All files: Update FSF address.
[gcc.git] / libstdc++-v3 / include / bits / stl_deque.h
1 // Deque implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1997
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
54 */
55
56 /** @file stl_deque.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
59 */
60
61 #ifndef _DEQUE_H
62 #define _DEQUE_H 1
63
64 #include <bits/concept_check.h>
65 #include <bits/stl_iterator_base_types.h>
66 #include <bits/stl_iterator_base_funcs.h>
67
68 namespace _GLIBCXX_STD
69 {
70 /**
71 * @if maint
72 * @brief This function controls the size of memory nodes.
73 * @param size The size of an element.
74 * @return The number (not byte size) of elements per node.
75 *
76 * This function started off as a compiler kludge from SGI, but seems to
77 * be a useful wrapper around a repeated constant expression. The '512' is
78 * tuneable (and no other code needs to change), but no investigation has
79 * been done since inheriting the SGI code.
80 * @endif
81 */
82 inline size_t
83 __deque_buf_size(size_t __size)
84 { return __size < 512 ? size_t(512 / __size) : size_t(1); }
85
86
87 /**
88 * @brief A deque::iterator.
89 *
90 * Quite a bit of intelligence here. Much of the functionality of
91 * deque is actually passed off to this class. A deque holds two
92 * of these internally, marking its valid range. Access to
93 * elements is done as offsets of either of those two, relying on
94 * operator overloading in this class.
95 *
96 * @if maint
97 * All the functions are op overloads except for _M_set_node.
98 * @endif
99 */
100 template<typename _Tp, typename _Ref, typename _Ptr>
101 struct _Deque_iterator
102 {
103 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
104 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
105
106 static size_t _S_buffer_size()
107 { return __deque_buf_size(sizeof(_Tp)); }
108
109 typedef std::random_access_iterator_tag iterator_category;
110 typedef _Tp value_type;
111 typedef _Ptr pointer;
112 typedef _Ref reference;
113 typedef size_t size_type;
114 typedef ptrdiff_t difference_type;
115 typedef _Tp** _Map_pointer;
116 typedef _Deque_iterator _Self;
117
118 _Tp* _M_cur;
119 _Tp* _M_first;
120 _Tp* _M_last;
121 _Map_pointer _M_node;
122
123 _Deque_iterator(_Tp* __x, _Map_pointer __y)
124 : _M_cur(__x), _M_first(*__y),
125 _M_last(*__y + _S_buffer_size()), _M_node(__y) {}
126
127 _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
128
129 _Deque_iterator(const iterator& __x)
130 : _M_cur(__x._M_cur), _M_first(__x._M_first),
131 _M_last(__x._M_last), _M_node(__x._M_node) {}
132
133 reference
134 operator*() const
135 { return *_M_cur; }
136
137 pointer
138 operator->() const
139 { return _M_cur; }
140
141 _Self&
142 operator++()
143 {
144 ++_M_cur;
145 if (_M_cur == _M_last)
146 {
147 _M_set_node(_M_node + 1);
148 _M_cur = _M_first;
149 }
150 return *this;
151 }
152
153 _Self
154 operator++(int)
155 {
156 _Self __tmp = *this;
157 ++*this;
158 return __tmp;
159 }
160
161 _Self&
162 operator--()
163 {
164 if (_M_cur == _M_first)
165 {
166 _M_set_node(_M_node - 1);
167 _M_cur = _M_last;
168 }
169 --_M_cur;
170 return *this;
171 }
172
173 _Self
174 operator--(int)
175 {
176 _Self __tmp = *this;
177 --*this;
178 return __tmp;
179 }
180
181 _Self&
182 operator+=(difference_type __n)
183 {
184 const difference_type __offset = __n + (_M_cur - _M_first);
185 if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
186 _M_cur += __n;
187 else
188 {
189 const difference_type __node_offset =
190 __offset > 0 ? __offset / difference_type(_S_buffer_size())
191 : -difference_type((-__offset - 1)
192 / _S_buffer_size()) - 1;
193 _M_set_node(_M_node + __node_offset);
194 _M_cur = _M_first + (__offset - __node_offset
195 * difference_type(_S_buffer_size()));
196 }
197 return *this;
198 }
199
200 _Self
201 operator+(difference_type __n) const
202 {
203 _Self __tmp = *this;
204 return __tmp += __n;
205 }
206
207 _Self&
208 operator-=(difference_type __n)
209 { return *this += -__n; }
210
211 _Self
212 operator-(difference_type __n) const
213 {
214 _Self __tmp = *this;
215 return __tmp -= __n;
216 }
217
218 reference
219 operator[](difference_type __n) const
220 { return *(*this + __n); }
221
222 /** @if maint
223 * Prepares to traverse new_node. Sets everything except
224 * _M_cur, which should therefore be set by the caller
225 * immediately afterwards, based on _M_first and _M_last.
226 * @endif
227 */
228 void
229 _M_set_node(_Map_pointer __new_node)
230 {
231 _M_node = __new_node;
232 _M_first = *__new_node;
233 _M_last = _M_first + difference_type(_S_buffer_size());
234 }
235 };
236
237 // Note: we also provide overloads whose operands are of the same type in
238 // order to avoid ambiguous overload resolution when std::rel_ops operators
239 // are in scope (for additional details, see libstdc++/3628)
240 template<typename _Tp, typename _Ref, typename _Ptr>
241 inline bool
242 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
243 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
244 { return __x._M_cur == __y._M_cur; }
245
246 template<typename _Tp, typename _RefL, typename _PtrL,
247 typename _RefR, typename _PtrR>
248 inline bool
249 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
250 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
251 { return __x._M_cur == __y._M_cur; }
252
253 template<typename _Tp, typename _Ref, typename _Ptr>
254 inline bool
255 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
256 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
257 { return !(__x == __y); }
258
259 template<typename _Tp, typename _RefL, typename _PtrL,
260 typename _RefR, typename _PtrR>
261 inline bool
262 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
263 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
264 { return !(__x == __y); }
265
266 template<typename _Tp, typename _Ref, typename _Ptr>
267 inline bool
268 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
269 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
270 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
271 : (__x._M_node < __y._M_node); }
272
273 template<typename _Tp, typename _RefL, typename _PtrL,
274 typename _RefR, typename _PtrR>
275 inline bool
276 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
277 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
278 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
279 : (__x._M_node < __y._M_node); }
280
281 template<typename _Tp, typename _Ref, typename _Ptr>
282 inline bool
283 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
284 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
285 { return __y < __x; }
286
287 template<typename _Tp, typename _RefL, typename _PtrL,
288 typename _RefR, typename _PtrR>
289 inline bool
290 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
291 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
292 { return __y < __x; }
293
294 template<typename _Tp, typename _Ref, typename _Ptr>
295 inline bool
296 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
297 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
298 { return !(__y < __x); }
299
300 template<typename _Tp, typename _RefL, typename _PtrL,
301 typename _RefR, typename _PtrR>
302 inline bool
303 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
304 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
305 { return !(__y < __x); }
306
307 template<typename _Tp, typename _Ref, typename _Ptr>
308 inline bool
309 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
310 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
311 { return !(__x < __y); }
312
313 template<typename _Tp, typename _RefL, typename _PtrL,
314 typename _RefR, typename _PtrR>
315 inline bool
316 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
317 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
318 { return !(__x < __y); }
319
320 // _GLIBCXX_RESOLVE_LIB_DEFECTS
321 // According to the resolution of DR179 not only the various comparison
322 // operators but also operator- must accept mixed iterator/const_iterator
323 // parameters.
324 template<typename _Tp, typename _RefL, typename _PtrL,
325 typename _RefR, typename _PtrR>
326 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
327 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
328 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
329 {
330 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
331 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
332 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
333 + (__y._M_last - __y._M_cur);
334 }
335
336 template<typename _Tp, typename _Ref, typename _Ptr>
337 inline _Deque_iterator<_Tp, _Ref, _Ptr>
338 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
339 { return __x + __n; }
340
341 /**
342 * @if maint
343 * Deque base class. This class provides the unified face for %deque's
344 * allocation. This class's constructor and destructor allocate and
345 * deallocate (but do not initialize) storage. This makes %exception
346 * safety easier.
347 *
348 * Nothing in this class ever constructs or destroys an actual Tp element.
349 * (Deque handles that itself.) Only/All memory management is performed
350 * here.
351 * @endif
352 */
353 template<typename _Tp, typename _Alloc>
354 class _Deque_base
355 {
356 public:
357 typedef _Alloc allocator_type;
358
359 allocator_type
360 get_allocator() const
361 { return _M_get_Tp_allocator(); }
362
363 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
364 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
365
366 _Deque_base(const allocator_type& __a, size_t __num_elements)
367 : _M_impl(__a)
368 { _M_initialize_map(__num_elements); }
369
370 _Deque_base(const allocator_type& __a)
371 : _M_impl(__a)
372 { }
373
374 ~_Deque_base();
375
376 protected:
377 //This struct encapsulates the implementation of the std::deque
378 //standard container and at the same time makes use of the EBO
379 //for empty allocators.
380 typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
381
382 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
383
384 struct _Deque_impl
385 : public _Tp_alloc_type
386 {
387 _Tp** _M_map;
388 size_t _M_map_size;
389 iterator _M_start;
390 iterator _M_finish;
391
392 _Deque_impl(const _Tp_alloc_type& __a)
393 : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
394 _M_start(), _M_finish()
395 { }
396 };
397
398 _Tp_alloc_type
399 _M_get_Tp_allocator() const
400 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
401
402 _Map_alloc_type
403 _M_get_map_allocator() const
404 { return _M_get_Tp_allocator(); }
405
406 _Tp*
407 _M_allocate_node()
408 {
409 return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
410 }
411
412 void
413 _M_deallocate_node(_Tp* __p)
414 {
415 _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
416 }
417
418 _Tp**
419 _M_allocate_map(size_t __n)
420 { return _M_get_map_allocator().allocate(__n); }
421
422 void
423 _M_deallocate_map(_Tp** __p, size_t __n)
424 { _M_get_map_allocator().deallocate(__p, __n); }
425
426 protected:
427 void _M_initialize_map(size_t);
428 void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
429 void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
430 enum { _S_initial_map_size = 8 };
431
432 _Deque_impl _M_impl;
433 };
434
435 template<typename _Tp, typename _Alloc>
436 _Deque_base<_Tp, _Alloc>::
437 ~_Deque_base()
438 {
439 if (this->_M_impl._M_map)
440 {
441 _M_destroy_nodes(this->_M_impl._M_start._M_node,
442 this->_M_impl._M_finish._M_node + 1);
443 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
444 }
445 }
446
447 /**
448 * @if maint
449 * @brief Layout storage.
450 * @param num_elements The count of T's for which to allocate space
451 * at first.
452 * @return Nothing.
453 *
454 * The initial underlying memory layout is a bit complicated...
455 * @endif
456 */
457 template<typename _Tp, typename _Alloc>
458 void
459 _Deque_base<_Tp, _Alloc>::
460 _M_initialize_map(size_t __num_elements)
461 {
462 const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
463 + 1);
464
465 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
466 size_t(__num_nodes + 2));
467 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
468
469 // For "small" maps (needing less than _M_map_size nodes), allocation
470 // starts in the middle elements and grows outwards. So nstart may be
471 // the beginning of _M_map, but for small maps it may be as far in as
472 // _M_map+3.
473
474 _Tp** __nstart = (this->_M_impl._M_map
475 + (this->_M_impl._M_map_size - __num_nodes) / 2);
476 _Tp** __nfinish = __nstart + __num_nodes;
477
478 try
479 { _M_create_nodes(__nstart, __nfinish); }
480 catch(...)
481 {
482 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
483 this->_M_impl._M_map = 0;
484 this->_M_impl._M_map_size = 0;
485 __throw_exception_again;
486 }
487
488 this->_M_impl._M_start._M_set_node(__nstart);
489 this->_M_impl._M_finish._M_set_node(__nfinish - 1);
490 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
491 this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
492 + __num_elements
493 % __deque_buf_size(sizeof(_Tp)));
494 }
495
496 template<typename _Tp, typename _Alloc>
497 void
498 _Deque_base<_Tp, _Alloc>::
499 _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
500 {
501 _Tp** __cur;
502 try
503 {
504 for (__cur = __nstart; __cur < __nfinish; ++__cur)
505 *__cur = this->_M_allocate_node();
506 }
507 catch(...)
508 {
509 _M_destroy_nodes(__nstart, __cur);
510 __throw_exception_again;
511 }
512 }
513
514 template<typename _Tp, typename _Alloc>
515 void
516 _Deque_base<_Tp, _Alloc>::
517 _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
518 {
519 for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
520 _M_deallocate_node(*__n);
521 }
522
523 /**
524 * @brief A standard container using fixed-size memory allocation and
525 * constant-time manipulation of elements at either end.
526 *
527 * @ingroup Containers
528 * @ingroup Sequences
529 *
530 * Meets the requirements of a <a href="tables.html#65">container</a>, a
531 * <a href="tables.html#66">reversible container</a>, and a
532 * <a href="tables.html#67">sequence</a>, including the
533 * <a href="tables.html#68">optional sequence requirements</a>.
534 *
535 * In previous HP/SGI versions of deque, there was an extra template
536 * parameter so users could control the node size. This extension turned
537 * out to violate the C++ standard (it can be detected using template
538 * template parameters), and it was removed.
539 *
540 * @if maint
541 * Here's how a deque<Tp> manages memory. Each deque has 4 members:
542 *
543 * - Tp** _M_map
544 * - size_t _M_map_size
545 * - iterator _M_start, _M_finish
546 *
547 * map_size is at least 8. %map is an array of map_size
548 * pointers-to-"nodes". (The name %map has nothing to do with the
549 * std::map class, and "nodes" should not be confused with
550 * std::list's usage of "node".)
551 *
552 * A "node" has no specific type name as such, but it is referred
553 * to as "node" in this file. It is a simple array-of-Tp. If Tp
554 * is very large, there will be one Tp element per node (i.e., an
555 * "array" of one). For non-huge Tp's, node size is inversely
556 * related to Tp size: the larger the Tp, the fewer Tp's will fit
557 * in a node. The goal here is to keep the total size of a node
558 * relatively small and constant over different Tp's, to improve
559 * allocator efficiency.
560 *
561 * Not every pointer in the %map array will point to a node. If
562 * the initial number of elements in the deque is small, the
563 * /middle/ %map pointers will be valid, and the ones at the edges
564 * will be unused. This same situation will arise as the %map
565 * grows: available %map pointers, if any, will be on the ends. As
566 * new nodes are created, only a subset of the %map's pointers need
567 * to be copied "outward".
568 *
569 * Class invariants:
570 * - For any nonsingular iterator i:
571 * - i.node points to a member of the %map array. (Yes, you read that
572 * correctly: i.node does not actually point to a node.) The member of
573 * the %map array is what actually points to the node.
574 * - i.first == *(i.node) (This points to the node (first Tp element).)
575 * - i.last == i.first + node_size
576 * - i.cur is a pointer in the range [i.first, i.last). NOTE:
577 * the implication of this is that i.cur is always a dereferenceable
578 * pointer, even if i is a past-the-end iterator.
579 * - Start and Finish are always nonsingular iterators. NOTE: this
580 * means that an empty deque must have one node, a deque with <N
581 * elements (where N is the node buffer size) must have one node, a
582 * deque with N through (2N-1) elements must have two nodes, etc.
583 * - For every node other than start.node and finish.node, every
584 * element in the node is an initialized object. If start.node ==
585 * finish.node, then [start.cur, finish.cur) are initialized
586 * objects, and the elements outside that range are uninitialized
587 * storage. Otherwise, [start.cur, start.last) and [finish.first,
588 * finish.cur) are initialized objects, and [start.first, start.cur)
589 * and [finish.cur, finish.last) are uninitialized storage.
590 * - [%map, %map + map_size) is a valid, non-empty range.
591 * - [start.node, finish.node] is a valid range contained within
592 * [%map, %map + map_size).
593 * - A pointer in the range [%map, %map + map_size) points to an allocated
594 * node if and only if the pointer is in the range
595 * [start.node, finish.node].
596 *
597 * Here's the magic: nothing in deque is "aware" of the discontiguous
598 * storage!
599 *
600 * The memory setup and layout occurs in the parent, _Base, and the iterator
601 * class is entirely responsible for "leaping" from one node to the next.
602 * All the implementation routines for deque itself work only through the
603 * start and finish iterators. This keeps the routines simple and sane,
604 * and we can use other standard algorithms as well.
605 * @endif
606 */
607 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
608 class deque : protected _Deque_base<_Tp, _Alloc>
609 {
610 // concept requirements
611 typedef typename _Alloc::value_type _Alloc_value_type;
612 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
613 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
614
615 typedef _Deque_base<_Tp, _Alloc> _Base;
616 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
617
618 public:
619 typedef _Tp value_type;
620 typedef typename _Tp_alloc_type::pointer pointer;
621 typedef typename _Tp_alloc_type::const_pointer const_pointer;
622 typedef typename _Tp_alloc_type::reference reference;
623 typedef typename _Tp_alloc_type::const_reference const_reference;
624 typedef typename _Base::iterator iterator;
625 typedef typename _Base::const_iterator const_iterator;
626 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
627 typedef std::reverse_iterator<iterator> reverse_iterator;
628 typedef size_t size_type;
629 typedef ptrdiff_t difference_type;
630 typedef _Alloc allocator_type;
631
632 protected:
633 typedef pointer* _Map_pointer;
634
635 static size_t _S_buffer_size()
636 { return __deque_buf_size(sizeof(_Tp)); }
637
638 // Functions controlling memory layout, and nothing else.
639 using _Base::_M_initialize_map;
640 using _Base::_M_create_nodes;
641 using _Base::_M_destroy_nodes;
642 using _Base::_M_allocate_node;
643 using _Base::_M_deallocate_node;
644 using _Base::_M_allocate_map;
645 using _Base::_M_deallocate_map;
646 using _Base::_M_get_Tp_allocator;
647
648 /** @if maint
649 * A total of four data members accumulated down the heirarchy.
650 * May be accessed via _M_impl.*
651 * @endif
652 */
653 using _Base::_M_impl;
654
655 public:
656 // [23.2.1.1] construct/copy/destroy
657 // (assign() and get_allocator() are also listed in this section)
658 /**
659 * @brief Default constructor creates no elements.
660 */
661 explicit
662 deque(const allocator_type& __a = allocator_type())
663 : _Base(__a, 0) {}
664
665 /**
666 * @brief Create a %deque with copies of an exemplar element.
667 * @param n The number of elements to initially create.
668 * @param value An element to copy.
669 *
670 * This constructor fills the %deque with @a n copies of @a value.
671 */
672 explicit
673 deque(size_type __n, const value_type& __value = value_type(),
674 const allocator_type& __a = allocator_type())
675 : _Base(__a, __n)
676 { _M_fill_initialize(__value); }
677
678 /**
679 * @brief %Deque copy constructor.
680 * @param x A %deque of identical element and allocator types.
681 *
682 * The newly-created %deque uses a copy of the allocation object used
683 * by @a x.
684 */
685 deque(const deque& __x)
686 : _Base(__x.get_allocator(), __x.size())
687 { std::__uninitialized_copy_a(__x.begin(), __x.end(),
688 this->_M_impl._M_start,
689 _M_get_Tp_allocator()); }
690
691 /**
692 * @brief Builds a %deque from a range.
693 * @param first An input iterator.
694 * @param last An input iterator.
695 *
696 * Create a %deque consisting of copies of the elements from [first,
697 * last).
698 *
699 * If the iterators are forward, bidirectional, or random-access, then
700 * this will call the elements' copy constructor N times (where N is
701 * distance(first,last)) and do no memory reallocation. But if only
702 * input iterators are used, then this will do at most 2N calls to the
703 * copy constructor, and logN memory reallocations.
704 */
705 template<typename _InputIterator>
706 deque(_InputIterator __first, _InputIterator __last,
707 const allocator_type& __a = allocator_type())
708 : _Base(__a)
709 {
710 // Check whether it's an integral type. If so, it's not an iterator.
711 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
712 _M_initialize_dispatch(__first, __last, _Integral());
713 }
714
715 /**
716 * The dtor only erases the elements, and note that if the elements
717 * themselves are pointers, the pointed-to memory is not touched in any
718 * way. Managing the pointer is the user's responsibilty.
719 */
720 ~deque()
721 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
722 _M_get_Tp_allocator()); }
723
724 /**
725 * @brief %Deque assignment operator.
726 * @param x A %deque of identical element and allocator types.
727 *
728 * All the elements of @a x are copied, but unlike the copy constructor,
729 * the allocator object is not copied.
730 */
731 deque&
732 operator=(const deque& __x);
733
734 /**
735 * @brief Assigns a given value to a %deque.
736 * @param n Number of elements to be assigned.
737 * @param val Value to be assigned.
738 *
739 * This function fills a %deque with @a n copies of the given
740 * value. Note that the assignment completely changes the
741 * %deque and that the resulting %deque's size is the same as
742 * the number of elements assigned. Old data may be lost.
743 */
744 void
745 assign(size_type __n, const value_type& __val)
746 { _M_fill_assign(__n, __val); }
747
748 /**
749 * @brief Assigns a range to a %deque.
750 * @param first An input iterator.
751 * @param last An input iterator.
752 *
753 * This function fills a %deque with copies of the elements in the
754 * range [first,last).
755 *
756 * Note that the assignment completely changes the %deque and that the
757 * resulting %deque's size is the same as the number of elements
758 * assigned. Old data may be lost.
759 */
760 template<typename _InputIterator>
761 void
762 assign(_InputIterator __first, _InputIterator __last)
763 {
764 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
765 _M_assign_dispatch(__first, __last, _Integral());
766 }
767
768 /// Get a copy of the memory allocation object.
769 allocator_type
770 get_allocator() const
771 { return _Base::get_allocator(); }
772
773 // iterators
774 /**
775 * Returns a read/write iterator that points to the first element in the
776 * %deque. Iteration is done in ordinary element order.
777 */
778 iterator
779 begin()
780 { return this->_M_impl._M_start; }
781
782 /**
783 * Returns a read-only (constant) iterator that points to the first
784 * element in the %deque. Iteration is done in ordinary element order.
785 */
786 const_iterator
787 begin() const
788 { return this->_M_impl._M_start; }
789
790 /**
791 * Returns a read/write iterator that points one past the last
792 * element in the %deque. Iteration is done in ordinary
793 * element order.
794 */
795 iterator
796 end()
797 { return this->_M_impl._M_finish; }
798
799 /**
800 * Returns a read-only (constant) iterator that points one past
801 * the last element in the %deque. Iteration is done in
802 * ordinary element order.
803 */
804 const_iterator
805 end() const
806 { return this->_M_impl._M_finish; }
807
808 /**
809 * Returns a read/write reverse iterator that points to the
810 * last element in the %deque. Iteration is done in reverse
811 * element order.
812 */
813 reverse_iterator
814 rbegin()
815 { return reverse_iterator(this->_M_impl._M_finish); }
816
817 /**
818 * Returns a read-only (constant) reverse iterator that points
819 * to the last element in the %deque. Iteration is done in
820 * reverse element order.
821 */
822 const_reverse_iterator
823 rbegin() const
824 { return const_reverse_iterator(this->_M_impl._M_finish); }
825
826 /**
827 * Returns a read/write reverse iterator that points to one
828 * before the first element in the %deque. Iteration is done
829 * in reverse element order.
830 */
831 reverse_iterator
832 rend() { return reverse_iterator(this->_M_impl._M_start); }
833
834 /**
835 * Returns a read-only (constant) reverse iterator that points
836 * to one before the first element in the %deque. Iteration is
837 * done in reverse element order.
838 */
839 const_reverse_iterator
840 rend() const
841 { return const_reverse_iterator(this->_M_impl._M_start); }
842
843 // [23.2.1.2] capacity
844 /** Returns the number of elements in the %deque. */
845 size_type
846 size() const
847 { return this->_M_impl._M_finish - this->_M_impl._M_start; }
848
849 /** Returns the size() of the largest possible %deque. */
850 size_type
851 max_size() const
852 { return size_type(-1); }
853
854 /**
855 * @brief Resizes the %deque to the specified number of elements.
856 * @param new_size Number of elements the %deque should contain.
857 * @param x Data with which new elements should be populated.
858 *
859 * This function will %resize the %deque to the specified
860 * number of elements. If the number is smaller than the
861 * %deque's current size the %deque is truncated, otherwise the
862 * %deque is extended and new elements are populated with given
863 * data.
864 */
865 void
866 resize(size_type __new_size, value_type __x = value_type())
867 {
868 const size_type __len = size();
869 if (__new_size < __len)
870 erase(this->_M_impl._M_start + __new_size, this->_M_impl._M_finish);
871 else
872 insert(this->_M_impl._M_finish, __new_size - __len, __x);
873 }
874
875 /**
876 * Returns true if the %deque is empty. (Thus begin() would
877 * equal end().)
878 */
879 bool
880 empty() const
881 { return this->_M_impl._M_finish == this->_M_impl._M_start; }
882
883 // element access
884 /**
885 * @brief Subscript access to the data contained in the %deque.
886 * @param n The index of the element for which data should be
887 * accessed.
888 * @return Read/write reference to data.
889 *
890 * This operator allows for easy, array-style, data access.
891 * Note that data access with this operator is unchecked and
892 * out_of_range lookups are not defined. (For checked lookups
893 * see at().)
894 */
895 reference
896 operator[](size_type __n)
897 { return this->_M_impl._M_start[difference_type(__n)]; }
898
899 /**
900 * @brief Subscript access to the data contained in the %deque.
901 * @param n The index of the element for which data should be
902 * accessed.
903 * @return Read-only (constant) reference to data.
904 *
905 * This operator allows for easy, array-style, data access.
906 * Note that data access with this operator is unchecked and
907 * out_of_range lookups are not defined. (For checked lookups
908 * see at().)
909 */
910 const_reference
911 operator[](size_type __n) const
912 { return this->_M_impl._M_start[difference_type(__n)]; }
913
914 protected:
915 /// @if maint Safety check used only from at(). @endif
916 void
917 _M_range_check(size_type __n) const
918 {
919 if (__n >= this->size())
920 __throw_out_of_range(__N("deque::_M_range_check"));
921 }
922
923 public:
924 /**
925 * @brief Provides access to the data contained in the %deque.
926 * @param n The index of the element for which data should be
927 * accessed.
928 * @return Read/write reference to data.
929 * @throw std::out_of_range If @a n is an invalid index.
930 *
931 * This function provides for safer data access. The parameter
932 * is first checked that it is in the range of the deque. The
933 * function throws out_of_range if the check fails.
934 */
935 reference
936 at(size_type __n)
937 {
938 _M_range_check(__n);
939 return (*this)[__n];
940 }
941
942 /**
943 * @brief Provides access to the data contained in the %deque.
944 * @param n The index of the element for which data should be
945 * accessed.
946 * @return Read-only (constant) reference to data.
947 * @throw std::out_of_range If @a n is an invalid index.
948 *
949 * This function provides for safer data access. The parameter is first
950 * checked that it is in the range of the deque. The function throws
951 * out_of_range if the check fails.
952 */
953 const_reference
954 at(size_type __n) const
955 {
956 _M_range_check(__n);
957 return (*this)[__n];
958 }
959
960 /**
961 * Returns a read/write reference to the data at the first
962 * element of the %deque.
963 */
964 reference
965 front()
966 { return *begin(); }
967
968 /**
969 * Returns a read-only (constant) reference to the data at the first
970 * element of the %deque.
971 */
972 const_reference
973 front() const
974 { return *begin(); }
975
976 /**
977 * Returns a read/write reference to the data at the last element of the
978 * %deque.
979 */
980 reference
981 back()
982 {
983 iterator __tmp = end();
984 --__tmp;
985 return *__tmp;
986 }
987
988 /**
989 * Returns a read-only (constant) reference to the data at the last
990 * element of the %deque.
991 */
992 const_reference
993 back() const
994 {
995 const_iterator __tmp = end();
996 --__tmp;
997 return *__tmp;
998 }
999
1000 // [23.2.1.2] modifiers
1001 /**
1002 * @brief Add data to the front of the %deque.
1003 * @param x Data to be added.
1004 *
1005 * This is a typical stack operation. The function creates an
1006 * element at the front of the %deque and assigns the given
1007 * data to it. Due to the nature of a %deque this operation
1008 * can be done in constant time.
1009 */
1010 void
1011 push_front(const value_type& __x)
1012 {
1013 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1014 {
1015 this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1016 --this->_M_impl._M_start._M_cur;
1017 }
1018 else
1019 _M_push_front_aux(__x);
1020 }
1021
1022 /**
1023 * @brief Add data to the end of the %deque.
1024 * @param x Data to be added.
1025 *
1026 * This is a typical stack operation. The function creates an
1027 * element at the end of the %deque and assigns the given data
1028 * to it. Due to the nature of a %deque this operation can be
1029 * done in constant time.
1030 */
1031 void
1032 push_back(const value_type& __x)
1033 {
1034 if (this->_M_impl._M_finish._M_cur
1035 != this->_M_impl._M_finish._M_last - 1)
1036 {
1037 this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1038 ++this->_M_impl._M_finish._M_cur;
1039 }
1040 else
1041 _M_push_back_aux(__x);
1042 }
1043
1044 /**
1045 * @brief Removes first element.
1046 *
1047 * This is a typical stack operation. It shrinks the %deque by one.
1048 *
1049 * Note that no data is returned, and if the first element's data is
1050 * needed, it should be retrieved before pop_front() is called.
1051 */
1052 void
1053 pop_front()
1054 {
1055 if (this->_M_impl._M_start._M_cur
1056 != this->_M_impl._M_start._M_last - 1)
1057 {
1058 this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1059 ++this->_M_impl._M_start._M_cur;
1060 }
1061 else
1062 _M_pop_front_aux();
1063 }
1064
1065 /**
1066 * @brief Removes last element.
1067 *
1068 * This is a typical stack operation. It shrinks the %deque by one.
1069 *
1070 * Note that no data is returned, and if the last element's data is
1071 * needed, it should be retrieved before pop_back() is called.
1072 */
1073 void
1074 pop_back()
1075 {
1076 if (this->_M_impl._M_finish._M_cur
1077 != this->_M_impl._M_finish._M_first)
1078 {
1079 --this->_M_impl._M_finish._M_cur;
1080 this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1081 }
1082 else
1083 _M_pop_back_aux();
1084 }
1085
1086 /**
1087 * @brief Inserts given value into %deque before specified iterator.
1088 * @param position An iterator into the %deque.
1089 * @param x Data to be inserted.
1090 * @return An iterator that points to the inserted data.
1091 *
1092 * This function will insert a copy of the given value before the
1093 * specified location.
1094 */
1095 iterator
1096 insert(iterator position, const value_type& __x);
1097
1098 /**
1099 * @brief Inserts a number of copies of given data into the %deque.
1100 * @param position An iterator into the %deque.
1101 * @param n Number of elements to be inserted.
1102 * @param x Data to be inserted.
1103 *
1104 * This function will insert a specified number of copies of the given
1105 * data before the location specified by @a position.
1106 */
1107 void
1108 insert(iterator __position, size_type __n, const value_type& __x)
1109 { _M_fill_insert(__position, __n, __x); }
1110
1111 /**
1112 * @brief Inserts a range into the %deque.
1113 * @param position An iterator into the %deque.
1114 * @param first An input iterator.
1115 * @param last An input iterator.
1116 *
1117 * This function will insert copies of the data in the range
1118 * [first,last) into the %deque before the location specified
1119 * by @a pos. This is known as "range insert."
1120 */
1121 template<typename _InputIterator>
1122 void
1123 insert(iterator __position, _InputIterator __first,
1124 _InputIterator __last)
1125 {
1126 // Check whether it's an integral type. If so, it's not an iterator.
1127 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1128 _M_insert_dispatch(__position, __first, __last, _Integral());
1129 }
1130
1131 /**
1132 * @brief Remove element at given position.
1133 * @param position Iterator pointing to element to be erased.
1134 * @return An iterator pointing to the next element (or end()).
1135 *
1136 * This function will erase the element at the given position and thus
1137 * shorten the %deque by one.
1138 *
1139 * The user is cautioned that
1140 * this function only erases the element, and that if the element is
1141 * itself a pointer, the pointed-to memory is not touched in any way.
1142 * Managing the pointer is the user's responsibilty.
1143 */
1144 iterator
1145 erase(iterator __position);
1146
1147 /**
1148 * @brief Remove a range of elements.
1149 * @param first Iterator pointing to the first element to be erased.
1150 * @param last Iterator pointing to one past the last element to be
1151 * erased.
1152 * @return An iterator pointing to the element pointed to by @a last
1153 * prior to erasing (or end()).
1154 *
1155 * This function will erase the elements in the range [first,last) and
1156 * shorten the %deque accordingly.
1157 *
1158 * The user is cautioned that
1159 * this function only erases the elements, and that if the elements
1160 * themselves are pointers, the pointed-to memory is not touched in any
1161 * way. Managing the pointer is the user's responsibilty.
1162 */
1163 iterator
1164 erase(iterator __first, iterator __last);
1165
1166 /**
1167 * @brief Swaps data with another %deque.
1168 * @param x A %deque of the same element and allocator types.
1169 *
1170 * This exchanges the elements between two deques in constant time.
1171 * (Four pointers, so it should be quite fast.)
1172 * Note that the global std::swap() function is specialized such that
1173 * std::swap(d1,d2) will feed to this function.
1174 */
1175 void
1176 swap(deque& __x)
1177 {
1178 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1179 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1180 std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1181 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1182 }
1183
1184 /**
1185 * Erases all the elements. Note that this function only erases the
1186 * elements, and that if the elements themselves are pointers, the
1187 * pointed-to memory is not touched in any way. Managing the pointer is
1188 * the user's responsibilty.
1189 */
1190 void clear();
1191
1192 protected:
1193 // Internal constructor functions follow.
1194
1195 // called by the range constructor to implement [23.1.1]/9
1196 template<typename _Integer>
1197 void
1198 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1199 {
1200 _M_initialize_map(__n);
1201 _M_fill_initialize(__x);
1202 }
1203
1204 // called by the range constructor to implement [23.1.1]/9
1205 template<typename _InputIterator>
1206 void
1207 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1208 __false_type)
1209 {
1210 typedef typename std::iterator_traits<_InputIterator>::
1211 iterator_category _IterCategory;
1212 _M_range_initialize(__first, __last, _IterCategory());
1213 }
1214
1215 // called by the second initialize_dispatch above
1216 //@{
1217 /**
1218 * @if maint
1219 * @brief Fills the deque with whatever is in [first,last).
1220 * @param first An input iterator.
1221 * @param last An input iterator.
1222 * @return Nothing.
1223 *
1224 * If the iterators are actually forward iterators (or better), then the
1225 * memory layout can be done all at once. Else we move forward using
1226 * push_back on each value from the iterator.
1227 * @endif
1228 */
1229 template<typename _InputIterator>
1230 void
1231 _M_range_initialize(_InputIterator __first, _InputIterator __last,
1232 std::input_iterator_tag);
1233
1234 // called by the second initialize_dispatch above
1235 template<typename _ForwardIterator>
1236 void
1237 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1238 std::forward_iterator_tag);
1239 //@}
1240
1241 /**
1242 * @if maint
1243 * @brief Fills the %deque with copies of value.
1244 * @param value Initial value.
1245 * @return Nothing.
1246 * @pre _M_start and _M_finish have already been initialized,
1247 * but none of the %deque's elements have yet been constructed.
1248 *
1249 * This function is called only when the user provides an explicit size
1250 * (with or without an explicit exemplar value).
1251 * @endif
1252 */
1253 void
1254 _M_fill_initialize(const value_type& __value);
1255
1256 // Internal assign functions follow. The *_aux functions do the actual
1257 // assignment work for the range versions.
1258
1259 // called by the range assign to implement [23.1.1]/9
1260 template<typename _Integer>
1261 void
1262 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1263 {
1264 _M_fill_assign(static_cast<size_type>(__n),
1265 static_cast<value_type>(__val));
1266 }
1267
1268 // called by the range assign to implement [23.1.1]/9
1269 template<typename _InputIterator>
1270 void
1271 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1272 __false_type)
1273 {
1274 typedef typename std::iterator_traits<_InputIterator>::
1275 iterator_category _IterCategory;
1276 _M_assign_aux(__first, __last, _IterCategory());
1277 }
1278
1279 // called by the second assign_dispatch above
1280 template<typename _InputIterator>
1281 void
1282 _M_assign_aux(_InputIterator __first, _InputIterator __last,
1283 std::input_iterator_tag);
1284
1285 // called by the second assign_dispatch above
1286 template<typename _ForwardIterator>
1287 void
1288 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1289 std::forward_iterator_tag)
1290 {
1291 const size_type __len = std::distance(__first, __last);
1292 if (__len > size())
1293 {
1294 _ForwardIterator __mid = __first;
1295 std::advance(__mid, size());
1296 std::copy(__first, __mid, begin());
1297 insert(end(), __mid, __last);
1298 }
1299 else
1300 erase(std::copy(__first, __last, begin()), end());
1301 }
1302
1303 // Called by assign(n,t), and the range assign when it turns out
1304 // to be the same thing.
1305 void
1306 _M_fill_assign(size_type __n, const value_type& __val)
1307 {
1308 if (__n > size())
1309 {
1310 std::fill(begin(), end(), __val);
1311 insert(end(), __n - size(), __val);
1312 }
1313 else
1314 {
1315 erase(begin() + __n, end());
1316 std::fill(begin(), end(), __val);
1317 }
1318 }
1319
1320 //@{
1321 /**
1322 * @if maint
1323 * @brief Helper functions for push_* and pop_*.
1324 * @endif
1325 */
1326 void _M_push_back_aux(const value_type&);
1327 void _M_push_front_aux(const value_type&);
1328 void _M_pop_back_aux();
1329 void _M_pop_front_aux();
1330 //@}
1331
1332 // Internal insert functions follow. The *_aux functions do the actual
1333 // insertion work when all shortcuts fail.
1334
1335 // called by the range insert to implement [23.1.1]/9
1336 template<typename _Integer>
1337 void
1338 _M_insert_dispatch(iterator __pos,
1339 _Integer __n, _Integer __x, __true_type)
1340 {
1341 _M_fill_insert(__pos, static_cast<size_type>(__n),
1342 static_cast<value_type>(__x));
1343 }
1344
1345 // called by the range insert to implement [23.1.1]/9
1346 template<typename _InputIterator>
1347 void
1348 _M_insert_dispatch(iterator __pos,
1349 _InputIterator __first, _InputIterator __last,
1350 __false_type)
1351 {
1352 typedef typename std::iterator_traits<_InputIterator>::
1353 iterator_category _IterCategory;
1354 _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1355 }
1356
1357 // called by the second insert_dispatch above
1358 template<typename _InputIterator>
1359 void
1360 _M_range_insert_aux(iterator __pos, _InputIterator __first,
1361 _InputIterator __last, std::input_iterator_tag);
1362
1363 // called by the second insert_dispatch above
1364 template<typename _ForwardIterator>
1365 void
1366 _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1367 _ForwardIterator __last, std::forward_iterator_tag);
1368
1369 // Called by insert(p,n,x), and the range insert when it turns out to be
1370 // the same thing. Can use fill functions in optimal situations,
1371 // otherwise passes off to insert_aux(p,n,x).
1372 void
1373 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1374
1375 // called by insert(p,x)
1376 iterator
1377 _M_insert_aux(iterator __pos, const value_type& __x);
1378
1379 // called by insert(p,n,x) via fill_insert
1380 void
1381 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1382
1383 // called by range_insert_aux for forward iterators
1384 template<typename _ForwardIterator>
1385 void
1386 _M_insert_aux(iterator __pos,
1387 _ForwardIterator __first, _ForwardIterator __last,
1388 size_type __n);
1389
1390 //@{
1391 /**
1392 * @if maint
1393 * @brief Memory-handling helpers for the previous internal insert
1394 * functions.
1395 * @endif
1396 */
1397 iterator
1398 _M_reserve_elements_at_front(size_type __n)
1399 {
1400 const size_type __vacancies = this->_M_impl._M_start._M_cur
1401 - this->_M_impl._M_start._M_first;
1402 if (__n > __vacancies)
1403 _M_new_elements_at_front(__n - __vacancies);
1404 return this->_M_impl._M_start - difference_type(__n);
1405 }
1406
1407 iterator
1408 _M_reserve_elements_at_back(size_type __n)
1409 {
1410 const size_type __vacancies = (this->_M_impl._M_finish._M_last
1411 - this->_M_impl._M_finish._M_cur) - 1;
1412 if (__n > __vacancies)
1413 _M_new_elements_at_back(__n - __vacancies);
1414 return this->_M_impl._M_finish + difference_type(__n);
1415 }
1416
1417 void
1418 _M_new_elements_at_front(size_type __new_elements);
1419
1420 void
1421 _M_new_elements_at_back(size_type __new_elements);
1422 //@}
1423
1424
1425 //@{
1426 /**
1427 * @if maint
1428 * @brief Memory-handling helpers for the major %map.
1429 *
1430 * Makes sure the _M_map has space for new nodes. Does not
1431 * actually add the nodes. Can invalidate _M_map pointers.
1432 * (And consequently, %deque iterators.)
1433 * @endif
1434 */
1435 void
1436 _M_reserve_map_at_back (size_type __nodes_to_add = 1)
1437 {
1438 if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1439 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1440 _M_reallocate_map(__nodes_to_add, false);
1441 }
1442
1443 void
1444 _M_reserve_map_at_front (size_type __nodes_to_add = 1)
1445 {
1446 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1447 - this->_M_impl._M_map))
1448 _M_reallocate_map(__nodes_to_add, true);
1449 }
1450
1451 void
1452 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1453 //@}
1454 };
1455
1456
1457 /**
1458 * @brief Deque equality comparison.
1459 * @param x A %deque.
1460 * @param y A %deque of the same type as @a x.
1461 * @return True iff the size and elements of the deques are equal.
1462 *
1463 * This is an equivalence relation. It is linear in the size of the
1464 * deques. Deques are considered equivalent if their sizes are equal,
1465 * and if corresponding elements compare equal.
1466 */
1467 template<typename _Tp, typename _Alloc>
1468 inline bool
1469 operator==(const deque<_Tp, _Alloc>& __x,
1470 const deque<_Tp, _Alloc>& __y)
1471 { return __x.size() == __y.size()
1472 && std::equal(__x.begin(), __x.end(), __y.begin()); }
1473
1474 /**
1475 * @brief Deque ordering relation.
1476 * @param x A %deque.
1477 * @param y A %deque of the same type as @a x.
1478 * @return True iff @a x is lexicographically less than @a y.
1479 *
1480 * This is a total ordering relation. It is linear in the size of the
1481 * deques. The elements must be comparable with @c <.
1482 *
1483 * See std::lexicographical_compare() for how the determination is made.
1484 */
1485 template<typename _Tp, typename _Alloc>
1486 inline bool
1487 operator<(const deque<_Tp, _Alloc>& __x,
1488 const deque<_Tp, _Alloc>& __y)
1489 { return lexicographical_compare(__x.begin(), __x.end(),
1490 __y.begin(), __y.end()); }
1491
1492 /// Based on operator==
1493 template<typename _Tp, typename _Alloc>
1494 inline bool
1495 operator!=(const deque<_Tp, _Alloc>& __x,
1496 const deque<_Tp, _Alloc>& __y)
1497 { return !(__x == __y); }
1498
1499 /// Based on operator<
1500 template<typename _Tp, typename _Alloc>
1501 inline bool
1502 operator>(const deque<_Tp, _Alloc>& __x,
1503 const deque<_Tp, _Alloc>& __y)
1504 { return __y < __x; }
1505
1506 /// Based on operator<
1507 template<typename _Tp, typename _Alloc>
1508 inline bool
1509 operator<=(const deque<_Tp, _Alloc>& __x,
1510 const deque<_Tp, _Alloc>& __y)
1511 { return !(__y < __x); }
1512
1513 /// Based on operator<
1514 template<typename _Tp, typename _Alloc>
1515 inline bool
1516 operator>=(const deque<_Tp, _Alloc>& __x,
1517 const deque<_Tp, _Alloc>& __y)
1518 { return !(__x < __y); }
1519
1520 /// See std::deque::swap().
1521 template<typename _Tp, typename _Alloc>
1522 inline void
1523 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
1524 { __x.swap(__y); }
1525 } // namespace std
1526
1527 #endif /* _DEQUE_H */