re PR libstdc++/42460 (man page errors for generated libstdc++ man pages)
[gcc.git] / libstdc++-v3 / include / bits / stl_deque.h
1 // Deque implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
25
26 /*
27 *
28 * Copyright (c) 1994
29 * Hewlett-Packard Company
30 *
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation. Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose. It is provided "as is" without express or implied warranty.
38 *
39 *
40 * Copyright (c) 1997
41 * Silicon Graphics Computer Systems, Inc.
42 *
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation. Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose. It is provided "as is" without express or implied warranty.
50 */
51
52 /** @file stl_deque.h
53 * This is an internal header file, included by other library headers.
54 * You should not attempt to use it directly.
55 */
56
57 #ifndef _STL_DEQUE_H
58 #define _STL_DEQUE_H 1
59
60 #include <bits/concept_check.h>
61 #include <bits/stl_iterator_base_types.h>
62 #include <bits/stl_iterator_base_funcs.h>
63 #include <initializer_list>
64
65 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
66
67 /**
68 * @brief This function controls the size of memory nodes.
69 * @param size The size of an element.
70 * @return The number (not byte size) of elements per node.
71 *
72 * This function started off as a compiler kludge from SGI, but
73 * seems to be a useful wrapper around a repeated constant
74 * expression. The @b 512 is tunable (and no other code needs to
75 * change), but no investigation has been done since inheriting the
76 * SGI code. Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
77 * you are doing, however: changing it breaks the binary
78 * compatibility!!
79 */
80
81 #ifndef _GLIBCXX_DEQUE_BUF_SIZE
82 #define _GLIBCXX_DEQUE_BUF_SIZE 512
83 #endif
84
85 inline size_t
86 __deque_buf_size(size_t __size)
87 { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
88 ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }
89
90
91 /**
92 * @brief A deque::iterator.
93 *
94 * Quite a bit of intelligence here. Much of the functionality of
95 * deque is actually passed off to this class. A deque holds two
96 * of these internally, marking its valid range. Access to
97 * elements is done as offsets of either of those two, relying on
98 * operator overloading in this class.
99 *
100 * All the functions are op overloads except for _M_set_node.
101 */
102 template<typename _Tp, typename _Ref, typename _Ptr>
103 struct _Deque_iterator
104 {
105 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
106 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
107
108 static size_t _S_buffer_size()
109 { return __deque_buf_size(sizeof(_Tp)); }
110
111 typedef std::random_access_iterator_tag iterator_category;
112 typedef _Tp value_type;
113 typedef _Ptr pointer;
114 typedef _Ref reference;
115 typedef size_t size_type;
116 typedef ptrdiff_t difference_type;
117 typedef _Tp** _Map_pointer;
118 typedef _Deque_iterator _Self;
119
120 _Tp* _M_cur;
121 _Tp* _M_first;
122 _Tp* _M_last;
123 _Map_pointer _M_node;
124
125 _Deque_iterator(_Tp* __x, _Map_pointer __y)
126 : _M_cur(__x), _M_first(*__y),
127 _M_last(*__y + _S_buffer_size()), _M_node(__y) { }
128
129 _Deque_iterator()
130 : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { }
131
132 _Deque_iterator(const iterator& __x)
133 : _M_cur(__x._M_cur), _M_first(__x._M_first),
134 _M_last(__x._M_last), _M_node(__x._M_node) { }
135
136 reference
137 operator*() const
138 { return *_M_cur; }
139
140 pointer
141 operator->() const
142 { return _M_cur; }
143
144 _Self&
145 operator++()
146 {
147 ++_M_cur;
148 if (_M_cur == _M_last)
149 {
150 _M_set_node(_M_node + 1);
151 _M_cur = _M_first;
152 }
153 return *this;
154 }
155
156 _Self
157 operator++(int)
158 {
159 _Self __tmp = *this;
160 ++*this;
161 return __tmp;
162 }
163
164 _Self&
165 operator--()
166 {
167 if (_M_cur == _M_first)
168 {
169 _M_set_node(_M_node - 1);
170 _M_cur = _M_last;
171 }
172 --_M_cur;
173 return *this;
174 }
175
176 _Self
177 operator--(int)
178 {
179 _Self __tmp = *this;
180 --*this;
181 return __tmp;
182 }
183
184 _Self&
185 operator+=(difference_type __n)
186 {
187 const difference_type __offset = __n + (_M_cur - _M_first);
188 if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
189 _M_cur += __n;
190 else
191 {
192 const difference_type __node_offset =
193 __offset > 0 ? __offset / difference_type(_S_buffer_size())
194 : -difference_type((-__offset - 1)
195 / _S_buffer_size()) - 1;
196 _M_set_node(_M_node + __node_offset);
197 _M_cur = _M_first + (__offset - __node_offset
198 * difference_type(_S_buffer_size()));
199 }
200 return *this;
201 }
202
203 _Self
204 operator+(difference_type __n) const
205 {
206 _Self __tmp = *this;
207 return __tmp += __n;
208 }
209
210 _Self&
211 operator-=(difference_type __n)
212 { return *this += -__n; }
213
214 _Self
215 operator-(difference_type __n) const
216 {
217 _Self __tmp = *this;
218 return __tmp -= __n;
219 }
220
221 reference
222 operator[](difference_type __n) const
223 { return *(*this + __n); }
224
225 /**
226 * Prepares to traverse new_node. Sets everything except
227 * _M_cur, which should therefore be set by the caller
228 * immediately afterwards, based on _M_first and _M_last.
229 */
230 void
231 _M_set_node(_Map_pointer __new_node)
232 {
233 _M_node = __new_node;
234 _M_first = *__new_node;
235 _M_last = _M_first + difference_type(_S_buffer_size());
236 }
237 };
238
239 // Note: we also provide overloads whose operands are of the same type in
240 // order to avoid ambiguous overload resolution when std::rel_ops operators
241 // are in scope (for additional details, see libstdc++/3628)
242 template<typename _Tp, typename _Ref, typename _Ptr>
243 inline bool
244 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
245 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
246 { return __x._M_cur == __y._M_cur; }
247
248 template<typename _Tp, typename _RefL, typename _PtrL,
249 typename _RefR, typename _PtrR>
250 inline bool
251 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
252 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
253 { return __x._M_cur == __y._M_cur; }
254
255 template<typename _Tp, typename _Ref, typename _Ptr>
256 inline bool
257 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
258 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
259 { return !(__x == __y); }
260
261 template<typename _Tp, typename _RefL, typename _PtrL,
262 typename _RefR, typename _PtrR>
263 inline bool
264 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
265 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
266 { return !(__x == __y); }
267
268 template<typename _Tp, typename _Ref, typename _Ptr>
269 inline bool
270 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
271 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
272 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
273 : (__x._M_node < __y._M_node); }
274
275 template<typename _Tp, typename _RefL, typename _PtrL,
276 typename _RefR, typename _PtrR>
277 inline bool
278 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
279 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
280 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
281 : (__x._M_node < __y._M_node); }
282
283 template<typename _Tp, typename _Ref, typename _Ptr>
284 inline bool
285 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
286 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
287 { return __y < __x; }
288
289 template<typename _Tp, typename _RefL, typename _PtrL,
290 typename _RefR, typename _PtrR>
291 inline bool
292 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
293 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
294 { return __y < __x; }
295
296 template<typename _Tp, typename _Ref, typename _Ptr>
297 inline bool
298 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
299 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
300 { return !(__y < __x); }
301
302 template<typename _Tp, typename _RefL, typename _PtrL,
303 typename _RefR, typename _PtrR>
304 inline bool
305 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
306 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
307 { return !(__y < __x); }
308
309 template<typename _Tp, typename _Ref, typename _Ptr>
310 inline bool
311 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
312 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
313 { return !(__x < __y); }
314
315 template<typename _Tp, typename _RefL, typename _PtrL,
316 typename _RefR, typename _PtrR>
317 inline bool
318 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
319 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
320 { return !(__x < __y); }
321
322 // _GLIBCXX_RESOLVE_LIB_DEFECTS
323 // According to the resolution of DR179 not only the various comparison
324 // operators but also operator- must accept mixed iterator/const_iterator
325 // parameters.
326 template<typename _Tp, typename _Ref, typename _Ptr>
327 inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
328 operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
329 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
330 {
331 return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
332 (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
333 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
334 + (__y._M_last - __y._M_cur);
335 }
336
337 template<typename _Tp, typename _RefL, typename _PtrL,
338 typename _RefR, typename _PtrR>
339 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
340 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
341 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
342 {
343 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
344 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
345 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
346 + (__y._M_last - __y._M_cur);
347 }
348
349 template<typename _Tp, typename _Ref, typename _Ptr>
350 inline _Deque_iterator<_Tp, _Ref, _Ptr>
351 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
352 { return __x + __n; }
353
354 template<typename _Tp>
355 void
356 fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,
357 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);
358
359 template<typename _Tp>
360 _Deque_iterator<_Tp, _Tp&, _Tp*>
361 copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
362 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
363 _Deque_iterator<_Tp, _Tp&, _Tp*>);
364
365 template<typename _Tp>
366 inline _Deque_iterator<_Tp, _Tp&, _Tp*>
367 copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
368 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
369 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
370 { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
371 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
372 __result); }
373
374 template<typename _Tp>
375 _Deque_iterator<_Tp, _Tp&, _Tp*>
376 copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
377 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
378 _Deque_iterator<_Tp, _Tp&, _Tp*>);
379
380 template<typename _Tp>
381 inline _Deque_iterator<_Tp, _Tp&, _Tp*>
382 copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
383 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
384 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
385 { return std::copy_backward(_Deque_iterator<_Tp,
386 const _Tp&, const _Tp*>(__first),
387 _Deque_iterator<_Tp,
388 const _Tp&, const _Tp*>(__last),
389 __result); }
390
391 #ifdef __GXX_EXPERIMENTAL_CXX0X__
392 template<typename _Tp>
393 _Deque_iterator<_Tp, _Tp&, _Tp*>
394 move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
395 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
396 _Deque_iterator<_Tp, _Tp&, _Tp*>);
397
398 template<typename _Tp>
399 inline _Deque_iterator<_Tp, _Tp&, _Tp*>
400 move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
401 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
402 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
403 { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
404 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
405 __result); }
406
407 template<typename _Tp>
408 _Deque_iterator<_Tp, _Tp&, _Tp*>
409 move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
410 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
411 _Deque_iterator<_Tp, _Tp&, _Tp*>);
412
413 template<typename _Tp>
414 inline _Deque_iterator<_Tp, _Tp&, _Tp*>
415 move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
416 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
417 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
418 { return std::move_backward(_Deque_iterator<_Tp,
419 const _Tp&, const _Tp*>(__first),
420 _Deque_iterator<_Tp,
421 const _Tp&, const _Tp*>(__last),
422 __result); }
423 #endif
424
425 /**
426 * Deque base class. This class provides the unified face for %deque's
427 * allocation. This class's constructor and destructor allocate and
428 * deallocate (but do not initialize) storage. This makes %exception
429 * safety easier.
430 *
431 * Nothing in this class ever constructs or destroys an actual Tp element.
432 * (Deque handles that itself.) Only/All memory management is performed
433 * here.
434 */
435 template<typename _Tp, typename _Alloc>
436 class _Deque_base
437 {
438 public:
439 typedef _Alloc allocator_type;
440
441 allocator_type
442 get_allocator() const
443 { return allocator_type(_M_get_Tp_allocator()); }
444
445 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
446 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
447
448 _Deque_base()
449 : _M_impl()
450 { _M_initialize_map(0); }
451
452 _Deque_base(const allocator_type& __a, size_t __num_elements)
453 : _M_impl(__a)
454 { _M_initialize_map(__num_elements); }
455
456 _Deque_base(const allocator_type& __a)
457 : _M_impl(__a)
458 { }
459
460 #ifdef __GXX_EXPERIMENTAL_CXX0X__
461 _Deque_base(_Deque_base&& __x)
462 : _M_impl(__x._M_get_Tp_allocator())
463 {
464 _M_initialize_map(0);
465 if (__x._M_impl._M_map)
466 {
467 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
468 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
469 std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
470 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
471 }
472 }
473 #endif
474
475 ~_Deque_base();
476
477 protected:
478 //This struct encapsulates the implementation of the std::deque
479 //standard container and at the same time makes use of the EBO
480 //for empty allocators.
481 typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
482
483 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
484
485 struct _Deque_impl
486 : public _Tp_alloc_type
487 {
488 _Tp** _M_map;
489 size_t _M_map_size;
490 iterator _M_start;
491 iterator _M_finish;
492
493 _Deque_impl()
494 : _Tp_alloc_type(), _M_map(0), _M_map_size(0),
495 _M_start(), _M_finish()
496 { }
497
498 _Deque_impl(const _Tp_alloc_type& __a)
499 : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
500 _M_start(), _M_finish()
501 { }
502 };
503
504 _Tp_alloc_type&
505 _M_get_Tp_allocator()
506 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
507
508 const _Tp_alloc_type&
509 _M_get_Tp_allocator() const
510 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
511
512 _Map_alloc_type
513 _M_get_map_allocator() const
514 { return _Map_alloc_type(_M_get_Tp_allocator()); }
515
516 _Tp*
517 _M_allocate_node()
518 {
519 return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
520 }
521
522 void
523 _M_deallocate_node(_Tp* __p)
524 {
525 _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
526 }
527
528 _Tp**
529 _M_allocate_map(size_t __n)
530 { return _M_get_map_allocator().allocate(__n); }
531
532 void
533 _M_deallocate_map(_Tp** __p, size_t __n)
534 { _M_get_map_allocator().deallocate(__p, __n); }
535
536 protected:
537 void _M_initialize_map(size_t);
538 void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
539 void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
540 enum { _S_initial_map_size = 8 };
541
542 _Deque_impl _M_impl;
543 };
544
545 template<typename _Tp, typename _Alloc>
546 _Deque_base<_Tp, _Alloc>::
547 ~_Deque_base()
548 {
549 if (this->_M_impl._M_map)
550 {
551 _M_destroy_nodes(this->_M_impl._M_start._M_node,
552 this->_M_impl._M_finish._M_node + 1);
553 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
554 }
555 }
556
557 /**
558 * @brief Layout storage.
559 * @param num_elements The count of T's for which to allocate space
560 * at first.
561 * @return Nothing.
562 *
563 * The initial underlying memory layout is a bit complicated...
564 */
565 template<typename _Tp, typename _Alloc>
566 void
567 _Deque_base<_Tp, _Alloc>::
568 _M_initialize_map(size_t __num_elements)
569 {
570 const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
571 + 1);
572
573 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
574 size_t(__num_nodes + 2));
575 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
576
577 // For "small" maps (needing less than _M_map_size nodes), allocation
578 // starts in the middle elements and grows outwards. So nstart may be
579 // the beginning of _M_map, but for small maps it may be as far in as
580 // _M_map+3.
581
582 _Tp** __nstart = (this->_M_impl._M_map
583 + (this->_M_impl._M_map_size - __num_nodes) / 2);
584 _Tp** __nfinish = __nstart + __num_nodes;
585
586 __try
587 { _M_create_nodes(__nstart, __nfinish); }
588 __catch(...)
589 {
590 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
591 this->_M_impl._M_map = 0;
592 this->_M_impl._M_map_size = 0;
593 __throw_exception_again;
594 }
595
596 this->_M_impl._M_start._M_set_node(__nstart);
597 this->_M_impl._M_finish._M_set_node(__nfinish - 1);
598 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
599 this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
600 + __num_elements
601 % __deque_buf_size(sizeof(_Tp)));
602 }
603
604 template<typename _Tp, typename _Alloc>
605 void
606 _Deque_base<_Tp, _Alloc>::
607 _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
608 {
609 _Tp** __cur;
610 __try
611 {
612 for (__cur = __nstart; __cur < __nfinish; ++__cur)
613 *__cur = this->_M_allocate_node();
614 }
615 __catch(...)
616 {
617 _M_destroy_nodes(__nstart, __cur);
618 __throw_exception_again;
619 }
620 }
621
622 template<typename _Tp, typename _Alloc>
623 void
624 _Deque_base<_Tp, _Alloc>::
625 _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
626 {
627 for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
628 _M_deallocate_node(*__n);
629 }
630
631 /**
632 * @brief A standard container using fixed-size memory allocation and
633 * constant-time manipulation of elements at either end.
634 *
635 * @ingroup sequences
636 *
637 * Meets the requirements of a <a href="tables.html#65">container</a>, a
638 * <a href="tables.html#66">reversible container</a>, and a
639 * <a href="tables.html#67">sequence</a>, including the
640 * <a href="tables.html#68">optional sequence requirements</a>.
641 *
642 * In previous HP/SGI versions of deque, there was an extra template
643 * parameter so users could control the node size. This extension turned
644 * out to violate the C++ standard (it can be detected using template
645 * template parameters), and it was removed.
646 *
647 * Here's how a deque<Tp> manages memory. Each deque has 4 members:
648 *
649 * - Tp** _M_map
650 * - size_t _M_map_size
651 * - iterator _M_start, _M_finish
652 *
653 * map_size is at least 8. %map is an array of map_size
654 * pointers-to-@anodes. (The name %map has nothing to do with the
655 * std::map class, and @b nodes should not be confused with
656 * std::list's usage of @a node.)
657 *
658 * A @a node has no specific type name as such, but it is referred
659 * to as @a node in this file. It is a simple array-of-Tp. If Tp
660 * is very large, there will be one Tp element per node (i.e., an
661 * @a array of one). For non-huge Tp's, node size is inversely
662 * related to Tp size: the larger the Tp, the fewer Tp's will fit
663 * in a node. The goal here is to keep the total size of a node
664 * relatively small and constant over different Tp's, to improve
665 * allocator efficiency.
666 *
667 * Not every pointer in the %map array will point to a node. If
668 * the initial number of elements in the deque is small, the
669 * /middle/ %map pointers will be valid, and the ones at the edges
670 * will be unused. This same situation will arise as the %map
671 * grows: available %map pointers, if any, will be on the ends. As
672 * new nodes are created, only a subset of the %map's pointers need
673 * to be copied @a outward.
674 *
675 * Class invariants:
676 * - For any nonsingular iterator i:
677 * - i.node points to a member of the %map array. (Yes, you read that
678 * correctly: i.node does not actually point to a node.) The member of
679 * the %map array is what actually points to the node.
680 * - i.first == *(i.node) (This points to the node (first Tp element).)
681 * - i.last == i.first + node_size
682 * - i.cur is a pointer in the range [i.first, i.last). NOTE:
683 * the implication of this is that i.cur is always a dereferenceable
684 * pointer, even if i is a past-the-end iterator.
685 * - Start and Finish are always nonsingular iterators. NOTE: this
686 * means that an empty deque must have one node, a deque with <N
687 * elements (where N is the node buffer size) must have one node, a
688 * deque with N through (2N-1) elements must have two nodes, etc.
689 * - For every node other than start.node and finish.node, every
690 * element in the node is an initialized object. If start.node ==
691 * finish.node, then [start.cur, finish.cur) are initialized
692 * objects, and the elements outside that range are uninitialized
693 * storage. Otherwise, [start.cur, start.last) and [finish.first,
694 * finish.cur) are initialized objects, and [start.first, start.cur)
695 * and [finish.cur, finish.last) are uninitialized storage.
696 * - [%map, %map + map_size) is a valid, non-empty range.
697 * - [start.node, finish.node] is a valid range contained within
698 * [%map, %map + map_size).
699 * - A pointer in the range [%map, %map + map_size) points to an allocated
700 * node if and only if the pointer is in the range
701 * [start.node, finish.node].
702 *
703 * Here's the magic: nothing in deque is @b aware of the discontiguous
704 * storage!
705 *
706 * The memory setup and layout occurs in the parent, _Base, and the iterator
707 * class is entirely responsible for @a leaping from one node to the next.
708 * All the implementation routines for deque itself work only through the
709 * start and finish iterators. This keeps the routines simple and sane,
710 * and we can use other standard algorithms as well.
711 */
712 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
713 class deque : protected _Deque_base<_Tp, _Alloc>
714 {
715 // concept requirements
716 typedef typename _Alloc::value_type _Alloc_value_type;
717 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
718 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
719
720 typedef _Deque_base<_Tp, _Alloc> _Base;
721 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
722
723 public:
724 typedef _Tp value_type;
725 typedef typename _Tp_alloc_type::pointer pointer;
726 typedef typename _Tp_alloc_type::const_pointer const_pointer;
727 typedef typename _Tp_alloc_type::reference reference;
728 typedef typename _Tp_alloc_type::const_reference const_reference;
729 typedef typename _Base::iterator iterator;
730 typedef typename _Base::const_iterator const_iterator;
731 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
732 typedef std::reverse_iterator<iterator> reverse_iterator;
733 typedef size_t size_type;
734 typedef ptrdiff_t difference_type;
735 typedef _Alloc allocator_type;
736
737 protected:
738 typedef pointer* _Map_pointer;
739
740 static size_t _S_buffer_size()
741 { return __deque_buf_size(sizeof(_Tp)); }
742
743 // Functions controlling memory layout, and nothing else.
744 using _Base::_M_initialize_map;
745 using _Base::_M_create_nodes;
746 using _Base::_M_destroy_nodes;
747 using _Base::_M_allocate_node;
748 using _Base::_M_deallocate_node;
749 using _Base::_M_allocate_map;
750 using _Base::_M_deallocate_map;
751 using _Base::_M_get_Tp_allocator;
752
753 /**
754 * A total of four data members accumulated down the hierarchy.
755 * May be accessed via _M_impl.*
756 */
757 using _Base::_M_impl;
758
759 public:
760 // [23.2.1.1] construct/copy/destroy
761 // (assign() and get_allocator() are also listed in this section)
762 /**
763 * @brief Default constructor creates no elements.
764 */
765 deque()
766 : _Base() { }
767
768 /**
769 * @brief Creates a %deque with no elements.
770 * @param a An allocator object.
771 */
772 explicit
773 deque(const allocator_type& __a)
774 : _Base(__a, 0) { }
775
776 /**
777 * @brief Creates a %deque with copies of an exemplar element.
778 * @param n The number of elements to initially create.
779 * @param value An element to copy.
780 * @param a An allocator.
781 *
782 * This constructor fills the %deque with @a n copies of @a value.
783 */
784 explicit
785 deque(size_type __n, const value_type& __value = value_type(),
786 const allocator_type& __a = allocator_type())
787 : _Base(__a, __n)
788 { _M_fill_initialize(__value); }
789
790 /**
791 * @brief %Deque copy constructor.
792 * @param x A %deque of identical element and allocator types.
793 *
794 * The newly-created %deque uses a copy of the allocation object used
795 * by @a x.
796 */
797 deque(const deque& __x)
798 : _Base(__x._M_get_Tp_allocator(), __x.size())
799 { std::__uninitialized_copy_a(__x.begin(), __x.end(),
800 this->_M_impl._M_start,
801 _M_get_Tp_allocator()); }
802
803 #ifdef __GXX_EXPERIMENTAL_CXX0X__
804 /**
805 * @brief %Deque move constructor.
806 * @param x A %deque of identical element and allocator types.
807 *
808 * The newly-created %deque contains the exact contents of @a x.
809 * The contents of @a x are a valid, but unspecified %deque.
810 */
811 deque(deque&& __x)
812 : _Base(std::forward<_Base>(__x)) { }
813
814 /**
815 * @brief Builds a %deque from an initializer list.
816 * @param l An initializer_list.
817 * @param a An allocator object.
818 *
819 * Create a %deque consisting of copies of the elements in the
820 * initializer_list @a l.
821 *
822 * This will call the element type's copy constructor N times
823 * (where N is l.size()) and do no memory reallocation.
824 */
825 deque(initializer_list<value_type> __l,
826 const allocator_type& __a = allocator_type())
827 : _Base(__a)
828 {
829 _M_range_initialize(__l.begin(), __l.end(),
830 random_access_iterator_tag());
831 }
832 #endif
833
834 /**
835 * @brief Builds a %deque from a range.
836 * @param first An input iterator.
837 * @param last An input iterator.
838 * @param a An allocator object.
839 *
840 * Create a %deque consisting of copies of the elements from [first,
841 * last).
842 *
843 * If the iterators are forward, bidirectional, or random-access, then
844 * this will call the elements' copy constructor N times (where N is
845 * distance(first,last)) and do no memory reallocation. But if only
846 * input iterators are used, then this will do at most 2N calls to the
847 * copy constructor, and logN memory reallocations.
848 */
849 template<typename _InputIterator>
850 deque(_InputIterator __first, _InputIterator __last,
851 const allocator_type& __a = allocator_type())
852 : _Base(__a)
853 {
854 // Check whether it's an integral type. If so, it's not an iterator.
855 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
856 _M_initialize_dispatch(__first, __last, _Integral());
857 }
858
859 /**
860 * The dtor only erases the elements, and note that if the elements
861 * themselves are pointers, the pointed-to memory is not touched in any
862 * way. Managing the pointer is the user's responsibility.
863 */
864 ~deque()
865 { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
866
867 /**
868 * @brief %Deque assignment operator.
869 * @param x A %deque of identical element and allocator types.
870 *
871 * All the elements of @a x are copied, but unlike the copy constructor,
872 * the allocator object is not copied.
873 */
874 deque&
875 operator=(const deque& __x);
876
877 #ifdef __GXX_EXPERIMENTAL_CXX0X__
878 /**
879 * @brief %Deque move assignment operator.
880 * @param x A %deque of identical element and allocator types.
881 *
882 * The contents of @a x are moved into this deque (without copying).
883 * @a x is a valid, but unspecified %deque.
884 */
885 deque&
886 operator=(deque&& __x)
887 {
888 // NB: DR 1204.
889 // NB: DR 675.
890 this->clear();
891 this->swap(__x);
892 return *this;
893 }
894
895 /**
896 * @brief Assigns an initializer list to a %deque.
897 * @param l An initializer_list.
898 *
899 * This function fills a %deque with copies of the elements in the
900 * initializer_list @a l.
901 *
902 * Note that the assignment completely changes the %deque and that the
903 * resulting %deque's size is the same as the number of elements
904 * assigned. Old data may be lost.
905 */
906 deque&
907 operator=(initializer_list<value_type> __l)
908 {
909 this->assign(__l.begin(), __l.end());
910 return *this;
911 }
912 #endif
913
914 /**
915 * @brief Assigns a given value to a %deque.
916 * @param n Number of elements to be assigned.
917 * @param val Value to be assigned.
918 *
919 * This function fills a %deque with @a n copies of the given
920 * value. Note that the assignment completely changes the
921 * %deque and that the resulting %deque's size is the same as
922 * the number of elements assigned. Old data may be lost.
923 */
924 void
925 assign(size_type __n, const value_type& __val)
926 { _M_fill_assign(__n, __val); }
927
928 /**
929 * @brief Assigns a range to a %deque.
930 * @param first An input iterator.
931 * @param last An input iterator.
932 *
933 * This function fills a %deque with copies of the elements in the
934 * range [first,last).
935 *
936 * Note that the assignment completely changes the %deque and that the
937 * resulting %deque's size is the same as the number of elements
938 * assigned. Old data may be lost.
939 */
940 template<typename _InputIterator>
941 void
942 assign(_InputIterator __first, _InputIterator __last)
943 {
944 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
945 _M_assign_dispatch(__first, __last, _Integral());
946 }
947
948 #ifdef __GXX_EXPERIMENTAL_CXX0X__
949 /**
950 * @brief Assigns an initializer list to a %deque.
951 * @param l An initializer_list.
952 *
953 * This function fills a %deque with copies of the elements in the
954 * initializer_list @a l.
955 *
956 * Note that the assignment completely changes the %deque and that the
957 * resulting %deque's size is the same as the number of elements
958 * assigned. Old data may be lost.
959 */
960 void
961 assign(initializer_list<value_type> __l)
962 { this->assign(__l.begin(), __l.end()); }
963 #endif
964
965 /// Get a copy of the memory allocation object.
966 allocator_type
967 get_allocator() const
968 { return _Base::get_allocator(); }
969
970 // iterators
971 /**
972 * Returns a read/write iterator that points to the first element in the
973 * %deque. Iteration is done in ordinary element order.
974 */
975 iterator
976 begin()
977 { return this->_M_impl._M_start; }
978
979 /**
980 * Returns a read-only (constant) iterator that points to the first
981 * element in the %deque. Iteration is done in ordinary element order.
982 */
983 const_iterator
984 begin() const
985 { return this->_M_impl._M_start; }
986
987 /**
988 * Returns a read/write iterator that points one past the last
989 * element in the %deque. Iteration is done in ordinary
990 * element order.
991 */
992 iterator
993 end()
994 { return this->_M_impl._M_finish; }
995
996 /**
997 * Returns a read-only (constant) iterator that points one past
998 * the last element in the %deque. Iteration is done in
999 * ordinary element order.
1000 */
1001 const_iterator
1002 end() const
1003 { return this->_M_impl._M_finish; }
1004
1005 /**
1006 * Returns a read/write reverse iterator that points to the
1007 * last element in the %deque. Iteration is done in reverse
1008 * element order.
1009 */
1010 reverse_iterator
1011 rbegin()
1012 { return reverse_iterator(this->_M_impl._M_finish); }
1013
1014 /**
1015 * Returns a read-only (constant) reverse iterator that points
1016 * to the last element in the %deque. Iteration is done in
1017 * reverse element order.
1018 */
1019 const_reverse_iterator
1020 rbegin() const
1021 { return const_reverse_iterator(this->_M_impl._M_finish); }
1022
1023 /**
1024 * Returns a read/write reverse iterator that points to one
1025 * before the first element in the %deque. Iteration is done
1026 * in reverse element order.
1027 */
1028 reverse_iterator
1029 rend()
1030 { return reverse_iterator(this->_M_impl._M_start); }
1031
1032 /**
1033 * Returns a read-only (constant) reverse iterator that points
1034 * to one before the first element in the %deque. Iteration is
1035 * done in reverse element order.
1036 */
1037 const_reverse_iterator
1038 rend() const
1039 { return const_reverse_iterator(this->_M_impl._M_start); }
1040
1041 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1042 /**
1043 * Returns a read-only (constant) iterator that points to the first
1044 * element in the %deque. Iteration is done in ordinary element order.
1045 */
1046 const_iterator
1047 cbegin() const
1048 { return this->_M_impl._M_start; }
1049
1050 /**
1051 * Returns a read-only (constant) iterator that points one past
1052 * the last element in the %deque. Iteration is done in
1053 * ordinary element order.
1054 */
1055 const_iterator
1056 cend() const
1057 { return this->_M_impl._M_finish; }
1058
1059 /**
1060 * Returns a read-only (constant) reverse iterator that points
1061 * to the last element in the %deque. Iteration is done in
1062 * reverse element order.
1063 */
1064 const_reverse_iterator
1065 crbegin() const
1066 { return const_reverse_iterator(this->_M_impl._M_finish); }
1067
1068 /**
1069 * Returns a read-only (constant) reverse iterator that points
1070 * to one before the first element in the %deque. Iteration is
1071 * done in reverse element order.
1072 */
1073 const_reverse_iterator
1074 crend() const
1075 { return const_reverse_iterator(this->_M_impl._M_start); }
1076 #endif
1077
1078 // [23.2.1.2] capacity
1079 /** Returns the number of elements in the %deque. */
1080 size_type
1081 size() const
1082 { return this->_M_impl._M_finish - this->_M_impl._M_start; }
1083
1084 /** Returns the size() of the largest possible %deque. */
1085 size_type
1086 max_size() const
1087 { return _M_get_Tp_allocator().max_size(); }
1088
1089 /**
1090 * @brief Resizes the %deque to the specified number of elements.
1091 * @param new_size Number of elements the %deque should contain.
1092 * @param x Data with which new elements should be populated.
1093 *
1094 * This function will %resize the %deque to the specified
1095 * number of elements. If the number is smaller than the
1096 * %deque's current size the %deque is truncated, otherwise the
1097 * %deque is extended and new elements are populated with given
1098 * data.
1099 */
1100 void
1101 resize(size_type __new_size, value_type __x = value_type())
1102 {
1103 const size_type __len = size();
1104 if (__new_size < __len)
1105 _M_erase_at_end(this->_M_impl._M_start + difference_type(__new_size));
1106 else
1107 insert(this->_M_impl._M_finish, __new_size - __len, __x);
1108 }
1109
1110 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1111 /** A non-binding request to reduce memory use. */
1112 void
1113 shrink_to_fit()
1114 { std::__shrink_to_fit<deque>::_S_do_it(*this); }
1115 #endif
1116
1117 /**
1118 * Returns true if the %deque is empty. (Thus begin() would
1119 * equal end().)
1120 */
1121 bool
1122 empty() const
1123 { return this->_M_impl._M_finish == this->_M_impl._M_start; }
1124
1125 // element access
1126 /**
1127 * @brief Subscript access to the data contained in the %deque.
1128 * @param n The index of the element for which data should be
1129 * accessed.
1130 * @return Read/write reference to data.
1131 *
1132 * This operator allows for easy, array-style, data access.
1133 * Note that data access with this operator is unchecked and
1134 * out_of_range lookups are not defined. (For checked lookups
1135 * see at().)
1136 */
1137 reference
1138 operator[](size_type __n)
1139 { return this->_M_impl._M_start[difference_type(__n)]; }
1140
1141 /**
1142 * @brief Subscript access to the data contained in the %deque.
1143 * @param n The index of the element for which data should be
1144 * accessed.
1145 * @return Read-only (constant) reference to data.
1146 *
1147 * This operator allows for easy, array-style, data access.
1148 * Note that data access with this operator is unchecked and
1149 * out_of_range lookups are not defined. (For checked lookups
1150 * see at().)
1151 */
1152 const_reference
1153 operator[](size_type __n) const
1154 { return this->_M_impl._M_start[difference_type(__n)]; }
1155
1156 protected:
1157 /// Safety check used only from at().
1158 void
1159 _M_range_check(size_type __n) const
1160 {
1161 if (__n >= this->size())
1162 __throw_out_of_range(__N("deque::_M_range_check"));
1163 }
1164
1165 public:
1166 /**
1167 * @brief Provides access to the data contained in the %deque.
1168 * @param n The index of the element for which data should be
1169 * accessed.
1170 * @return Read/write reference to data.
1171 * @throw std::out_of_range If @a n is an invalid index.
1172 *
1173 * This function provides for safer data access. The parameter
1174 * is first checked that it is in the range of the deque. The
1175 * function throws out_of_range if the check fails.
1176 */
1177 reference
1178 at(size_type __n)
1179 {
1180 _M_range_check(__n);
1181 return (*this)[__n];
1182 }
1183
1184 /**
1185 * @brief Provides access to the data contained in the %deque.
1186 * @param n The index of the element for which data should be
1187 * accessed.
1188 * @return Read-only (constant) reference to data.
1189 * @throw std::out_of_range If @a n is an invalid index.
1190 *
1191 * This function provides for safer data access. The parameter is first
1192 * checked that it is in the range of the deque. The function throws
1193 * out_of_range if the check fails.
1194 */
1195 const_reference
1196 at(size_type __n) const
1197 {
1198 _M_range_check(__n);
1199 return (*this)[__n];
1200 }
1201
1202 /**
1203 * Returns a read/write reference to the data at the first
1204 * element of the %deque.
1205 */
1206 reference
1207 front()
1208 { return *begin(); }
1209
1210 /**
1211 * Returns a read-only (constant) reference to the data at the first
1212 * element of the %deque.
1213 */
1214 const_reference
1215 front() const
1216 { return *begin(); }
1217
1218 /**
1219 * Returns a read/write reference to the data at the last element of the
1220 * %deque.
1221 */
1222 reference
1223 back()
1224 {
1225 iterator __tmp = end();
1226 --__tmp;
1227 return *__tmp;
1228 }
1229
1230 /**
1231 * Returns a read-only (constant) reference to the data at the last
1232 * element of the %deque.
1233 */
1234 const_reference
1235 back() const
1236 {
1237 const_iterator __tmp = end();
1238 --__tmp;
1239 return *__tmp;
1240 }
1241
1242 // [23.2.1.2] modifiers
1243 /**
1244 * @brief Add data to the front of the %deque.
1245 * @param x Data to be added.
1246 *
1247 * This is a typical stack operation. The function creates an
1248 * element at the front of the %deque and assigns the given
1249 * data to it. Due to the nature of a %deque this operation
1250 * can be done in constant time.
1251 */
1252 void
1253 push_front(const value_type& __x)
1254 {
1255 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1256 {
1257 this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1258 --this->_M_impl._M_start._M_cur;
1259 }
1260 else
1261 _M_push_front_aux(__x);
1262 }
1263
1264 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1265 void
1266 push_front(value_type&& __x)
1267 { emplace_front(std::move(__x)); }
1268
1269 template<typename... _Args>
1270 void
1271 emplace_front(_Args&&... __args);
1272 #endif
1273
1274 /**
1275 * @brief Add data to the end of the %deque.
1276 * @param x Data to be added.
1277 *
1278 * This is a typical stack operation. The function creates an
1279 * element at the end of the %deque and assigns the given data
1280 * to it. Due to the nature of a %deque this operation can be
1281 * done in constant time.
1282 */
1283 void
1284 push_back(const value_type& __x)
1285 {
1286 if (this->_M_impl._M_finish._M_cur
1287 != this->_M_impl._M_finish._M_last - 1)
1288 {
1289 this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1290 ++this->_M_impl._M_finish._M_cur;
1291 }
1292 else
1293 _M_push_back_aux(__x);
1294 }
1295
1296 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1297 void
1298 push_back(value_type&& __x)
1299 { emplace_back(std::move(__x)); }
1300
1301 template<typename... _Args>
1302 void
1303 emplace_back(_Args&&... __args);
1304 #endif
1305
1306 /**
1307 * @brief Removes first element.
1308 *
1309 * This is a typical stack operation. It shrinks the %deque by one.
1310 *
1311 * Note that no data is returned, and if the first element's data is
1312 * needed, it should be retrieved before pop_front() is called.
1313 */
1314 void
1315 pop_front()
1316 {
1317 if (this->_M_impl._M_start._M_cur
1318 != this->_M_impl._M_start._M_last - 1)
1319 {
1320 this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1321 ++this->_M_impl._M_start._M_cur;
1322 }
1323 else
1324 _M_pop_front_aux();
1325 }
1326
1327 /**
1328 * @brief Removes last element.
1329 *
1330 * This is a typical stack operation. It shrinks the %deque by one.
1331 *
1332 * Note that no data is returned, and if the last element's data is
1333 * needed, it should be retrieved before pop_back() is called.
1334 */
1335 void
1336 pop_back()
1337 {
1338 if (this->_M_impl._M_finish._M_cur
1339 != this->_M_impl._M_finish._M_first)
1340 {
1341 --this->_M_impl._M_finish._M_cur;
1342 this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1343 }
1344 else
1345 _M_pop_back_aux();
1346 }
1347
1348 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1349 /**
1350 * @brief Inserts an object in %deque before specified iterator.
1351 * @param position An iterator into the %deque.
1352 * @param args Arguments.
1353 * @return An iterator that points to the inserted data.
1354 *
1355 * This function will insert an object of type T constructed
1356 * with T(std::forward<Args>(args)...) before the specified location.
1357 */
1358 template<typename... _Args>
1359 iterator
1360 emplace(iterator __position, _Args&&... __args);
1361 #endif
1362
1363 /**
1364 * @brief Inserts given value into %deque before specified iterator.
1365 * @param position An iterator into the %deque.
1366 * @param x Data to be inserted.
1367 * @return An iterator that points to the inserted data.
1368 *
1369 * This function will insert a copy of the given value before the
1370 * specified location.
1371 */
1372 iterator
1373 insert(iterator __position, const value_type& __x);
1374
1375 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1376 /**
1377 * @brief Inserts given rvalue into %deque before specified iterator.
1378 * @param position An iterator into the %deque.
1379 * @param x Data to be inserted.
1380 * @return An iterator that points to the inserted data.
1381 *
1382 * This function will insert a copy of the given rvalue before the
1383 * specified location.
1384 */
1385 iterator
1386 insert(iterator __position, value_type&& __x)
1387 { return emplace(__position, std::move(__x)); }
1388
1389 /**
1390 * @brief Inserts an initializer list into the %deque.
1391 * @param p An iterator into the %deque.
1392 * @param l An initializer_list.
1393 *
1394 * This function will insert copies of the data in the
1395 * initializer_list @a l into the %deque before the location
1396 * specified by @a p. This is known as <em>list insert</em>.
1397 */
1398 void
1399 insert(iterator __p, initializer_list<value_type> __l)
1400 { this->insert(__p, __l.begin(), __l.end()); }
1401 #endif
1402
1403 /**
1404 * @brief Inserts a number of copies of given data into the %deque.
1405 * @param position An iterator into the %deque.
1406 * @param n Number of elements to be inserted.
1407 * @param x Data to be inserted.
1408 *
1409 * This function will insert a specified number of copies of the given
1410 * data before the location specified by @a position.
1411 */
1412 void
1413 insert(iterator __position, size_type __n, const value_type& __x)
1414 { _M_fill_insert(__position, __n, __x); }
1415
1416 /**
1417 * @brief Inserts a range into the %deque.
1418 * @param position An iterator into the %deque.
1419 * @param first An input iterator.
1420 * @param last An input iterator.
1421 *
1422 * This function will insert copies of the data in the range
1423 * [first,last) into the %deque before the location specified
1424 * by @a pos. This is known as <em>range insert</em>.
1425 */
1426 template<typename _InputIterator>
1427 void
1428 insert(iterator __position, _InputIterator __first,
1429 _InputIterator __last)
1430 {
1431 // Check whether it's an integral type. If so, it's not an iterator.
1432 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1433 _M_insert_dispatch(__position, __first, __last, _Integral());
1434 }
1435
1436 /**
1437 * @brief Remove element at given position.
1438 * @param position Iterator pointing to element to be erased.
1439 * @return An iterator pointing to the next element (or end()).
1440 *
1441 * This function will erase the element at the given position and thus
1442 * shorten the %deque by one.
1443 *
1444 * The user is cautioned that
1445 * this function only erases the element, and that if the element is
1446 * itself a pointer, the pointed-to memory is not touched in any way.
1447 * Managing the pointer is the user's responsibility.
1448 */
1449 iterator
1450 erase(iterator __position);
1451
1452 /**
1453 * @brief Remove a range of elements.
1454 * @param first Iterator pointing to the first element to be erased.
1455 * @param last Iterator pointing to one past the last element to be
1456 * erased.
1457 * @return An iterator pointing to the element pointed to by @a last
1458 * prior to erasing (or end()).
1459 *
1460 * This function will erase the elements in the range [first,last) and
1461 * shorten the %deque accordingly.
1462 *
1463 * The user is cautioned that
1464 * this function only erases the elements, and that if the elements
1465 * themselves are pointers, the pointed-to memory is not touched in any
1466 * way. Managing the pointer is the user's responsibility.
1467 */
1468 iterator
1469 erase(iterator __first, iterator __last);
1470
1471 /**
1472 * @brief Swaps data with another %deque.
1473 * @param x A %deque of the same element and allocator types.
1474 *
1475 * This exchanges the elements between two deques in constant time.
1476 * (Four pointers, so it should be quite fast.)
1477 * Note that the global std::swap() function is specialized such that
1478 * std::swap(d1,d2) will feed to this function.
1479 */
1480 void
1481 swap(deque& __x)
1482 {
1483 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1484 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1485 std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1486 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1487
1488 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1489 // 431. Swapping containers with unequal allocators.
1490 std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1491 __x._M_get_Tp_allocator());
1492 }
1493
1494 /**
1495 * Erases all the elements. Note that this function only erases the
1496 * elements, and that if the elements themselves are pointers, the
1497 * pointed-to memory is not touched in any way. Managing the pointer is
1498 * the user's responsibility.
1499 */
1500 void
1501 clear()
1502 { _M_erase_at_end(begin()); }
1503
1504 protected:
1505 // Internal constructor functions follow.
1506
1507 // called by the range constructor to implement [23.1.1]/9
1508
1509 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1510 // 438. Ambiguity in the "do the right thing" clause
1511 template<typename _Integer>
1512 void
1513 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1514 {
1515 _M_initialize_map(static_cast<size_type>(__n));
1516 _M_fill_initialize(__x);
1517 }
1518
1519 // called by the range constructor to implement [23.1.1]/9
1520 template<typename _InputIterator>
1521 void
1522 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1523 __false_type)
1524 {
1525 typedef typename std::iterator_traits<_InputIterator>::
1526 iterator_category _IterCategory;
1527 _M_range_initialize(__first, __last, _IterCategory());
1528 }
1529
1530 // called by the second initialize_dispatch above
1531 //@{
1532 /**
1533 * @brief Fills the deque with whatever is in [first,last).
1534 * @param first An input iterator.
1535 * @param last An input iterator.
1536 * @return Nothing.
1537 *
1538 * If the iterators are actually forward iterators (or better), then the
1539 * memory layout can be done all at once. Else we move forward using
1540 * push_back on each value from the iterator.
1541 */
1542 template<typename _InputIterator>
1543 void
1544 _M_range_initialize(_InputIterator __first, _InputIterator __last,
1545 std::input_iterator_tag);
1546
1547 // called by the second initialize_dispatch above
1548 template<typename _ForwardIterator>
1549 void
1550 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1551 std::forward_iterator_tag);
1552 //@}
1553
1554 /**
1555 * @brief Fills the %deque with copies of value.
1556 * @param value Initial value.
1557 * @return Nothing.
1558 * @pre _M_start and _M_finish have already been initialized,
1559 * but none of the %deque's elements have yet been constructed.
1560 *
1561 * This function is called only when the user provides an explicit size
1562 * (with or without an explicit exemplar value).
1563 */
1564 void
1565 _M_fill_initialize(const value_type& __value);
1566
1567 // Internal assign functions follow. The *_aux functions do the actual
1568 // assignment work for the range versions.
1569
1570 // called by the range assign to implement [23.1.1]/9
1571
1572 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1573 // 438. Ambiguity in the "do the right thing" clause
1574 template<typename _Integer>
1575 void
1576 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1577 { _M_fill_assign(__n, __val); }
1578
1579 // called by the range assign to implement [23.1.1]/9
1580 template<typename _InputIterator>
1581 void
1582 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1583 __false_type)
1584 {
1585 typedef typename std::iterator_traits<_InputIterator>::
1586 iterator_category _IterCategory;
1587 _M_assign_aux(__first, __last, _IterCategory());
1588 }
1589
1590 // called by the second assign_dispatch above
1591 template<typename _InputIterator>
1592 void
1593 _M_assign_aux(_InputIterator __first, _InputIterator __last,
1594 std::input_iterator_tag);
1595
1596 // called by the second assign_dispatch above
1597 template<typename _ForwardIterator>
1598 void
1599 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1600 std::forward_iterator_tag)
1601 {
1602 const size_type __len = std::distance(__first, __last);
1603 if (__len > size())
1604 {
1605 _ForwardIterator __mid = __first;
1606 std::advance(__mid, size());
1607 std::copy(__first, __mid, begin());
1608 insert(end(), __mid, __last);
1609 }
1610 else
1611 _M_erase_at_end(std::copy(__first, __last, begin()));
1612 }
1613
1614 // Called by assign(n,t), and the range assign when it turns out
1615 // to be the same thing.
1616 void
1617 _M_fill_assign(size_type __n, const value_type& __val)
1618 {
1619 if (__n > size())
1620 {
1621 std::fill(begin(), end(), __val);
1622 insert(end(), __n - size(), __val);
1623 }
1624 else
1625 {
1626 _M_erase_at_end(begin() + difference_type(__n));
1627 std::fill(begin(), end(), __val);
1628 }
1629 }
1630
1631 //@{
1632 /// Helper functions for push_* and pop_*.
1633 #ifndef __GXX_EXPERIMENTAL_CXX0X__
1634 void _M_push_back_aux(const value_type&);
1635
1636 void _M_push_front_aux(const value_type&);
1637 #else
1638 template<typename... _Args>
1639 void _M_push_back_aux(_Args&&... __args);
1640
1641 template<typename... _Args>
1642 void _M_push_front_aux(_Args&&... __args);
1643 #endif
1644
1645 void _M_pop_back_aux();
1646
1647 void _M_pop_front_aux();
1648 //@}
1649
1650 // Internal insert functions follow. The *_aux functions do the actual
1651 // insertion work when all shortcuts fail.
1652
1653 // called by the range insert to implement [23.1.1]/9
1654
1655 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1656 // 438. Ambiguity in the "do the right thing" clause
1657 template<typename _Integer>
1658 void
1659 _M_insert_dispatch(iterator __pos,
1660 _Integer __n, _Integer __x, __true_type)
1661 { _M_fill_insert(__pos, __n, __x); }
1662
1663 // called by the range insert to implement [23.1.1]/9
1664 template<typename _InputIterator>
1665 void
1666 _M_insert_dispatch(iterator __pos,
1667 _InputIterator __first, _InputIterator __last,
1668 __false_type)
1669 {
1670 typedef typename std::iterator_traits<_InputIterator>::
1671 iterator_category _IterCategory;
1672 _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1673 }
1674
1675 // called by the second insert_dispatch above
1676 template<typename _InputIterator>
1677 void
1678 _M_range_insert_aux(iterator __pos, _InputIterator __first,
1679 _InputIterator __last, std::input_iterator_tag);
1680
1681 // called by the second insert_dispatch above
1682 template<typename _ForwardIterator>
1683 void
1684 _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1685 _ForwardIterator __last, std::forward_iterator_tag);
1686
1687 // Called by insert(p,n,x), and the range insert when it turns out to be
1688 // the same thing. Can use fill functions in optimal situations,
1689 // otherwise passes off to insert_aux(p,n,x).
1690 void
1691 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1692
1693 // called by insert(p,x)
1694 #ifndef __GXX_EXPERIMENTAL_CXX0X__
1695 iterator
1696 _M_insert_aux(iterator __pos, const value_type& __x);
1697 #else
1698 template<typename... _Args>
1699 iterator
1700 _M_insert_aux(iterator __pos, _Args&&... __args);
1701 #endif
1702
1703 // called by insert(p,n,x) via fill_insert
1704 void
1705 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1706
1707 // called by range_insert_aux for forward iterators
1708 template<typename _ForwardIterator>
1709 void
1710 _M_insert_aux(iterator __pos,
1711 _ForwardIterator __first, _ForwardIterator __last,
1712 size_type __n);
1713
1714
1715 // Internal erase functions follow.
1716
1717 void
1718 _M_destroy_data_aux(iterator __first, iterator __last);
1719
1720 // Called by ~deque().
1721 // NB: Doesn't deallocate the nodes.
1722 template<typename _Alloc1>
1723 void
1724 _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
1725 { _M_destroy_data_aux(__first, __last); }
1726
1727 void
1728 _M_destroy_data(iterator __first, iterator __last,
1729 const std::allocator<_Tp>&)
1730 {
1731 if (!__has_trivial_destructor(value_type))
1732 _M_destroy_data_aux(__first, __last);
1733 }
1734
1735 // Called by erase(q1, q2).
1736 void
1737 _M_erase_at_begin(iterator __pos)
1738 {
1739 _M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
1740 _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
1741 this->_M_impl._M_start = __pos;
1742 }
1743
1744 // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
1745 // _M_fill_assign, operator=.
1746 void
1747 _M_erase_at_end(iterator __pos)
1748 {
1749 _M_destroy_data(__pos, end(), _M_get_Tp_allocator());
1750 _M_destroy_nodes(__pos._M_node + 1,
1751 this->_M_impl._M_finish._M_node + 1);
1752 this->_M_impl._M_finish = __pos;
1753 }
1754
1755 //@{
1756 /// Memory-handling helpers for the previous internal insert functions.
1757 iterator
1758 _M_reserve_elements_at_front(size_type __n)
1759 {
1760 const size_type __vacancies = this->_M_impl._M_start._M_cur
1761 - this->_M_impl._M_start._M_first;
1762 if (__n > __vacancies)
1763 _M_new_elements_at_front(__n - __vacancies);
1764 return this->_M_impl._M_start - difference_type(__n);
1765 }
1766
1767 iterator
1768 _M_reserve_elements_at_back(size_type __n)
1769 {
1770 const size_type __vacancies = (this->_M_impl._M_finish._M_last
1771 - this->_M_impl._M_finish._M_cur) - 1;
1772 if (__n > __vacancies)
1773 _M_new_elements_at_back(__n - __vacancies);
1774 return this->_M_impl._M_finish + difference_type(__n);
1775 }
1776
1777 void
1778 _M_new_elements_at_front(size_type __new_elements);
1779
1780 void
1781 _M_new_elements_at_back(size_type __new_elements);
1782 //@}
1783
1784
1785 //@{
1786 /**
1787 * @brief Memory-handling helpers for the major %map.
1788 *
1789 * Makes sure the _M_map has space for new nodes. Does not
1790 * actually add the nodes. Can invalidate _M_map pointers.
1791 * (And consequently, %deque iterators.)
1792 */
1793 void
1794 _M_reserve_map_at_back(size_type __nodes_to_add = 1)
1795 {
1796 if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1797 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1798 _M_reallocate_map(__nodes_to_add, false);
1799 }
1800
1801 void
1802 _M_reserve_map_at_front(size_type __nodes_to_add = 1)
1803 {
1804 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1805 - this->_M_impl._M_map))
1806 _M_reallocate_map(__nodes_to_add, true);
1807 }
1808
1809 void
1810 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1811 //@}
1812 };
1813
1814
1815 /**
1816 * @brief Deque equality comparison.
1817 * @param x A %deque.
1818 * @param y A %deque of the same type as @a x.
1819 * @return True iff the size and elements of the deques are equal.
1820 *
1821 * This is an equivalence relation. It is linear in the size of the
1822 * deques. Deques are considered equivalent if their sizes are equal,
1823 * and if corresponding elements compare equal.
1824 */
1825 template<typename _Tp, typename _Alloc>
1826 inline bool
1827 operator==(const deque<_Tp, _Alloc>& __x,
1828 const deque<_Tp, _Alloc>& __y)
1829 { return __x.size() == __y.size()
1830 && std::equal(__x.begin(), __x.end(), __y.begin()); }
1831
1832 /**
1833 * @brief Deque ordering relation.
1834 * @param x A %deque.
1835 * @param y A %deque of the same type as @a x.
1836 * @return True iff @a x is lexicographically less than @a y.
1837 *
1838 * This is a total ordering relation. It is linear in the size of the
1839 * deques. The elements must be comparable with @c <.
1840 *
1841 * See std::lexicographical_compare() for how the determination is made.
1842 */
1843 template<typename _Tp, typename _Alloc>
1844 inline bool
1845 operator<(const deque<_Tp, _Alloc>& __x,
1846 const deque<_Tp, _Alloc>& __y)
1847 { return std::lexicographical_compare(__x.begin(), __x.end(),
1848 __y.begin(), __y.end()); }
1849
1850 /// Based on operator==
1851 template<typename _Tp, typename _Alloc>
1852 inline bool
1853 operator!=(const deque<_Tp, _Alloc>& __x,
1854 const deque<_Tp, _Alloc>& __y)
1855 { return !(__x == __y); }
1856
1857 /// Based on operator<
1858 template<typename _Tp, typename _Alloc>
1859 inline bool
1860 operator>(const deque<_Tp, _Alloc>& __x,
1861 const deque<_Tp, _Alloc>& __y)
1862 { return __y < __x; }
1863
1864 /// Based on operator<
1865 template<typename _Tp, typename _Alloc>
1866 inline bool
1867 operator<=(const deque<_Tp, _Alloc>& __x,
1868 const deque<_Tp, _Alloc>& __y)
1869 { return !(__y < __x); }
1870
1871 /// Based on operator<
1872 template<typename _Tp, typename _Alloc>
1873 inline bool
1874 operator>=(const deque<_Tp, _Alloc>& __x,
1875 const deque<_Tp, _Alloc>& __y)
1876 { return !(__x < __y); }
1877
1878 /// See std::deque::swap().
1879 template<typename _Tp, typename _Alloc>
1880 inline void
1881 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
1882 { __x.swap(__y); }
1883
1884 #undef _GLIBCXX_DEQUE_BUF_SIZE
1885
1886 _GLIBCXX_END_NESTED_NAMESPACE
1887
1888 #endif /* _STL_DEQUE_H */