2551 const moneypunct<char, false>&
2552 use_facet<moneypunct<char, false> >(const locale&);
2553
2554 extern template
2555 const money_put<char>&
2556 use_facet<money_put<char> >(const locale&);
2557
2558 extern template
2559 const money_get<char>&
2560 use_facet<money_get<char> >(const locale&);
2561
2562 extern template
2563 const __timepunct<char>&
2564 use_facet<__timepunct<char> >(const locale&);
2565
2566 extern template
2567 const time_put<char>&
2568 use_facet<time_put<char> >(const locale&);
2569
2570 extern template
2571 const time_get<char>&
2572 use_facet<time_get<char> >(const locale&);
2573
2574 extern template
2575 const messages<char>&
2576 use_facet<messages<char> >(const locale&);
2577
2578 extern template
2579 bool
2580 has_facet<ctype<char> >(const locale&);
2581
2582 extern template
2583 bool
2584 has_facet<codecvt<char, char, mbstate_t> >(const locale&);
2585
2586 extern template
2587 bool
2588 has_facet<collate<char> >(const locale&);
2589
2590 extern template
2591 bool
2592 has_facet<numpunct<char> >(const locale&);
2593
2594 extern template
2595 bool
2596 has_facet<num_put<char> >(const locale&);
2597
2598 extern template
2599 bool
2600 has_facet<num_get<char> >(const locale&);
2601
2602 extern template
2603 bool
2604 has_facet<moneypunct<char> >(const locale&);
2605
2606 extern template
2607 bool
2608 has_facet<money_put<char> >(const locale&);
2609
2610 extern template
2611 bool
2612 has_facet<money_get<char> >(const locale&);
2613
2614 extern template
2615 bool
2616 has_facet<__timepunct<char> >(const locale&);
2617
2618 extern template
2619 bool
2620 has_facet<time_put<char> >(const locale&);
2621
2622 extern template
2623 bool
2624 has_facet<time_get<char> >(const locale&);
2625
2626 extern template
2627 bool
2628 has_facet<messages<char> >(const locale&);
2629
2630 #ifdef _GLIBCXX_USE_WCHAR_T
2631 extern template class moneypunct<wchar_t, false>;
2632 extern template class moneypunct<wchar_t, true>;
2633 extern template class moneypunct_byname<wchar_t, false>;
2634 extern template class moneypunct_byname<wchar_t, true>;
2635 extern template class money_get<wchar_t>;
2636 extern template class money_put<wchar_t>;
2637 extern template class numpunct<wchar_t>;
2638 extern template class numpunct_byname<wchar_t>;
2639 extern template class num_get<wchar_t>;
2640 extern template class num_put<wchar_t>;
2641 extern template class __timepunct<wchar_t>;
2642 extern template class time_put<wchar_t>;
2643 extern template class time_put_byname<wchar_t>;
2644 extern template class time_get<wchar_t>;
2645 extern template class time_get_byname<wchar_t>;
2646 extern template class messages<wchar_t>;
2647 extern template class messages_byname<wchar_t>;
2648 extern template class ctype_byname<wchar_t>;
2649 extern template class codecvt_byname<wchar_t, char, mbstate_t>;
2650 extern template class collate<wchar_t>;
2651 extern template class collate_byname<wchar_t>;
2652
2653 extern template
2654 const codecvt<wchar_t, char, mbstate_t>&
2655 use_facet<codecvt<wchar_t, char, mbstate_t> >(locale const&);
2656
2657 extern template
2658 const collate<wchar_t>&
2659 use_facet<collate<wchar_t> >(const locale&);
2660
2661 extern template
2662 const numpunct<wchar_t>&
2663 use_facet<numpunct<wchar_t> >(const locale&);
2664
2665 extern template
2666 const num_put<wchar_t>&
2667 use_facet<num_put<wchar_t> >(const locale&);
2668
2669 extern template
2670 const num_get<wchar_t>&
2671 use_facet<num_get<wchar_t> >(const locale&);
2672
2673 extern template
2674 const moneypunct<wchar_t, true>&
2675 use_facet<moneypunct<wchar_t, true> >(const locale&);
2676
2677 extern template
2678 const moneypunct<wchar_t, false>&
2679 use_facet<moneypunct<wchar_t, false> >(const locale&);
2680
2681 extern template
2682 const money_put<wchar_t>&
2683 use_facet<money_put<wchar_t> >(const locale&);
2684
2685 extern template
2686 const money_get<wchar_t>&
2687 use_facet<money_get<wchar_t> >(const locale&);
2688
2689 extern template
2690 const __timepunct<wchar_t>&
2691 use_facet<__timepunct<wchar_t> >(const locale&);
2692
2693 extern template
2694 const time_put<wchar_t>&
2695 use_facet<time_put<wchar_t> >(const locale&);
2696
2697 extern template
2698 const time_get<wchar_t>&
2699 use_facet<time_get<wchar_t> >(const locale&);
2700
2701 extern template
2702 const messages<wchar_t>&
2703 use_facet<messages<wchar_t> >(const locale&);
2704
2705 extern template
2706 bool
2707 has_facet<ctype<wchar_t> >(const locale&);
2708
2709 extern template
2710 bool
2711 has_facet<codecvt<wchar_t, char, mbstate_t> >(const locale&);
2712
2713 extern template
2714 bool
2715 has_facet<collate<wchar_t> >(const locale&);
2716
2717 extern template
2718 bool
2719 has_facet<numpunct<wchar_t> >(const locale&);
2720
2721 extern template
2722 bool
2723 has_facet<num_put<wchar_t> >(const locale&);
2724
2725 extern template
2726 bool
2727 has_facet<num_get<wchar_t> >(const locale&);
2728
2729 extern template
2730 bool
2731 has_facet<moneypunct<wchar_t> >(const locale&);
2732
2733 extern template
2734 bool
2735 has_facet<money_put<wchar_t> >(const locale&);
2736
2737 extern template
2738 bool
2739 has_facet<money_get<wchar_t> >(const locale&);
2740
2741 extern template
2742 bool
2743 has_facet<__timepunct<wchar_t> >(const locale&);
2744
2745 extern template
2746 bool
2747 has_facet<time_put<wchar_t> >(const locale&);
2748
2749 extern template
2750 bool
2751 has_facet<time_get<wchar_t> >(const locale&);
2752
2753 extern template
2754 bool
2755 has_facet<messages<wchar_t> >(const locale&);
2756 #endif
2757 #endif
2758 } // namespace std
2759
2760 #endif