Makefile.in: Regenerate.
[gcc.git] / libstdc++-v3 / include / bits / stl_algobase.h
1 // Bits and pieces used in algorithms -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996-1998
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
54 */
55
56 /** @file stl_algobase.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
59 */
60
61 #ifndef _ALGOBASE_H
62 #define _ALGOBASE_H 1
63
64 #include <bits/c++config.h>
65 #include <cstring>
66 #include <climits>
67 #include <cstdlib>
68 #include <cstddef>
69 #include <iosfwd>
70 #include <bits/stl_pair.h>
71 #include <bits/cpp_type_traits.h>
72 #include <bits/stl_iterator_base_types.h>
73 #include <bits/stl_iterator_base_funcs.h>
74 #include <bits/stl_iterator.h>
75 #include <bits/concept_check.h>
76 #include <debug/debug.h>
77
78 namespace std
79 {
80
81 /**
82 * @brief Swaps two values.
83 * @param a A thing of arbitrary type.
84 * @param b Another thing of arbitrary type.
85 * @return Nothing.
86 *
87 * This is the simple classic generic implementation. It will work on
88 * any type which has a copy constructor and an assignment operator.
89 */
90 template<typename _Tp>
91 inline void
92 swap(_Tp& __a, _Tp& __b)
93 {
94 // concept requirements
95 __glibcxx_function_requires(_SGIAssignableConcept<_Tp>)
96
97 const _Tp __tmp = __a;
98 __a = __b;
99 __b = __tmp;
100 }
101
102 // See http://gcc.gnu.org/ml/libstdc++/2004-08/msg00167.html: in a
103 // nutshell, we are partially implementing the resolution of DR 187,
104 // when it's safe, i.e., the value_types are equal.
105 template<bool _BoolType>
106 struct __iter_swap
107 {
108 template<typename _ForwardIterator1, typename _ForwardIterator2>
109 static void
110 iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
111 {
112 typedef typename iterator_traits<_ForwardIterator1>::value_type
113 _ValueType1;
114 const _ValueType1 __tmp = *__a;
115 *__a = *__b;
116 *__b = __tmp;
117 }
118 };
119
120 template<>
121 struct __iter_swap<true>
122 {
123 template<typename _ForwardIterator1, typename _ForwardIterator2>
124 static void
125 iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
126 {
127 swap(*__a, *__b);
128 }
129 };
130
131 /**
132 * @brief Swaps the contents of two iterators.
133 * @param a An iterator.
134 * @param b Another iterator.
135 * @return Nothing.
136 *
137 * This function swaps the values pointed to by two iterators, not the
138 * iterators themselves.
139 */
140 template<typename _ForwardIterator1, typename _ForwardIterator2>
141 inline void
142 iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
143 {
144 typedef typename iterator_traits<_ForwardIterator1>::value_type
145 _ValueType1;
146 typedef typename iterator_traits<_ForwardIterator2>::value_type
147 _ValueType2;
148
149 // concept requirements
150 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
151 _ForwardIterator1>)
152 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
153 _ForwardIterator2>)
154 __glibcxx_function_requires(_ConvertibleConcept<_ValueType1,
155 _ValueType2>)
156 __glibcxx_function_requires(_ConvertibleConcept<_ValueType2,
157 _ValueType1>)
158 std::__iter_swap<__are_same<_ValueType1, _ValueType2>::_M_type>::
159 iter_swap(__a, __b);
160 }
161
162 #undef min
163 #undef max
164
165 /**
166 * @brief This does what you think it does.
167 * @param a A thing of arbitrary type.
168 * @param b Another thing of arbitrary type.
169 * @return The lesser of the parameters.
170 *
171 * This is the simple classic generic implementation. It will work on
172 * temporary expressions, since they are only evaluated once, unlike a
173 * preprocessor macro.
174 */
175 template<typename _Tp>
176 inline const _Tp&
177 min(const _Tp& __a, const _Tp& __b)
178 {
179 // concept requirements
180 __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
181 //return __b < __a ? __b : __a;
182 if (__b < __a)
183 return __b;
184 return __a;
185 }
186
187 /**
188 * @brief This does what you think it does.
189 * @param a A thing of arbitrary type.
190 * @param b Another thing of arbitrary type.
191 * @return The greater of the parameters.
192 *
193 * This is the simple classic generic implementation. It will work on
194 * temporary expressions, since they are only evaluated once, unlike a
195 * preprocessor macro.
196 */
197 template<typename _Tp>
198 inline const _Tp&
199 max(const _Tp& __a, const _Tp& __b)
200 {
201 // concept requirements
202 __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
203 //return __a < __b ? __b : __a;
204 if (__a < __b)
205 return __b;
206 return __a;
207 }
208
209 /**
210 * @brief This does what you think it does.
211 * @param a A thing of arbitrary type.
212 * @param b Another thing of arbitrary type.
213 * @param comp A @link s20_3_3_comparisons comparison functor@endlink.
214 * @return The lesser of the parameters.
215 *
216 * This will work on temporary expressions, since they are only evaluated
217 * once, unlike a preprocessor macro.
218 */
219 template<typename _Tp, typename _Compare>
220 inline const _Tp&
221 min(const _Tp& __a, const _Tp& __b, _Compare __comp)
222 {
223 //return __comp(__b, __a) ? __b : __a;
224 if (__comp(__b, __a))
225 return __b;
226 return __a;
227 }
228
229 /**
230 * @brief This does what you think it does.
231 * @param a A thing of arbitrary type.
232 * @param b Another thing of arbitrary type.
233 * @param comp A @link s20_3_3_comparisons comparison functor@endlink.
234 * @return The greater of the parameters.
235 *
236 * This will work on temporary expressions, since they are only evaluated
237 * once, unlike a preprocessor macro.
238 */
239 template<typename _Tp, typename _Compare>
240 inline const _Tp&
241 max(const _Tp& __a, const _Tp& __b, _Compare __comp)
242 {
243 //return __comp(__a, __b) ? __b : __a;
244 if (__comp(__a, __b))
245 return __b;
246 return __a;
247 }
248
249 // All of these auxiliary structs serve two purposes. (1) Replace
250 // calls to copy with memmove whenever possible. (Memmove, not memcpy,
251 // because the input and output ranges are permitted to overlap.)
252 // (2) If we're using random access iterators, then write the loop as
253 // a for loop with an explicit count.
254
255 template<bool, typename>
256 struct __copy
257 {
258 template<typename _II, typename _OI>
259 static _OI
260 copy(_II __first, _II __last, _OI __result)
261 {
262 for (; __first != __last; ++__result, ++__first)
263 *__result = *__first;
264 return __result;
265 }
266 };
267
268 template<bool _BoolType>
269 struct __copy<_BoolType, random_access_iterator_tag>
270 {
271 template<typename _II, typename _OI>
272 static _OI
273 copy(_II __first, _II __last, _OI __result)
274 {
275 typedef typename iterator_traits<_II>::difference_type _Distance;
276 for(_Distance __n = __last - __first; __n > 0; --__n)
277 {
278 *__result = *__first;
279 ++__first;
280 ++__result;
281 }
282 return __result;
283 }
284 };
285
286 template<>
287 struct __copy<true, random_access_iterator_tag>
288 {
289 template<typename _Tp>
290 static _Tp*
291 copy(const _Tp* __first, const _Tp* __last, _Tp* __result)
292 {
293 std::memmove(__result, __first, sizeof(_Tp) * (__last - __first));
294 return __result + (__last - __first);
295 }
296 };
297
298 template<typename _II, typename _OI>
299 inline _OI
300 __copy_aux(_II __first, _II __last, _OI __result)
301 {
302 typedef typename iterator_traits<_II>::value_type _ValueTypeI;
303 typedef typename iterator_traits<_OI>::value_type _ValueTypeO;
304 typedef typename iterator_traits<_II>::iterator_category _Category;
305 const bool __simple = (__is_scalar<_ValueTypeI>::_M_type
306 && __is_pointer<_II>::_M_type
307 && __is_pointer<_OI>::_M_type
308 && __are_same<_ValueTypeI, _ValueTypeO>::_M_type);
309
310 return std::__copy<__simple, _Category>::copy(__first, __last, __result);
311 }
312
313 template<bool, bool>
314 struct __copy_normal
315 {
316 template<typename _II, typename _OI>
317 static _OI
318 copy_n(_II __first, _II __last, _OI __result)
319 { return std::__copy_aux(__first, __last, __result); }
320 };
321
322 template<>
323 struct __copy_normal<true, false>
324 {
325 template<typename _II, typename _OI>
326 static _OI
327 copy_n(_II __first, _II __last, _OI __result)
328 { return std::__copy_aux(__first.base(), __last.base(), __result); }
329 };
330
331 template<>
332 struct __copy_normal<false, true>
333 {
334 template<typename _II, typename _OI>
335 static _OI
336 copy_n(_II __first, _II __last, _OI __result)
337 { return _OI(std::__copy_aux(__first, __last, __result.base())); }
338 };
339
340 template<>
341 struct __copy_normal<true, true>
342 {
343 template<typename _II, typename _OI>
344 static _OI
345 copy_n(_II __first, _II __last, _OI __result)
346 { return _OI(std::__copy_aux(__first.base(), __last.base(),
347 __result.base())); }
348 };
349
350 /**
351 * @brief Copies the range [first,last) into result.
352 * @param first An input iterator.
353 * @param last An input iterator.
354 * @param result An output iterator.
355 * @return result + (first - last)
356 *
357 * This inline function will boil down to a call to @c memmove whenever
358 * possible. Failing that, if random access iterators are passed, then the
359 * loop count will be known (and therefore a candidate for compiler
360 * optimizations such as unrolling). Result may not be contained within
361 * [first,last); the copy_backward function should be used instead.
362 *
363 * Note that the end of the output range is permitted to be contained
364 * within [first,last).
365 */
366 template<typename _InputIterator, typename _OutputIterator>
367 inline _OutputIterator
368 copy(_InputIterator __first, _InputIterator __last,
369 _OutputIterator __result)
370 {
371 // concept requirements
372 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
373 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
374 typename iterator_traits<_InputIterator>::value_type>)
375 __glibcxx_requires_valid_range(__first, __last);
376
377 const bool __in = __is_normal_iterator<_InputIterator>::_M_type;
378 const bool __out = __is_normal_iterator<_OutputIterator>::_M_type;
379 return std::__copy_normal<__in, __out>::copy_n(__first, __last,
380 __result);
381 }
382
383 template<bool, typename>
384 struct __copy_backward
385 {
386 template<typename _BI1, typename _BI2>
387 static _BI2
388 copy_b(_BI1 __first, _BI1 __last, _BI2 __result)
389 {
390 while (__first != __last)
391 *--__result = *--__last;
392 return __result;
393 }
394 };
395
396 template<bool _BoolType>
397 struct __copy_backward<_BoolType, random_access_iterator_tag>
398 {
399 template<typename _BI1, typename _BI2>
400 static _BI2
401 copy_b(_BI1 __first, _BI1 __last, _BI2 __result)
402 {
403 typename iterator_traits<_BI1>::difference_type __n;
404 for (__n = __last - __first; __n > 0; --__n)
405 *--__result = *--__last;
406 return __result;
407 }
408 };
409
410 template<>
411 struct __copy_backward<true, random_access_iterator_tag>
412 {
413 template<typename _Tp>
414 static _Tp*
415 copy_b(const _Tp* __first, const _Tp* __last, _Tp* __result)
416 {
417 const ptrdiff_t _Num = __last - __first;
418 std::memmove(__result - _Num, __first, sizeof(_Tp) * _Num);
419 return __result - _Num;
420 }
421 };
422
423 template<typename _BI1, typename _BI2>
424 inline _BI2
425 __copy_backward_aux(_BI1 __first, _BI1 __last, _BI2 __result)
426 {
427 typedef typename iterator_traits<_BI1>::value_type _ValueType1;
428 typedef typename iterator_traits<_BI2>::value_type _ValueType2;
429 typedef typename iterator_traits<_BI1>::iterator_category _Category;
430 const bool __simple = (__is_scalar<_ValueType1>::_M_type
431 && __is_pointer<_BI1>::_M_type
432 && __is_pointer<_BI2>::_M_type
433 && __are_same<_ValueType1, _ValueType2>::_M_type);
434
435 return std::__copy_backward<__simple, _Category>::copy_b(__first, __last,
436 __result);
437 }
438
439 template<bool, bool>
440 struct __copy_backward_normal
441 {
442 template<typename _BI1, typename _BI2>
443 static _BI2
444 copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result)
445 { return std::__copy_backward_aux(__first, __last, __result); }
446 };
447
448 template<>
449 struct __copy_backward_normal<true, false>
450 {
451 template<typename _BI1, typename _BI2>
452 static _BI2
453 copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result)
454 { return std::__copy_backward_aux(__first.base(), __last.base(),
455 __result); }
456 };
457
458 template<>
459 struct __copy_backward_normal<false, true>
460 {
461 template<typename _BI1, typename _BI2>
462 static _BI2
463 copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result)
464 { return _BI2(std::__copy_backward_aux(__first, __last,
465 __result.base())); }
466 };
467
468 template<>
469 struct __copy_backward_normal<true, true>
470 {
471 template<typename _BI1, typename _BI2>
472 static _BI2
473 copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result)
474 { return _BI2(std::__copy_backward_aux(__first.base(), __last.base(),
475 __result.base())); }
476 };
477
478 /**
479 * @brief Copies the range [first,last) into result.
480 * @param first A bidirectional iterator.
481 * @param last A bidirectional iterator.
482 * @param result A bidirectional iterator.
483 * @return result - (first - last)
484 *
485 * The function has the same effect as copy, but starts at the end of the
486 * range and works its way to the start, returning the start of the result.
487 * This inline function will boil down to a call to @c memmove whenever
488 * possible. Failing that, if random access iterators are passed, then the
489 * loop count will be known (and therefore a candidate for compiler
490 * optimizations such as unrolling).
491 *
492 * Result may not be in the range [first,last). Use copy instead. Note
493 * that the start of the output range may overlap [first,last).
494 */
495 template <typename _BI1, typename _BI2>
496 inline _BI2
497 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result)
498 {
499 // concept requirements
500 __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>)
501 __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>)
502 __glibcxx_function_requires(_ConvertibleConcept<
503 typename iterator_traits<_BI1>::value_type,
504 typename iterator_traits<_BI2>::value_type>)
505 __glibcxx_requires_valid_range(__first, __last);
506
507 const bool __bi1 = __is_normal_iterator<_BI1>::_M_type;
508 const bool __bi2 = __is_normal_iterator<_BI2>::_M_type;
509 return std::__copy_backward_normal<__bi1, __bi2>::copy_b_n(__first, __last,
510 __result);
511 }
512
513 template<bool>
514 struct __fill
515 {
516 template<typename _ForwardIterator, typename _Tp>
517 static void
518 fill(_ForwardIterator __first, _ForwardIterator __last,
519 const _Tp& __value)
520 {
521 for (; __first != __last; ++__first)
522 *__first = __value;
523 }
524 };
525
526 template<>
527 struct __fill<true>
528 {
529 template<typename _ForwardIterator, typename _Tp>
530 static void
531 fill(_ForwardIterator __first, _ForwardIterator __last,
532 const _Tp& __value)
533 {
534 const _Tp __tmp = __value;
535 for (; __first != __last; ++__first)
536 *__first = __tmp;
537 }
538 };
539
540 /**
541 * @brief Fills the range [first,last) with copies of value.
542 * @param first A forward iterator.
543 * @param last A forward iterator.
544 * @param value A reference-to-const of arbitrary type.
545 * @return Nothing.
546 *
547 * This function fills a range with copies of the same value. For one-byte
548 * types filling contiguous areas of memory, this becomes an inline call to
549 * @c memset.
550 */
551 template<typename _ForwardIterator, typename _Tp>
552 void
553 fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value)
554 {
555 // concept requirements
556 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
557 _ForwardIterator>)
558 __glibcxx_requires_valid_range(__first, __last);
559
560 const bool __scalar = __is_scalar<_Tp>::_M_type;
561 std::__fill<__scalar>::fill(__first, __last, __value);
562 }
563
564 // Specialization: for one-byte types we can use memset.
565 inline void
566 fill(unsigned char* __first, unsigned char* __last, const unsigned char& __c)
567 {
568 __glibcxx_requires_valid_range(__first, __last);
569 const unsigned char __tmp = __c;
570 std::memset(__first, __tmp, __last - __first);
571 }
572
573 inline void
574 fill(signed char* __first, signed char* __last, const signed char& __c)
575 {
576 __glibcxx_requires_valid_range(__first, __last);
577 const signed char __tmp = __c;
578 std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
579 }
580
581 inline void
582 fill(char* __first, char* __last, const char& __c)
583 {
584 __glibcxx_requires_valid_range(__first, __last);
585 const char __tmp = __c;
586 std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
587 }
588
589 template<bool>
590 struct __fill_n
591 {
592 template<typename _OutputIterator, typename _Size, typename _Tp>
593 static _OutputIterator
594 fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
595 {
596 for (; __n > 0; --__n, ++__first)
597 *__first = __value;
598 return __first;
599 }
600 };
601
602 template<>
603 struct __fill_n<true>
604 {
605 template<typename _OutputIterator, typename _Size, typename _Tp>
606 static _OutputIterator
607 fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
608 {
609 const _Tp __tmp = __value;
610 for (; __n > 0; --__n, ++__first)
611 *__first = __tmp;
612 return __first;
613 }
614 };
615
616 /**
617 * @brief Fills the range [first,first+n) with copies of value.
618 * @param first An output iterator.
619 * @param n The count of copies to perform.
620 * @param value A reference-to-const of arbitrary type.
621 * @return The iterator at first+n.
622 *
623 * This function fills a range with copies of the same value. For one-byte
624 * types filling contiguous areas of memory, this becomes an inline call to
625 * @c memset.
626 */
627 template<typename _OutputIterator, typename _Size, typename _Tp>
628 _OutputIterator
629 fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
630 {
631 // concept requirements
632 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _Tp>)
633
634 const bool __scalar = __is_scalar<_Tp>::_M_type;
635 return std::__fill_n<__scalar>::fill_n(__first, __n, __value);
636 }
637
638 template<typename _Size>
639 inline unsigned char*
640 fill_n(unsigned char* __first, _Size __n, const unsigned char& __c)
641 {
642 std::fill(__first, __first + __n, __c);
643 return __first + __n;
644 }
645
646 template<typename _Size>
647 inline signed char*
648 fill_n(char* __first, _Size __n, const signed char& __c)
649 {
650 std::fill(__first, __first + __n, __c);
651 return __first + __n;
652 }
653
654 template<typename _Size>
655 inline char*
656 fill_n(char* __first, _Size __n, const char& __c)
657 {
658 std::fill(__first, __first + __n, __c);
659 return __first + __n;
660 }
661
662 /**
663 * @brief Finds the places in ranges which don't match.
664 * @param first1 An input iterator.
665 * @param last1 An input iterator.
666 * @param first2 An input iterator.
667 * @return A pair of iterators pointing to the first mismatch.
668 *
669 * This compares the elements of two ranges using @c == and returns a pair
670 * of iterators. The first iterator points into the first range, the
671 * second iterator points into the second range, and the elements pointed
672 * to by the iterators are not equal.
673 */
674 template<typename _InputIterator1, typename _InputIterator2>
675 pair<_InputIterator1, _InputIterator2>
676 mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
677 _InputIterator2 __first2)
678 {
679 // concept requirements
680 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
681 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
682 __glibcxx_function_requires(_EqualOpConcept<
683 typename iterator_traits<_InputIterator1>::value_type,
684 typename iterator_traits<_InputIterator2>::value_type>)
685 __glibcxx_requires_valid_range(__first1, __last1);
686
687 while (__first1 != __last1 && *__first1 == *__first2)
688 {
689 ++__first1;
690 ++__first2;
691 }
692 return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
693 }
694
695 /**
696 * @brief Finds the places in ranges which don't match.
697 * @param first1 An input iterator.
698 * @param last1 An input iterator.
699 * @param first2 An input iterator.
700 * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink.
701 * @return A pair of iterators pointing to the first mismatch.
702 *
703 * This compares the elements of two ranges using the binary_pred
704 * parameter, and returns a pair
705 * of iterators. The first iterator points into the first range, the
706 * second iterator points into the second range, and the elements pointed
707 * to by the iterators are not equal.
708 */
709 template<typename _InputIterator1, typename _InputIterator2,
710 typename _BinaryPredicate>
711 pair<_InputIterator1, _InputIterator2>
712 mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
713 _InputIterator2 __first2, _BinaryPredicate __binary_pred)
714 {
715 // concept requirements
716 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
717 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
718 __glibcxx_requires_valid_range(__first1, __last1);
719
720 while (__first1 != __last1 && __binary_pred(*__first1, *__first2))
721 {
722 ++__first1;
723 ++__first2;
724 }
725 return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
726 }
727
728 /**
729 * @brief Tests a range for element-wise equality.
730 * @param first1 An input iterator.
731 * @param last1 An input iterator.
732 * @param first2 An input iterator.
733 * @return A boolean true or false.
734 *
735 * This compares the elements of two ranges using @c == and returns true or
736 * false depending on whether all of the corresponding elements of the
737 * ranges are equal.
738 */
739 template<typename _InputIterator1, typename _InputIterator2>
740 inline bool
741 equal(_InputIterator1 __first1, _InputIterator1 __last1,
742 _InputIterator2 __first2)
743 {
744 // concept requirements
745 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
746 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
747 __glibcxx_function_requires(_EqualOpConcept<
748 typename iterator_traits<_InputIterator1>::value_type,
749 typename iterator_traits<_InputIterator2>::value_type>)
750 __glibcxx_requires_valid_range(__first1, __last1);
751
752 for (; __first1 != __last1; ++__first1, ++__first2)
753 if (!(*__first1 == *__first2))
754 return false;
755 return true;
756 }
757
758 /**
759 * @brief Tests a range for element-wise equality.
760 * @param first1 An input iterator.
761 * @param last1 An input iterator.
762 * @param first2 An input iterator.
763 * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink.
764 * @return A boolean true or false.
765 *
766 * This compares the elements of two ranges using the binary_pred
767 * parameter, and returns true or
768 * false depending on whether all of the corresponding elements of the
769 * ranges are equal.
770 */
771 template<typename _InputIterator1, typename _InputIterator2,
772 typename _BinaryPredicate>
773 inline bool
774 equal(_InputIterator1 __first1, _InputIterator1 __last1,
775 _InputIterator2 __first2,
776 _BinaryPredicate __binary_pred)
777 {
778 // concept requirements
779 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
780 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
781 __glibcxx_requires_valid_range(__first1, __last1);
782
783 for (; __first1 != __last1; ++__first1, ++__first2)
784 if (!__binary_pred(*__first1, *__first2))
785 return false;
786 return true;
787 }
788
789 /**
790 * @brief Performs "dictionary" comparison on ranges.
791 * @param first1 An input iterator.
792 * @param last1 An input iterator.
793 * @param first2 An input iterator.
794 * @param last2 An input iterator.
795 * @return A boolean true or false.
796 *
797 * "Returns true if the sequence of elements defined by the range
798 * [first1,last1) is lexicographically less than the sequence of elements
799 * defined by the range [first2,last2). Returns false otherwise."
800 * (Quoted from [25.3.8]/1.) If the iterators are all character pointers,
801 * then this is an inline call to @c memcmp.
802 */
803 template<typename _InputIterator1, typename _InputIterator2>
804 bool
805 lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1,
806 _InputIterator2 __first2, _InputIterator2 __last2)
807 {
808 // concept requirements
809 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
810 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
811 __glibcxx_function_requires(_LessThanOpConcept<
812 typename iterator_traits<_InputIterator1>::value_type,
813 typename iterator_traits<_InputIterator2>::value_type>)
814 __glibcxx_function_requires(_LessThanOpConcept<
815 typename iterator_traits<_InputIterator2>::value_type,
816 typename iterator_traits<_InputIterator1>::value_type>)
817 __glibcxx_requires_valid_range(__first1, __last1);
818 __glibcxx_requires_valid_range(__first2, __last2);
819
820 for (; __first1 != __last1 && __first2 != __last2;
821 ++__first1, ++__first2)
822 {
823 if (*__first1 < *__first2)
824 return true;
825 if (*__first2 < *__first1)
826 return false;
827 }
828 return __first1 == __last1 && __first2 != __last2;
829 }
830
831 /**
832 * @brief Performs "dictionary" comparison on ranges.
833 * @param first1 An input iterator.
834 * @param last1 An input iterator.
835 * @param first2 An input iterator.
836 * @param last2 An input iterator.
837 * @param comp A @link s20_3_3_comparisons comparison functor@endlink.
838 * @return A boolean true or false.
839 *
840 * The same as the four-parameter @c lexigraphical_compare, but uses the
841 * comp parameter instead of @c <.
842 */
843 template<typename _InputIterator1, typename _InputIterator2,
844 typename _Compare>
845 bool
846 lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1,
847 _InputIterator2 __first2, _InputIterator2 __last2,
848 _Compare __comp)
849 {
850 // concept requirements
851 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
852 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
853 __glibcxx_requires_valid_range(__first1, __last1);
854 __glibcxx_requires_valid_range(__first2, __last2);
855
856 for (; __first1 != __last1 && __first2 != __last2;
857 ++__first1, ++__first2)
858 {
859 if (__comp(*__first1, *__first2))
860 return true;
861 if (__comp(*__first2, *__first1))
862 return false;
863 }
864 return __first1 == __last1 && __first2 != __last2;
865 }
866
867 inline bool
868 lexicographical_compare(const unsigned char* __first1,
869 const unsigned char* __last1,
870 const unsigned char* __first2,
871 const unsigned char* __last2)
872 {
873 __glibcxx_requires_valid_range(__first1, __last1);
874 __glibcxx_requires_valid_range(__first2, __last2);
875
876 const size_t __len1 = __last1 - __first1;
877 const size_t __len2 = __last2 - __first2;
878 const int __result = std::memcmp(__first1, __first2,
879 std::min(__len1, __len2));
880 return __result != 0 ? __result < 0 : __len1 < __len2;
881 }
882
883 inline bool
884 lexicographical_compare(const char* __first1, const char* __last1,
885 const char* __first2, const char* __last2)
886 {
887 __glibcxx_requires_valid_range(__first1, __last1);
888 __glibcxx_requires_valid_range(__first2, __last2);
889
890 #if CHAR_MAX == SCHAR_MAX
891 return std::lexicographical_compare((const signed char*) __first1,
892 (const signed char*) __last1,
893 (const signed char*) __first2,
894 (const signed char*) __last2);
895 #else /* CHAR_MAX == SCHAR_MAX */
896 return std::lexicographical_compare((const unsigned char*) __first1,
897 (const unsigned char*) __last1,
898 (const unsigned char*) __first2,
899 (const unsigned char*) __last2);
900 #endif /* CHAR_MAX == SCHAR_MAX */
901 }
902
903 } // namespace std
904
905 #endif