stl_algobase.h (fill, fill_n): Tighten the dispatch: use iterator_traits<>::value_typ...
[gcc.git] / libstdc++-v3 / include / bits / stl_algobase.h
1 // Bits and pieces used in algorithms -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996-1998
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
54 */
55
56 /** @file stl_algobase.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
59 */
60
61 #ifndef _ALGOBASE_H
62 #define _ALGOBASE_H 1
63
64 #include <bits/c++config.h>
65 #include <cstring>
66 #include <climits>
67 #include <cstdlib>
68 #include <cstddef>
69 #include <new>
70 #include <iosfwd>
71 #include <bits/stl_pair.h>
72 #include <bits/type_traits.h>
73 #include <bits/stl_iterator_base_types.h>
74 #include <bits/stl_iterator_base_funcs.h>
75 #include <bits/stl_iterator.h>
76 #include <bits/concept_check.h>
77 #include <debug/debug.h>
78
79 namespace std
80 {
81 /**
82 * @brief Swaps the contents of two iterators.
83 * @param a An iterator.
84 * @param b Another iterator.
85 * @return Nothing.
86 *
87 * This function swaps the values pointed to by two iterators, not the
88 * iterators themselves.
89 */
90 template<typename _ForwardIterator1, typename _ForwardIterator2>
91 inline void
92 iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
93 {
94 typedef typename iterator_traits<_ForwardIterator1>::value_type
95 _ValueType1;
96 typedef typename iterator_traits<_ForwardIterator2>::value_type
97 _ValueType2;
98
99 // concept requirements
100 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
101 _ForwardIterator1>)
102 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
103 _ForwardIterator2>)
104 __glibcxx_function_requires(_ConvertibleConcept<_ValueType1,
105 _ValueType2>)
106 __glibcxx_function_requires(_ConvertibleConcept<_ValueType2,
107 _ValueType1>)
108
109 const _ValueType1 __tmp = *__a;
110 *__a = *__b;
111 *__b = __tmp;
112 }
113
114 /**
115 * @brief Swaps two values.
116 * @param a A thing of arbitrary type.
117 * @param b Another thing of arbitrary type.
118 * @return Nothing.
119 *
120 * This is the simple classic generic implementation. It will work on
121 * any type which has a copy constructor and an assignment operator.
122 */
123 template<typename _Tp>
124 inline void
125 swap(_Tp& __a, _Tp& __b)
126 {
127 // concept requirements
128 __glibcxx_function_requires(_SGIAssignableConcept<_Tp>)
129
130 const _Tp __tmp = __a;
131 __a = __b;
132 __b = __tmp;
133 }
134
135 #undef min
136 #undef max
137
138 /**
139 * @brief This does what you think it does.
140 * @param a A thing of arbitrary type.
141 * @param b Another thing of arbitrary type.
142 * @return The lesser of the parameters.
143 *
144 * This is the simple classic generic implementation. It will work on
145 * temporary expressions, since they are only evaluated once, unlike a
146 * preprocessor macro.
147 */
148 template<typename _Tp>
149 inline const _Tp&
150 min(const _Tp& __a, const _Tp& __b)
151 {
152 // concept requirements
153 __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
154 //return __b < __a ? __b : __a;
155 if (__b < __a)
156 return __b;
157 return __a;
158 }
159
160 /**
161 * @brief This does what you think it does.
162 * @param a A thing of arbitrary type.
163 * @param b Another thing of arbitrary type.
164 * @return The greater of the parameters.
165 *
166 * This is the simple classic generic implementation. It will work on
167 * temporary expressions, since they are only evaluated once, unlike a
168 * preprocessor macro.
169 */
170 template<typename _Tp>
171 inline const _Tp&
172 max(const _Tp& __a, const _Tp& __b)
173 {
174 // concept requirements
175 __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
176 //return __a < __b ? __b : __a;
177 if (__a < __b)
178 return __b;
179 return __a;
180 }
181
182 /**
183 * @brief This does what you think it does.
184 * @param a A thing of arbitrary type.
185 * @param b Another thing of arbitrary type.
186 * @param comp A @link s20_3_3_comparisons comparison functor@endlink.
187 * @return The lesser of the parameters.
188 *
189 * This will work on temporary expressions, since they are only evaluated
190 * once, unlike a preprocessor macro.
191 */
192 template<typename _Tp, typename _Compare>
193 inline const _Tp&
194 min(const _Tp& __a, const _Tp& __b, _Compare __comp)
195 {
196 //return __comp(__b, __a) ? __b : __a;
197 if (__comp(__b, __a))
198 return __b;
199 return __a;
200 }
201
202 /**
203 * @brief This does what you think it does.
204 * @param a A thing of arbitrary type.
205 * @param b Another thing of arbitrary type.
206 * @param comp A @link s20_3_3_comparisons comparison functor@endlink.
207 * @return The greater of the parameters.
208 *
209 * This will work on temporary expressions, since they are only evaluated
210 * once, unlike a preprocessor macro.
211 */
212 template<typename _Tp, typename _Compare>
213 inline const _Tp&
214 max(const _Tp& __a, const _Tp& __b, _Compare __comp)
215 {
216 //return __comp(__a, __b) ? __b : __a;
217 if (__comp(__a, __b))
218 return __b;
219 return __a;
220 }
221
222 // All of these auxiliary functions serve two purposes. (1) Replace
223 // calls to copy with memmove whenever possible. (Memmove, not memcpy,
224 // because the input and output ranges are permitted to overlap.)
225 // (2) If we're using random access iterators, then write the loop as
226 // a for loop with an explicit count.
227
228 template<typename _InputIterator, typename _OutputIterator>
229 inline _OutputIterator
230 __copy(_InputIterator __first, _InputIterator __last,
231 _OutputIterator __result, input_iterator_tag)
232 {
233 for (; __first != __last; ++__result, ++__first)
234 *__result = *__first;
235 return __result;
236 }
237
238 template<typename _RandomAccessIterator, typename _OutputIterator>
239 inline _OutputIterator
240 __copy(_RandomAccessIterator __first, _RandomAccessIterator __last,
241 _OutputIterator __result, random_access_iterator_tag)
242 {
243 typedef typename iterator_traits<_RandomAccessIterator>::difference_type
244 _Distance;
245 for (_Distance __n = __last - __first; __n > 0; --__n)
246 {
247 *__result = *__first;
248 ++__first;
249 ++__result;
250 }
251 return __result;
252 }
253
254 template<typename _Tp>
255 inline _Tp*
256 __copy_trivial(const _Tp* __first, const _Tp* __last, _Tp* __result)
257 {
258 std::memmove(__result, __first, sizeof(_Tp) * (__last - __first));
259 return __result + (__last - __first);
260 }
261
262 template<typename _InputIterator, typename _OutputIterator>
263 inline _OutputIterator
264 __copy_aux2(_InputIterator __first, _InputIterator __last,
265 _OutputIterator __result, __false_type)
266 { return std::__copy(__first, __last, __result,
267 std::__iterator_category(__first)); }
268
269 template<typename _InputIterator, typename _OutputIterator>
270 inline _OutputIterator
271 __copy_aux2(_InputIterator __first, _InputIterator __last,
272 _OutputIterator __result, __true_type)
273 { return std::__copy(__first, __last, __result,
274 std::__iterator_category(__first)); }
275
276 template<typename _Tp>
277 inline _Tp*
278 __copy_aux2(_Tp* __first, _Tp* __last, _Tp* __result, __true_type)
279 { return std::__copy_trivial(__first, __last, __result); }
280
281 template<typename _Tp>
282 inline _Tp*
283 __copy_aux2(const _Tp* __first, const _Tp* __last, _Tp* __result,
284 __true_type)
285 { return std::__copy_trivial(__first, __last, __result); }
286
287 template<typename _InputIterator, typename _OutputIterator>
288 inline _OutputIterator
289 __copy_ni2(_InputIterator __first, _InputIterator __last,
290 _OutputIterator __result, __true_type)
291 {
292 typedef typename iterator_traits<_InputIterator>::value_type
293 _ValueType;
294 typedef typename __type_traits<
295 _ValueType>::has_trivial_assignment_operator _Trivial;
296 return _OutputIterator(std::__copy_aux2(__first, __last, __result.base(),
297 _Trivial()));
298 }
299
300 template<typename _InputIterator, typename _OutputIterator>
301 inline _OutputIterator
302 __copy_ni2(_InputIterator __first, _InputIterator __last,
303 _OutputIterator __result, __false_type)
304 {
305 typedef typename iterator_traits<_InputIterator>::value_type _ValueType;
306 typedef typename __type_traits<
307 _ValueType>::has_trivial_assignment_operator _Trivial;
308 return std::__copy_aux2(__first, __last, __result, _Trivial());
309 }
310
311 template<typename _InputIterator, typename _OutputIterator>
312 inline _OutputIterator
313 __copy_ni1(_InputIterator __first, _InputIterator __last,
314 _OutputIterator __result, __true_type)
315 {
316 typedef typename _Is_normal_iterator<_OutputIterator>::_Normal __Normal;
317 return std::__copy_ni2(__first.base(), __last.base(),
318 __result, __Normal());
319 }
320
321 template<typename _InputIterator, typename _OutputIterator>
322 inline _OutputIterator
323 __copy_ni1(_InputIterator __first, _InputIterator __last,
324 _OutputIterator __result, __false_type)
325 {
326 typedef typename _Is_normal_iterator<_OutputIterator>::_Normal __Normal;
327 return std::__copy_ni2(__first, __last, __result, __Normal());
328 }
329
330 /**
331 * @brief Copies the range [first,last) into result.
332 * @param first An input iterator.
333 * @param last An input iterator.
334 * @param result An output iterator.
335 * @return result + (first - last)
336 *
337 * This inline function will boil down to a call to @c memmove whenever
338 * possible. Failing that, if random access iterators are passed, then the
339 * loop count will be known (and therefore a candidate for compiler
340 * optimizations such as unrolling). Result may not be contained within
341 * [first,last); the copy_backward function should be used instead.
342 *
343 * Note that the end of the output range is permitted to be contained
344 * within [first,last).
345 */
346 template<typename _InputIterator, typename _OutputIterator>
347 inline _OutputIterator
348 copy(_InputIterator __first, _InputIterator __last,
349 _OutputIterator __result)
350 {
351 // concept requirements
352 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
353 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
354 typename iterator_traits<_InputIterator>::value_type>)
355 __glibcxx_requires_valid_range(__first, __last);
356
357 typedef typename _Is_normal_iterator<_InputIterator>::_Normal __Normal;
358 return std::__copy_ni1(__first, __last, __result, __Normal());
359 }
360
361 template<typename _BidirectionalIterator1, typename _BidirectionalIterator2>
362 inline _BidirectionalIterator2
363 __copy_backward(_BidirectionalIterator1 __first,
364 _BidirectionalIterator1 __last,
365 _BidirectionalIterator2 __result,
366 bidirectional_iterator_tag)
367 {
368 while (__first != __last)
369 *--__result = *--__last;
370 return __result;
371 }
372
373 template<typename _RandomAccessIterator, typename _BidirectionalIterator>
374 inline _BidirectionalIterator
375 __copy_backward(_RandomAccessIterator __first, _RandomAccessIterator __last,
376 _BidirectionalIterator __result, random_access_iterator_tag)
377 {
378 typename iterator_traits<_RandomAccessIterator>::difference_type __n;
379 for (__n = __last - __first; __n > 0; --__n)
380 *--__result = *--__last;
381 return __result;
382 }
383
384
385 // This dispatch class is a workaround for compilers that do not
386 // have partial ordering of function templates. All we're doing is
387 // creating a specialization so that we can turn a call to copy_backward
388 // into a memmove whenever possible.
389 template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
390 typename _BoolType>
391 struct __copy_backward_dispatch
392 {
393 static _BidirectionalIterator2
394 copy(_BidirectionalIterator1 __first, _BidirectionalIterator1 __last,
395 _BidirectionalIterator2 __result)
396 { return std::__copy_backward(__first, __last, __result,
397 std::__iterator_category(__first)); }
398 };
399
400 template<typename _Tp>
401 struct __copy_backward_dispatch<_Tp*, _Tp*, __true_type>
402 {
403 static _Tp*
404 copy(const _Tp* __first, const _Tp* __last, _Tp* __result)
405 {
406 const ptrdiff_t _Num = __last - __first;
407 std::memmove(__result - _Num, __first, sizeof(_Tp) * _Num);
408 return __result - _Num;
409 }
410 };
411
412 template<typename _Tp>
413 struct __copy_backward_dispatch<const _Tp*, _Tp*, __true_type>
414 {
415 static _Tp*
416 copy(const _Tp* __first, const _Tp* __last, _Tp* __result)
417 {
418 return std::__copy_backward_dispatch<_Tp*, _Tp*, __true_type>
419 ::copy(__first, __last, __result);
420 }
421 };
422
423 template<typename _BI1, typename _BI2>
424 inline _BI2
425 __copy_backward_aux(_BI1 __first, _BI1 __last, _BI2 __result)
426 {
427 typedef typename __type_traits<typename iterator_traits<_BI2>::value_type>
428 ::has_trivial_assignment_operator _Trivial;
429 return
430 std::__copy_backward_dispatch<_BI1, _BI2, _Trivial>::copy(__first,
431 __last,
432 __result);
433 }
434
435 template <typename _BI1, typename _BI2>
436 inline _BI2
437 __copy_backward_output_normal_iterator(_BI1 __first, _BI1 __last,
438 _BI2 __result, __true_type)
439 { return _BI2(std::__copy_backward_aux(__first, __last, __result.base())); }
440
441 template <typename _BI1, typename _BI2>
442 inline _BI2
443 __copy_backward_output_normal_iterator(_BI1 __first, _BI1 __last,
444 _BI2 __result, __false_type)
445 { return std::__copy_backward_aux(__first, __last, __result); }
446
447 template <typename _BI1, typename _BI2>
448 inline _BI2
449 __copy_backward_input_normal_iterator(_BI1 __first, _BI1 __last,
450 _BI2 __result, __true_type)
451 {
452 typedef typename _Is_normal_iterator<_BI2>::_Normal __Normal;
453 return std::__copy_backward_output_normal_iterator(__first.base(),
454 __last.base(),
455 __result, __Normal());
456 }
457
458 template <typename _BI1, typename _BI2>
459 inline _BI2
460 __copy_backward_input_normal_iterator(_BI1 __first, _BI1 __last,
461 _BI2 __result, __false_type)
462 {
463 typedef typename _Is_normal_iterator<_BI2>::_Normal __Normal;
464 return std::__copy_backward_output_normal_iterator(__first, __last,
465 __result, __Normal());
466 }
467
468 /**
469 * @brief Copies the range [first,last) into result.
470 * @param first A bidirectional iterator.
471 * @param last A bidirectional iterator.
472 * @param result A bidirectional iterator.
473 * @return result - (first - last)
474 *
475 * The function has the same effect as copy, but starts at the end of the
476 * range and works its way to the start, returning the start of the result.
477 * This inline function will boil down to a call to @c memmove whenever
478 * possible. Failing that, if random access iterators are passed, then the
479 * loop count will be known (and therefore a candidate for compiler
480 * optimizations such as unrolling).
481 *
482 * Result may not be in the range [first,last). Use copy instead. Note
483 * that the start of the output range may overlap [first,last).
484 */
485 template <typename _BI1, typename _BI2>
486 inline _BI2
487 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result)
488 {
489 // concept requirements
490 __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>)
491 __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>)
492 __glibcxx_function_requires(_ConvertibleConcept<
493 typename iterator_traits<_BI1>::value_type,
494 typename iterator_traits<_BI2>::value_type>)
495 __glibcxx_requires_valid_range(__first, __last);
496
497 typedef typename _Is_normal_iterator<_BI1>::_Normal __Normal;
498 return std::__copy_backward_input_normal_iterator(__first, __last,
499 __result, __Normal());
500 }
501
502 template<typename>
503 struct __fill
504 {
505 template<typename _ForwardIterator, typename _Tp>
506 static void
507 fill(_ForwardIterator __first, _ForwardIterator __last,
508 const _Tp& __value)
509 {
510 for (; __first != __last; ++__first)
511 *__first = __value;
512 }
513 };
514
515 template<>
516 struct __fill<__true_type>
517 {
518 template<typename _ForwardIterator, typename _Tp>
519 static void
520 fill(_ForwardIterator __first, _ForwardIterator __last,
521 const _Tp& __value)
522 {
523 const _Tp __tmp = __value;
524 for (; __first != __last; ++__first)
525 *__first = __tmp;
526 }
527 };
528
529 /**
530 * @brief Fills the range [first,last) with copies of value.
531 * @param first A forward iterator.
532 * @param last A forward iterator.
533 * @param value A reference-to-const of arbitrary type.
534 * @return Nothing.
535 *
536 * This function fills a range with copies of the same value. For one-byte
537 * types filling contiguous areas of memory, this becomes an inline call to
538 * @c memset.
539 */
540 template<typename _ForwardIterator, typename _Tp>
541 void
542 fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value)
543 {
544 // concept requirements
545 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
546 _ForwardIterator>)
547 __glibcxx_requires_valid_range(__first, __last);
548
549 typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType;
550 typedef typename __type_traits<_ValueType>::has_trivial_copy_constructor
551 _Trivial;
552 std::__fill<_Trivial>::fill(__first, __last, __value);
553 }
554
555 // Specialization: for one-byte types we can use memset.
556 inline void
557 fill(unsigned char* __first, unsigned char* __last, const unsigned char& __c)
558 {
559 __glibcxx_requires_valid_range(__first, __last);
560 const unsigned char __tmp = __c;
561 std::memset(__first, __tmp, __last - __first);
562 }
563
564 inline void
565 fill(signed char* __first, signed char* __last, const signed char& __c)
566 {
567 __glibcxx_requires_valid_range(__first, __last);
568 const signed char __tmp = __c;
569 std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
570 }
571
572 inline void
573 fill(char* __first, char* __last, const char& __c)
574 {
575 __glibcxx_requires_valid_range(__first, __last);
576 const char __tmp = __c;
577 std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
578 }
579
580 template<typename>
581 struct __fill_n
582 {
583 template<typename _OutputIterator, typename _Size, typename _Tp>
584 static _OutputIterator
585 fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
586 {
587 for (; __n > 0; --__n, ++__first)
588 *__first = __value;
589 return __first;
590 }
591 };
592
593 template<>
594 struct __fill_n<__true_type>
595 {
596 template<typename _OutputIterator, typename _Size, typename _Tp>
597 static _OutputIterator
598 fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
599 {
600 const _Tp __tmp = __value;
601 for (; __n > 0; --__n, ++__first)
602 *__first = __tmp;
603 return __first;
604 }
605 };
606
607 /**
608 * @brief Fills the range [first,first+n) with copies of value.
609 * @param first An output iterator.
610 * @param n The count of copies to perform.
611 * @param value A reference-to-const of arbitrary type.
612 * @return The iterator at first+n.
613 *
614 * This function fills a range with copies of the same value. For one-byte
615 * types filling contiguous areas of memory, this becomes an inline call to
616 * @c memset.
617 */
618 template<typename _OutputIterator, typename _Size, typename _Tp>
619 _OutputIterator
620 fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
621 {
622 // concept requirements
623 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _Tp>)
624
625 typedef typename iterator_traits<_OutputIterator>::value_type _ValueType;
626 typedef typename __type_traits<_ValueType>::has_trivial_copy_constructor
627 _Trivial;
628 return std::__fill_n<_Trivial>::fill_n(__first, __n, __value);
629 }
630
631 template<typename _Size>
632 inline unsigned char*
633 fill_n(unsigned char* __first, _Size __n, const unsigned char& __c)
634 {
635 std::fill(__first, __first + __n, __c);
636 return __first + __n;
637 }
638
639 template<typename _Size>
640 inline signed char*
641 fill_n(char* __first, _Size __n, const signed char& __c)
642 {
643 std::fill(__first, __first + __n, __c);
644 return __first + __n;
645 }
646
647 template<typename _Size>
648 inline char*
649 fill_n(char* __first, _Size __n, const char& __c)
650 {
651 std::fill(__first, __first + __n, __c);
652 return __first + __n;
653 }
654
655 /**
656 * @brief Finds the places in ranges which don't match.
657 * @param first1 An input iterator.
658 * @param last1 An input iterator.
659 * @param first2 An input iterator.
660 * @return A pair of iterators pointing to the first mismatch.
661 *
662 * This compares the elements of two ranges using @c == and returns a pair
663 * of iterators. The first iterator points into the first range, the
664 * second iterator points into the second range, and the elements pointed
665 * to by the iterators are not equal.
666 */
667 template<typename _InputIterator1, typename _InputIterator2>
668 pair<_InputIterator1, _InputIterator2>
669 mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
670 _InputIterator2 __first2)
671 {
672 // concept requirements
673 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
674 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
675 __glibcxx_function_requires(_EqualityComparableConcept<
676 typename iterator_traits<_InputIterator1>::value_type>)
677 __glibcxx_function_requires(_EqualityComparableConcept<
678 typename iterator_traits<_InputIterator2>::value_type>)
679 __glibcxx_requires_valid_range(__first1, __last1);
680
681 while (__first1 != __last1 && *__first1 == *__first2)
682 {
683 ++__first1;
684 ++__first2;
685 }
686 return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
687 }
688
689 /**
690 * @brief Finds the places in ranges which don't match.
691 * @param first1 An input iterator.
692 * @param last1 An input iterator.
693 * @param first2 An input iterator.
694 * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink.
695 * @return A pair of iterators pointing to the first mismatch.
696 *
697 * This compares the elements of two ranges using the binary_pred
698 * parameter, and returns a pair
699 * of iterators. The first iterator points into the first range, the
700 * second iterator points into the second range, and the elements pointed
701 * to by the iterators are not equal.
702 */
703 template<typename _InputIterator1, typename _InputIterator2,
704 typename _BinaryPredicate>
705 pair<_InputIterator1, _InputIterator2>
706 mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
707 _InputIterator2 __first2, _BinaryPredicate __binary_pred)
708 {
709 // concept requirements
710 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
711 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
712 __glibcxx_requires_valid_range(__first1, __last1);
713
714 while (__first1 != __last1 && __binary_pred(*__first1, *__first2))
715 {
716 ++__first1;
717 ++__first2;
718 }
719 return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
720 }
721
722 /**
723 * @brief Tests a range for element-wise equality.
724 * @param first1 An input iterator.
725 * @param last1 An input iterator.
726 * @param first2 An input iterator.
727 * @return A boolean true or false.
728 *
729 * This compares the elements of two ranges using @c == and returns true or
730 * false depending on whether all of the corresponding elements of the
731 * ranges are equal.
732 */
733 template<typename _InputIterator1, typename _InputIterator2>
734 inline bool
735 equal(_InputIterator1 __first1, _InputIterator1 __last1,
736 _InputIterator2 __first2)
737 {
738 // concept requirements
739 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
740 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
741 __glibcxx_function_requires(_EqualOpConcept<
742 typename iterator_traits<_InputIterator1>::value_type,
743 typename iterator_traits<_InputIterator2>::value_type>)
744 __glibcxx_requires_valid_range(__first1, __last1);
745
746 for ( ; __first1 != __last1; ++__first1, ++__first2)
747 if (!(*__first1 == *__first2))
748 return false;
749 return true;
750 }
751
752 /**
753 * @brief Tests a range for element-wise equality.
754 * @param first1 An input iterator.
755 * @param last1 An input iterator.
756 * @param first2 An input iterator.
757 * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink.
758 * @return A boolean true or false.
759 *
760 * This compares the elements of two ranges using the binary_pred
761 * parameter, and returns true or
762 * false depending on whether all of the corresponding elements of the
763 * ranges are equal.
764 */
765 template<typename _InputIterator1, typename _InputIterator2,
766 typename _BinaryPredicate>
767 inline bool
768 equal(_InputIterator1 __first1, _InputIterator1 __last1,
769 _InputIterator2 __first2,
770 _BinaryPredicate __binary_pred)
771 {
772 // concept requirements
773 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
774 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
775 __glibcxx_requires_valid_range(__first1, __last1);
776
777 for ( ; __first1 != __last1; ++__first1, ++__first2)
778 if (!__binary_pred(*__first1, *__first2))
779 return false;
780 return true;
781 }
782
783 /**
784 * @brief Performs "dictionary" comparison on ranges.
785 * @param first1 An input iterator.
786 * @param last1 An input iterator.
787 * @param first2 An input iterator.
788 * @param last2 An input iterator.
789 * @return A boolean true or false.
790 *
791 * "Returns true if the sequence of elements defined by the range
792 * [first1,last1) is lexicographically less than the sequence of elements
793 * defined by the range [first2,last2). Returns false otherwise."
794 * (Quoted from [25.3.8]/1.) If the iterators are all character pointers,
795 * then this is an inline call to @c memcmp.
796 */
797 template<typename _InputIterator1, typename _InputIterator2>
798 bool
799 lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1,
800 _InputIterator2 __first2, _InputIterator2 __last2)
801 {
802 // concept requirements
803 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
804 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
805 __glibcxx_function_requires(_LessThanComparableConcept<
806 typename iterator_traits<_InputIterator1>::value_type>)
807 __glibcxx_function_requires(_LessThanComparableConcept<
808 typename iterator_traits<_InputIterator2>::value_type>)
809 __glibcxx_requires_valid_range(__first1, __last1);
810 __glibcxx_requires_valid_range(__first2, __last2);
811
812 for (;__first1 != __last1 && __first2 != __last2; ++__first1, ++__first2)
813 {
814 if (*__first1 < *__first2)
815 return true;
816 if (*__first2 < *__first1)
817 return false;
818 }
819 return __first1 == __last1 && __first2 != __last2;
820 }
821
822 /**
823 * @brief Performs "dictionary" comparison on ranges.
824 * @param first1 An input iterator.
825 * @param last1 An input iterator.
826 * @param first2 An input iterator.
827 * @param last2 An input iterator.
828 * @param comp A @link s20_3_3_comparisons comparison functor@endlink.
829 * @return A boolean true or false.
830 *
831 * The same as the four-parameter @c lexigraphical_compare, but uses the
832 * comp parameter instead of @c <.
833 */
834 template<typename _InputIterator1, typename _InputIterator2,
835 typename _Compare>
836 bool
837 lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1,
838 _InputIterator2 __first2, _InputIterator2 __last2,
839 _Compare __comp)
840 {
841 // concept requirements
842 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
843 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
844 __glibcxx_requires_valid_range(__first1, __last1);
845 __glibcxx_requires_valid_range(__first2, __last2);
846
847 for ( ; __first1 != __last1 && __first2 != __last2
848 ; ++__first1, ++__first2)
849 {
850 if (__comp(*__first1, *__first2))
851 return true;
852 if (__comp(*__first2, *__first1))
853 return false;
854 }
855 return __first1 == __last1 && __first2 != __last2;
856 }
857
858 inline bool
859 lexicographical_compare(const unsigned char* __first1,
860 const unsigned char* __last1,
861 const unsigned char* __first2,
862 const unsigned char* __last2)
863 {
864 __glibcxx_requires_valid_range(__first1, __last1);
865 __glibcxx_requires_valid_range(__first2, __last2);
866
867 const size_t __len1 = __last1 - __first1;
868 const size_t __len2 = __last2 - __first2;
869 const int __result = std::memcmp(__first1, __first2,
870 std::min(__len1, __len2));
871 return __result != 0 ? __result < 0 : __len1 < __len2;
872 }
873
874 inline bool
875 lexicographical_compare(const char* __first1, const char* __last1,
876 const char* __first2, const char* __last2)
877 {
878 __glibcxx_requires_valid_range(__first1, __last1);
879 __glibcxx_requires_valid_range(__first2, __last2);
880
881 #if CHAR_MAX == SCHAR_MAX
882 return std::lexicographical_compare((const signed char*) __first1,
883 (const signed char*) __last1,
884 (const signed char*) __first2,
885 (const signed char*) __last2);
886 #else /* CHAR_MAX == SCHAR_MAX */
887 return std::lexicographical_compare((const unsigned char*) __first1,
888 (const unsigned char*) __last1,
889 (const unsigned char*) __first2,
890 (const unsigned char*) __last2);
891 #endif /* CHAR_MAX == SCHAR_MAX */
892 }
893
894 } // namespace std
895
896 #endif