stl_algobase.h (fill(const _Deque_iterator&, const _Deque_iterator&, const _Tp&)...
[gcc.git] / libstdc++-v3 / include / bits / stl_algobase.h
1 // Bits and pieces used in algorithms -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996-1998
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
54 */
55
56 /** @file stl_algobase.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
59 */
60
61 #ifndef _ALGOBASE_H
62 #define _ALGOBASE_H 1
63
64 #include <bits/c++config.h>
65 #include <cstring>
66 #include <climits>
67 #include <cstdlib>
68 #include <cstddef>
69 #include <iosfwd>
70 #include <bits/stl_pair.h>
71 #include <bits/cpp_type_traits.h>
72 #include <bits/stl_iterator_base_types.h>
73 #include <bits/stl_iterator_base_funcs.h>
74 #include <bits/stl_iterator.h>
75 #include <bits/concept_check.h>
76 #include <debug/debug.h>
77
78 _GLIBCXX_BEGIN_NAMESPACE(std)
79
80 /**
81 * @brief Swaps two values.
82 * @param a A thing of arbitrary type.
83 * @param b Another thing of arbitrary type.
84 * @return Nothing.
85 *
86 * This is the simple classic generic implementation. It will work on
87 * any type which has a copy constructor and an assignment operator.
88 */
89 template<typename _Tp>
90 inline void
91 swap(_Tp& __a, _Tp& __b)
92 {
93 // concept requirements
94 __glibcxx_function_requires(_SGIAssignableConcept<_Tp>)
95
96 _Tp __tmp = __a;
97 __a = __b;
98 __b = __tmp;
99 }
100
101 // See http://gcc.gnu.org/ml/libstdc++/2004-08/msg00167.html: in a
102 // nutshell, we are partially implementing the resolution of DR 187,
103 // when it's safe, i.e., the value_types are equal.
104 template<bool _BoolType>
105 struct __iter_swap
106 {
107 template<typename _ForwardIterator1, typename _ForwardIterator2>
108 static void
109 iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
110 {
111 typedef typename iterator_traits<_ForwardIterator1>::value_type
112 _ValueType1;
113 _ValueType1 __tmp = *__a;
114 *__a = *__b;
115 *__b = __tmp;
116 }
117 };
118
119 template<>
120 struct __iter_swap<true>
121 {
122 template<typename _ForwardIterator1, typename _ForwardIterator2>
123 static void
124 iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
125 {
126 swap(*__a, *__b);
127 }
128 };
129
130 /**
131 * @brief Swaps the contents of two iterators.
132 * @param a An iterator.
133 * @param b Another iterator.
134 * @return Nothing.
135 *
136 * This function swaps the values pointed to by two iterators, not the
137 * iterators themselves.
138 */
139 template<typename _ForwardIterator1, typename _ForwardIterator2>
140 inline void
141 iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
142 {
143 typedef typename iterator_traits<_ForwardIterator1>::value_type
144 _ValueType1;
145 typedef typename iterator_traits<_ForwardIterator2>::value_type
146 _ValueType2;
147
148 // concept requirements
149 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
150 _ForwardIterator1>)
151 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
152 _ForwardIterator2>)
153 __glibcxx_function_requires(_ConvertibleConcept<_ValueType1,
154 _ValueType2>)
155 __glibcxx_function_requires(_ConvertibleConcept<_ValueType2,
156 _ValueType1>)
157
158 typedef typename iterator_traits<_ForwardIterator1>::reference
159 _ReferenceType1;
160 typedef typename iterator_traits<_ForwardIterator2>::reference
161 _ReferenceType2;
162 std::__iter_swap<__are_same<_ValueType1, _ValueType2>::__value &&
163 __are_same<_ValueType1 &, _ReferenceType1>::__value &&
164 __are_same<_ValueType2 &, _ReferenceType2>::__value>::
165 iter_swap(__a, __b);
166 }
167
168 #undef min
169 #undef max
170
171 /**
172 * @brief This does what you think it does.
173 * @param a A thing of arbitrary type.
174 * @param b Another thing of arbitrary type.
175 * @return The lesser of the parameters.
176 *
177 * This is the simple classic generic implementation. It will work on
178 * temporary expressions, since they are only evaluated once, unlike a
179 * preprocessor macro.
180 */
181 template<typename _Tp>
182 inline const _Tp&
183 min(const _Tp& __a, const _Tp& __b)
184 {
185 // concept requirements
186 __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
187 //return __b < __a ? __b : __a;
188 if (__b < __a)
189 return __b;
190 return __a;
191 }
192
193 /**
194 * @brief This does what you think it does.
195 * @param a A thing of arbitrary type.
196 * @param b Another thing of arbitrary type.
197 * @return The greater of the parameters.
198 *
199 * This is the simple classic generic implementation. It will work on
200 * temporary expressions, since they are only evaluated once, unlike a
201 * preprocessor macro.
202 */
203 template<typename _Tp>
204 inline const _Tp&
205 max(const _Tp& __a, const _Tp& __b)
206 {
207 // concept requirements
208 __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
209 //return __a < __b ? __b : __a;
210 if (__a < __b)
211 return __b;
212 return __a;
213 }
214
215 /**
216 * @brief This does what you think it does.
217 * @param a A thing of arbitrary type.
218 * @param b Another thing of arbitrary type.
219 * @param comp A @link s20_3_3_comparisons comparison functor@endlink.
220 * @return The lesser of the parameters.
221 *
222 * This will work on temporary expressions, since they are only evaluated
223 * once, unlike a preprocessor macro.
224 */
225 template<typename _Tp, typename _Compare>
226 inline const _Tp&
227 min(const _Tp& __a, const _Tp& __b, _Compare __comp)
228 {
229 //return __comp(__b, __a) ? __b : __a;
230 if (__comp(__b, __a))
231 return __b;
232 return __a;
233 }
234
235 /**
236 * @brief This does what you think it does.
237 * @param a A thing of arbitrary type.
238 * @param b Another thing of arbitrary type.
239 * @param comp A @link s20_3_3_comparisons comparison functor@endlink.
240 * @return The greater of the parameters.
241 *
242 * This will work on temporary expressions, since they are only evaluated
243 * once, unlike a preprocessor macro.
244 */
245 template<typename _Tp, typename _Compare>
246 inline const _Tp&
247 max(const _Tp& __a, const _Tp& __b, _Compare __comp)
248 {
249 //return __comp(__a, __b) ? __b : __a;
250 if (__comp(__a, __b))
251 return __b;
252 return __a;
253 }
254
255 // All of these auxiliary structs serve two purposes. (1) Replace
256 // calls to copy with memmove whenever possible. (Memmove, not memcpy,
257 // because the input and output ranges are permitted to overlap.)
258 // (2) If we're using random access iterators, then write the loop as
259 // a for loop with an explicit count.
260
261 template<bool, typename>
262 struct __copy
263 {
264 template<typename _II, typename _OI>
265 static _OI
266 copy(_II __first, _II __last, _OI __result)
267 {
268 for (; __first != __last; ++__result, ++__first)
269 *__result = *__first;
270 return __result;
271 }
272 };
273
274 template<bool _BoolType>
275 struct __copy<_BoolType, random_access_iterator_tag>
276 {
277 template<typename _II, typename _OI>
278 static _OI
279 copy(_II __first, _II __last, _OI __result)
280 {
281 typedef typename iterator_traits<_II>::difference_type _Distance;
282 for(_Distance __n = __last - __first; __n > 0; --__n)
283 {
284 *__result = *__first;
285 ++__first;
286 ++__result;
287 }
288 return __result;
289 }
290 };
291
292 template<>
293 struct __copy<true, random_access_iterator_tag>
294 {
295 template<typename _Tp>
296 static _Tp*
297 copy(const _Tp* __first, const _Tp* __last, _Tp* __result)
298 {
299 std::memmove(__result, __first, sizeof(_Tp) * (__last - __first));
300 return __result + (__last - __first);
301 }
302 };
303
304 template<typename _II, typename _OI>
305 inline _OI
306 __copy_aux(_II __first, _II __last, _OI __result)
307 {
308 typedef typename iterator_traits<_II>::value_type _ValueTypeI;
309 typedef typename iterator_traits<_OI>::value_type _ValueTypeO;
310 typedef typename iterator_traits<_II>::iterator_category _Category;
311 const bool __simple = (__is_scalar<_ValueTypeI>::__value
312 && __is_pointer<_II>::__value
313 && __is_pointer<_OI>::__value
314 && __are_same<_ValueTypeI, _ValueTypeO>::__value);
315
316 return std::__copy<__simple, _Category>::copy(__first, __last, __result);
317 }
318
319 template<bool, bool>
320 struct __copy_normal
321 {
322 template<typename _II, typename _OI>
323 static _OI
324 __copy_n(_II __first, _II __last, _OI __result)
325 { return std::__copy_aux(__first, __last, __result); }
326 };
327
328 template<>
329 struct __copy_normal<true, false>
330 {
331 template<typename _II, typename _OI>
332 static _OI
333 __copy_n(_II __first, _II __last, _OI __result)
334 { return std::__copy_aux(__first.base(), __last.base(), __result); }
335 };
336
337 template<>
338 struct __copy_normal<false, true>
339 {
340 template<typename _II, typename _OI>
341 static _OI
342 __copy_n(_II __first, _II __last, _OI __result)
343 { return _OI(std::__copy_aux(__first, __last, __result.base())); }
344 };
345
346 template<>
347 struct __copy_normal<true, true>
348 {
349 template<typename _II, typename _OI>
350 static _OI
351 __copy_n(_II __first, _II __last, _OI __result)
352 { return _OI(std::__copy_aux(__first.base(), __last.base(),
353 __result.base())); }
354 };
355
356 /**
357 * @brief Copies the range [first,last) into result.
358 * @param first An input iterator.
359 * @param last An input iterator.
360 * @param result An output iterator.
361 * @return result + (first - last)
362 *
363 * This inline function will boil down to a call to @c memmove whenever
364 * possible. Failing that, if random access iterators are passed, then the
365 * loop count will be known (and therefore a candidate for compiler
366 * optimizations such as unrolling). Result may not be contained within
367 * [first,last); the copy_backward function should be used instead.
368 *
369 * Note that the end of the output range is permitted to be contained
370 * within [first,last).
371 */
372 template<typename _InputIterator, typename _OutputIterator>
373 inline _OutputIterator
374 copy(_InputIterator __first, _InputIterator __last,
375 _OutputIterator __result)
376 {
377 // concept requirements
378 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
379 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
380 typename iterator_traits<_InputIterator>::value_type>)
381 __glibcxx_requires_valid_range(__first, __last);
382
383 const bool __in = __is_normal_iterator<_InputIterator>::__value;
384 const bool __out = __is_normal_iterator<_OutputIterator>::__value;
385 return std::__copy_normal<__in, __out>::__copy_n(__first, __last,
386 __result);
387 }
388
389 template<bool, typename>
390 struct __copy_backward
391 {
392 template<typename _BI1, typename _BI2>
393 static _BI2
394 __copy_b(_BI1 __first, _BI1 __last, _BI2 __result)
395 {
396 while (__first != __last)
397 *--__result = *--__last;
398 return __result;
399 }
400 };
401
402 template<bool _BoolType>
403 struct __copy_backward<_BoolType, random_access_iterator_tag>
404 {
405 template<typename _BI1, typename _BI2>
406 static _BI2
407 __copy_b(_BI1 __first, _BI1 __last, _BI2 __result)
408 {
409 typename iterator_traits<_BI1>::difference_type __n;
410 for (__n = __last - __first; __n > 0; --__n)
411 *--__result = *--__last;
412 return __result;
413 }
414 };
415
416 template<>
417 struct __copy_backward<true, random_access_iterator_tag>
418 {
419 template<typename _Tp>
420 static _Tp*
421 __copy_b(const _Tp* __first, const _Tp* __last, _Tp* __result)
422 {
423 const ptrdiff_t _Num = __last - __first;
424 std::memmove(__result - _Num, __first, sizeof(_Tp) * _Num);
425 return __result - _Num;
426 }
427 };
428
429 template<typename _BI1, typename _BI2>
430 inline _BI2
431 __copy_backward_aux(_BI1 __first, _BI1 __last, _BI2 __result)
432 {
433 typedef typename iterator_traits<_BI1>::value_type _ValueType1;
434 typedef typename iterator_traits<_BI2>::value_type _ValueType2;
435 typedef typename iterator_traits<_BI1>::iterator_category _Category;
436 const bool __simple = (__is_scalar<_ValueType1>::__value
437 && __is_pointer<_BI1>::__value
438 && __is_pointer<_BI2>::__value
439 && __are_same<_ValueType1, _ValueType2>::__value);
440
441 return std::__copy_backward<__simple, _Category>::__copy_b(__first,
442 __last,
443 __result);
444 }
445
446 template<bool, bool>
447 struct __copy_backward_normal
448 {
449 template<typename _BI1, typename _BI2>
450 static _BI2
451 __copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result)
452 { return std::__copy_backward_aux(__first, __last, __result); }
453 };
454
455 template<>
456 struct __copy_backward_normal<true, false>
457 {
458 template<typename _BI1, typename _BI2>
459 static _BI2
460 __copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result)
461 { return std::__copy_backward_aux(__first.base(), __last.base(),
462 __result); }
463 };
464
465 template<>
466 struct __copy_backward_normal<false, true>
467 {
468 template<typename _BI1, typename _BI2>
469 static _BI2
470 __copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result)
471 { return _BI2(std::__copy_backward_aux(__first, __last,
472 __result.base())); }
473 };
474
475 template<>
476 struct __copy_backward_normal<true, true>
477 {
478 template<typename _BI1, typename _BI2>
479 static _BI2
480 __copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result)
481 { return _BI2(std::__copy_backward_aux(__first.base(), __last.base(),
482 __result.base())); }
483 };
484
485 /**
486 * @brief Copies the range [first,last) into result.
487 * @param first A bidirectional iterator.
488 * @param last A bidirectional iterator.
489 * @param result A bidirectional iterator.
490 * @return result - (first - last)
491 *
492 * The function has the same effect as copy, but starts at the end of the
493 * range and works its way to the start, returning the start of the result.
494 * This inline function will boil down to a call to @c memmove whenever
495 * possible. Failing that, if random access iterators are passed, then the
496 * loop count will be known (and therefore a candidate for compiler
497 * optimizations such as unrolling).
498 *
499 * Result may not be in the range [first,last). Use copy instead. Note
500 * that the start of the output range may overlap [first,last).
501 */
502 template <typename _BI1, typename _BI2>
503 inline _BI2
504 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result)
505 {
506 // concept requirements
507 __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>)
508 __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>)
509 __glibcxx_function_requires(_ConvertibleConcept<
510 typename iterator_traits<_BI1>::value_type,
511 typename iterator_traits<_BI2>::value_type>)
512 __glibcxx_requires_valid_range(__first, __last);
513
514 const bool __bi1 = __is_normal_iterator<_BI1>::__value;
515 const bool __bi2 = __is_normal_iterator<_BI2>::__value;
516 return std::__copy_backward_normal<__bi1, __bi2>::__copy_b_n(__first,
517 __last,
518 __result);
519 }
520
521 template<bool>
522 struct __fill
523 {
524 template<typename _ForwardIterator, typename _Tp>
525 static void
526 fill(_ForwardIterator __first, _ForwardIterator __last,
527 const _Tp& __value)
528 {
529 for (; __first != __last; ++__first)
530 *__first = __value;
531 }
532 };
533
534 template<>
535 struct __fill<true>
536 {
537 template<typename _ForwardIterator, typename _Tp>
538 static void
539 fill(_ForwardIterator __first, _ForwardIterator __last,
540 const _Tp& __value)
541 {
542 const _Tp __tmp = __value;
543 for (; __first != __last; ++__first)
544 *__first = __tmp;
545 }
546 };
547
548 /**
549 * @brief Fills the range [first,last) with copies of value.
550 * @param first A forward iterator.
551 * @param last A forward iterator.
552 * @param value A reference-to-const of arbitrary type.
553 * @return Nothing.
554 *
555 * This function fills a range with copies of the same value. For one-byte
556 * types filling contiguous areas of memory, this becomes an inline call to
557 * @c memset.
558 */
559 template<typename _ForwardIterator, typename _Tp>
560 void
561 fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value)
562 {
563 // concept requirements
564 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
565 _ForwardIterator>)
566 __glibcxx_requires_valid_range(__first, __last);
567
568 const bool __scalar = __is_scalar<_Tp>::__value;
569 std::__fill<__scalar>::fill(__first, __last, __value);
570 }
571
572 // Specialization: for one-byte types we can use memset.
573 inline void
574 fill(unsigned char* __first, unsigned char* __last, const unsigned char& __c)
575 {
576 __glibcxx_requires_valid_range(__first, __last);
577 const unsigned char __tmp = __c;
578 std::memset(__first, __tmp, __last - __first);
579 }
580
581 inline void
582 fill(signed char* __first, signed char* __last, const signed char& __c)
583 {
584 __glibcxx_requires_valid_range(__first, __last);
585 const signed char __tmp = __c;
586 std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
587 }
588
589 inline void
590 fill(char* __first, char* __last, const char& __c)
591 {
592 __glibcxx_requires_valid_range(__first, __last);
593 const char __tmp = __c;
594 std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
595 }
596
597 template<typename _Tp, typename _Ref, typename _Ptr>
598 struct _Deque_iterator;
599
600 // Overload for deque::iterators, exploiting the "segmented-iterator
601 // optimization". NB: leave const_iterators alone!
602 template<typename _Tp>
603 void
604 fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>& __first,
605 const _Deque_iterator<_Tp, _Tp&, _Tp*>& __last, const _Tp& __value)
606 {
607 typedef typename _Deque_iterator<_Tp, _Tp&, _Tp*>::_Self _Self;
608
609 for (typename _Self::_Map_pointer __node = __first._M_node + 1;
610 __node < __last._M_node; ++__node)
611 std::fill(*__node, *__node + _Self::_S_buffer_size(), __value);
612
613 if (__first._M_node != __last._M_node)
614 {
615 std::fill(__first._M_cur, __first._M_last, __value);
616 std::fill(__last._M_first, __last._M_cur, __value);
617 }
618 else
619 std::fill(__first._M_cur, __last._M_cur, __value);
620 }
621
622
623 template<bool>
624 struct __fill_n
625 {
626 template<typename _OutputIterator, typename _Size, typename _Tp>
627 static _OutputIterator
628 fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
629 {
630 for (; __n > 0; --__n, ++__first)
631 *__first = __value;
632 return __first;
633 }
634 };
635
636 template<>
637 struct __fill_n<true>
638 {
639 template<typename _OutputIterator, typename _Size, typename _Tp>
640 static _OutputIterator
641 fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
642 {
643 const _Tp __tmp = __value;
644 for (; __n > 0; --__n, ++__first)
645 *__first = __tmp;
646 return __first;
647 }
648 };
649
650 /**
651 * @brief Fills the range [first,first+n) with copies of value.
652 * @param first An output iterator.
653 * @param n The count of copies to perform.
654 * @param value A reference-to-const of arbitrary type.
655 * @return The iterator at first+n.
656 *
657 * This function fills a range with copies of the same value. For one-byte
658 * types filling contiguous areas of memory, this becomes an inline call to
659 * @c memset.
660 */
661 template<typename _OutputIterator, typename _Size, typename _Tp>
662 _OutputIterator
663 fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
664 {
665 // concept requirements
666 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _Tp>)
667
668 const bool __scalar = __is_scalar<_Tp>::__value;
669 return std::__fill_n<__scalar>::fill_n(__first, __n, __value);
670 }
671
672 template<typename _Size>
673 inline unsigned char*
674 fill_n(unsigned char* __first, _Size __n, const unsigned char& __c)
675 {
676 std::fill(__first, __first + __n, __c);
677 return __first + __n;
678 }
679
680 template<typename _Size>
681 inline signed char*
682 fill_n(char* __first, _Size __n, const signed char& __c)
683 {
684 std::fill(__first, __first + __n, __c);
685 return __first + __n;
686 }
687
688 template<typename _Size>
689 inline char*
690 fill_n(char* __first, _Size __n, const char& __c)
691 {
692 std::fill(__first, __first + __n, __c);
693 return __first + __n;
694 }
695
696 /**
697 * @brief Finds the places in ranges which don't match.
698 * @param first1 An input iterator.
699 * @param last1 An input iterator.
700 * @param first2 An input iterator.
701 * @return A pair of iterators pointing to the first mismatch.
702 *
703 * This compares the elements of two ranges using @c == and returns a pair
704 * of iterators. The first iterator points into the first range, the
705 * second iterator points into the second range, and the elements pointed
706 * to by the iterators are not equal.
707 */
708 template<typename _InputIterator1, typename _InputIterator2>
709 pair<_InputIterator1, _InputIterator2>
710 mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
711 _InputIterator2 __first2)
712 {
713 // concept requirements
714 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
715 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
716 __glibcxx_function_requires(_EqualOpConcept<
717 typename iterator_traits<_InputIterator1>::value_type,
718 typename iterator_traits<_InputIterator2>::value_type>)
719 __glibcxx_requires_valid_range(__first1, __last1);
720
721 while (__first1 != __last1 && *__first1 == *__first2)
722 {
723 ++__first1;
724 ++__first2;
725 }
726 return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
727 }
728
729 /**
730 * @brief Finds the places in ranges which don't match.
731 * @param first1 An input iterator.
732 * @param last1 An input iterator.
733 * @param first2 An input iterator.
734 * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink.
735 * @return A pair of iterators pointing to the first mismatch.
736 *
737 * This compares the elements of two ranges using the binary_pred
738 * parameter, and returns a pair
739 * of iterators. The first iterator points into the first range, the
740 * second iterator points into the second range, and the elements pointed
741 * to by the iterators are not equal.
742 */
743 template<typename _InputIterator1, typename _InputIterator2,
744 typename _BinaryPredicate>
745 pair<_InputIterator1, _InputIterator2>
746 mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
747 _InputIterator2 __first2, _BinaryPredicate __binary_pred)
748 {
749 // concept requirements
750 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
751 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
752 __glibcxx_requires_valid_range(__first1, __last1);
753
754 while (__first1 != __last1 && __binary_pred(*__first1, *__first2))
755 {
756 ++__first1;
757 ++__first2;
758 }
759 return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
760 }
761
762 /**
763 * @brief Tests a range for element-wise equality.
764 * @param first1 An input iterator.
765 * @param last1 An input iterator.
766 * @param first2 An input iterator.
767 * @return A boolean true or false.
768 *
769 * This compares the elements of two ranges using @c == and returns true or
770 * false depending on whether all of the corresponding elements of the
771 * ranges are equal.
772 */
773 template<typename _InputIterator1, typename _InputIterator2>
774 inline bool
775 equal(_InputIterator1 __first1, _InputIterator1 __last1,
776 _InputIterator2 __first2)
777 {
778 // concept requirements
779 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
780 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
781 __glibcxx_function_requires(_EqualOpConcept<
782 typename iterator_traits<_InputIterator1>::value_type,
783 typename iterator_traits<_InputIterator2>::value_type>)
784 __glibcxx_requires_valid_range(__first1, __last1);
785
786 for (; __first1 != __last1; ++__first1, ++__first2)
787 if (!(*__first1 == *__first2))
788 return false;
789 return true;
790 }
791
792 /**
793 * @brief Tests a range for element-wise equality.
794 * @param first1 An input iterator.
795 * @param last1 An input iterator.
796 * @param first2 An input iterator.
797 * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink.
798 * @return A boolean true or false.
799 *
800 * This compares the elements of two ranges using the binary_pred
801 * parameter, and returns true or
802 * false depending on whether all of the corresponding elements of the
803 * ranges are equal.
804 */
805 template<typename _InputIterator1, typename _InputIterator2,
806 typename _BinaryPredicate>
807 inline bool
808 equal(_InputIterator1 __first1, _InputIterator1 __last1,
809 _InputIterator2 __first2,
810 _BinaryPredicate __binary_pred)
811 {
812 // concept requirements
813 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
814 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
815 __glibcxx_requires_valid_range(__first1, __last1);
816
817 for (; __first1 != __last1; ++__first1, ++__first2)
818 if (!__binary_pred(*__first1, *__first2))
819 return false;
820 return true;
821 }
822
823 /**
824 * @brief Performs "dictionary" comparison on ranges.
825 * @param first1 An input iterator.
826 * @param last1 An input iterator.
827 * @param first2 An input iterator.
828 * @param last2 An input iterator.
829 * @return A boolean true or false.
830 *
831 * "Returns true if the sequence of elements defined by the range
832 * [first1,last1) is lexicographically less than the sequence of elements
833 * defined by the range [first2,last2). Returns false otherwise."
834 * (Quoted from [25.3.8]/1.) If the iterators are all character pointers,
835 * then this is an inline call to @c memcmp.
836 */
837 template<typename _InputIterator1, typename _InputIterator2>
838 bool
839 lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1,
840 _InputIterator2 __first2, _InputIterator2 __last2)
841 {
842 // concept requirements
843 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
844 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
845 __glibcxx_function_requires(_LessThanOpConcept<
846 typename iterator_traits<_InputIterator1>::value_type,
847 typename iterator_traits<_InputIterator2>::value_type>)
848 __glibcxx_function_requires(_LessThanOpConcept<
849 typename iterator_traits<_InputIterator2>::value_type,
850 typename iterator_traits<_InputIterator1>::value_type>)
851 __glibcxx_requires_valid_range(__first1, __last1);
852 __glibcxx_requires_valid_range(__first2, __last2);
853
854 for (; __first1 != __last1 && __first2 != __last2;
855 ++__first1, ++__first2)
856 {
857 if (*__first1 < *__first2)
858 return true;
859 if (*__first2 < *__first1)
860 return false;
861 }
862 return __first1 == __last1 && __first2 != __last2;
863 }
864
865 /**
866 * @brief Performs "dictionary" comparison on ranges.
867 * @param first1 An input iterator.
868 * @param last1 An input iterator.
869 * @param first2 An input iterator.
870 * @param last2 An input iterator.
871 * @param comp A @link s20_3_3_comparisons comparison functor@endlink.
872 * @return A boolean true or false.
873 *
874 * The same as the four-parameter @c lexigraphical_compare, but uses the
875 * comp parameter instead of @c <.
876 */
877 template<typename _InputIterator1, typename _InputIterator2,
878 typename _Compare>
879 bool
880 lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1,
881 _InputIterator2 __first2, _InputIterator2 __last2,
882 _Compare __comp)
883 {
884 // concept requirements
885 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
886 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
887 __glibcxx_requires_valid_range(__first1, __last1);
888 __glibcxx_requires_valid_range(__first2, __last2);
889
890 for (; __first1 != __last1 && __first2 != __last2;
891 ++__first1, ++__first2)
892 {
893 if (__comp(*__first1, *__first2))
894 return true;
895 if (__comp(*__first2, *__first1))
896 return false;
897 }
898 return __first1 == __last1 && __first2 != __last2;
899 }
900
901 inline bool
902 lexicographical_compare(const unsigned char* __first1,
903 const unsigned char* __last1,
904 const unsigned char* __first2,
905 const unsigned char* __last2)
906 {
907 __glibcxx_requires_valid_range(__first1, __last1);
908 __glibcxx_requires_valid_range(__first2, __last2);
909
910 const size_t __len1 = __last1 - __first1;
911 const size_t __len2 = __last2 - __first2;
912 const int __result = std::memcmp(__first1, __first2,
913 std::min(__len1, __len2));
914 return __result != 0 ? __result < 0 : __len1 < __len2;
915 }
916
917 inline bool
918 lexicographical_compare(const char* __first1, const char* __last1,
919 const char* __first2, const char* __last2)
920 {
921 __glibcxx_requires_valid_range(__first1, __last1);
922 __glibcxx_requires_valid_range(__first2, __last2);
923
924 #if CHAR_MAX == SCHAR_MAX
925 return std::lexicographical_compare((const signed char*) __first1,
926 (const signed char*) __last1,
927 (const signed char*) __first2,
928 (const signed char*) __last2);
929 #else /* CHAR_MAX == SCHAR_MAX */
930 return std::lexicographical_compare((const unsigned char*) __first1,
931 (const unsigned char*) __last1,
932 (const unsigned char*) __first2,
933 (const unsigned char*) __last2);
934 #endif /* CHAR_MAX == SCHAR_MAX */
935 }
936
937 _GLIBCXX_END_NAMESPACE
938
939 #endif