re PR libstdc++/58764 ([lwg/2193] error: converting to ‘const std::vector<std::basic_...
[gcc.git] / libstdc++-v3 / include / bits / stl_deque.h
1 // Deque implementation -*- C++ -*-
2
3 // Copyright (C) 2001-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1997
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51 /** @file bits/stl_deque.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{deque}
54 */
55
56 #ifndef _STL_DEQUE_H
57 #define _STL_DEQUE_H 1
58
59 #include <bits/concept_check.h>
60 #include <bits/stl_iterator_base_types.h>
61 #include <bits/stl_iterator_base_funcs.h>
62 #if __cplusplus >= 201103L
63 #include <initializer_list>
64 #endif
65
66 namespace std _GLIBCXX_VISIBILITY(default)
67 {
68 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69
70 /**
71 * @brief This function controls the size of memory nodes.
72 * @param __size The size of an element.
73 * @return The number (not byte size) of elements per node.
74 *
75 * This function started off as a compiler kludge from SGI, but
76 * seems to be a useful wrapper around a repeated constant
77 * expression. The @b 512 is tunable (and no other code needs to
78 * change), but no investigation has been done since inheriting the
79 * SGI code. Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
80 * you are doing, however: changing it breaks the binary
81 * compatibility!!
82 */
83
84 #ifndef _GLIBCXX_DEQUE_BUF_SIZE
85 #define _GLIBCXX_DEQUE_BUF_SIZE 512
86 #endif
87
88 inline size_t
89 __deque_buf_size(size_t __size)
90 { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
91 ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }
92
93
94 /**
95 * @brief A deque::iterator.
96 *
97 * Quite a bit of intelligence here. Much of the functionality of
98 * deque is actually passed off to this class. A deque holds two
99 * of these internally, marking its valid range. Access to
100 * elements is done as offsets of either of those two, relying on
101 * operator overloading in this class.
102 *
103 * All the functions are op overloads except for _M_set_node.
104 */
105 template<typename _Tp, typename _Ref, typename _Ptr>
106 struct _Deque_iterator
107 {
108 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
109 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
110
111 static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
112 { return __deque_buf_size(sizeof(_Tp)); }
113
114 typedef std::random_access_iterator_tag iterator_category;
115 typedef _Tp value_type;
116 typedef _Ptr pointer;
117 typedef _Ref reference;
118 typedef size_t size_type;
119 typedef ptrdiff_t difference_type;
120 typedef _Tp** _Map_pointer;
121 typedef _Deque_iterator _Self;
122
123 _Tp* _M_cur;
124 _Tp* _M_first;
125 _Tp* _M_last;
126 _Map_pointer _M_node;
127
128 _Deque_iterator(_Tp* __x, _Map_pointer __y) _GLIBCXX_NOEXCEPT
129 : _M_cur(__x), _M_first(*__y),
130 _M_last(*__y + _S_buffer_size()), _M_node(__y) { }
131
132 _Deque_iterator() _GLIBCXX_NOEXCEPT
133 : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { }
134
135 _Deque_iterator(const iterator& __x) _GLIBCXX_NOEXCEPT
136 : _M_cur(__x._M_cur), _M_first(__x._M_first),
137 _M_last(__x._M_last), _M_node(__x._M_node) { }
138
139 iterator
140 _M_const_cast() const _GLIBCXX_NOEXCEPT
141 { return iterator(_M_cur, _M_node); }
142
143 reference
144 operator*() const _GLIBCXX_NOEXCEPT
145 { return *_M_cur; }
146
147 pointer
148 operator->() const _GLIBCXX_NOEXCEPT
149 { return _M_cur; }
150
151 _Self&
152 operator++() _GLIBCXX_NOEXCEPT
153 {
154 ++_M_cur;
155 if (_M_cur == _M_last)
156 {
157 _M_set_node(_M_node + 1);
158 _M_cur = _M_first;
159 }
160 return *this;
161 }
162
163 _Self
164 operator++(int) _GLIBCXX_NOEXCEPT
165 {
166 _Self __tmp = *this;
167 ++*this;
168 return __tmp;
169 }
170
171 _Self&
172 operator--() _GLIBCXX_NOEXCEPT
173 {
174 if (_M_cur == _M_first)
175 {
176 _M_set_node(_M_node - 1);
177 _M_cur = _M_last;
178 }
179 --_M_cur;
180 return *this;
181 }
182
183 _Self
184 operator--(int) _GLIBCXX_NOEXCEPT
185 {
186 _Self __tmp = *this;
187 --*this;
188 return __tmp;
189 }
190
191 _Self&
192 operator+=(difference_type __n) _GLIBCXX_NOEXCEPT
193 {
194 const difference_type __offset = __n + (_M_cur - _M_first);
195 if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
196 _M_cur += __n;
197 else
198 {
199 const difference_type __node_offset =
200 __offset > 0 ? __offset / difference_type(_S_buffer_size())
201 : -difference_type((-__offset - 1)
202 / _S_buffer_size()) - 1;
203 _M_set_node(_M_node + __node_offset);
204 _M_cur = _M_first + (__offset - __node_offset
205 * difference_type(_S_buffer_size()));
206 }
207 return *this;
208 }
209
210 _Self
211 operator+(difference_type __n) const _GLIBCXX_NOEXCEPT
212 {
213 _Self __tmp = *this;
214 return __tmp += __n;
215 }
216
217 _Self&
218 operator-=(difference_type __n) _GLIBCXX_NOEXCEPT
219 { return *this += -__n; }
220
221 _Self
222 operator-(difference_type __n) const _GLIBCXX_NOEXCEPT
223 {
224 _Self __tmp = *this;
225 return __tmp -= __n;
226 }
227
228 reference
229 operator[](difference_type __n) const _GLIBCXX_NOEXCEPT
230 { return *(*this + __n); }
231
232 /**
233 * Prepares to traverse new_node. Sets everything except
234 * _M_cur, which should therefore be set by the caller
235 * immediately afterwards, based on _M_first and _M_last.
236 */
237 void
238 _M_set_node(_Map_pointer __new_node) _GLIBCXX_NOEXCEPT
239 {
240 _M_node = __new_node;
241 _M_first = *__new_node;
242 _M_last = _M_first + difference_type(_S_buffer_size());
243 }
244 };
245
246 // Note: we also provide overloads whose operands are of the same type in
247 // order to avoid ambiguous overload resolution when std::rel_ops operators
248 // are in scope (for additional details, see libstdc++/3628)
249 template<typename _Tp, typename _Ref, typename _Ptr>
250 inline bool
251 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
252 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
253 { return __x._M_cur == __y._M_cur; }
254
255 template<typename _Tp, typename _RefL, typename _PtrL,
256 typename _RefR, typename _PtrR>
257 inline bool
258 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
259 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
260 { return __x._M_cur == __y._M_cur; }
261
262 template<typename _Tp, typename _Ref, typename _Ptr>
263 inline bool
264 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
265 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
266 { return !(__x == __y); }
267
268 template<typename _Tp, typename _RefL, typename _PtrL,
269 typename _RefR, typename _PtrR>
270 inline bool
271 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
272 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
273 { return !(__x == __y); }
274
275 template<typename _Tp, typename _Ref, typename _Ptr>
276 inline bool
277 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
278 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
279 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
280 : (__x._M_node < __y._M_node); }
281
282 template<typename _Tp, typename _RefL, typename _PtrL,
283 typename _RefR, typename _PtrR>
284 inline bool
285 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
286 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
287 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
288 : (__x._M_node < __y._M_node); }
289
290 template<typename _Tp, typename _Ref, typename _Ptr>
291 inline bool
292 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
293 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
294 { return __y < __x; }
295
296 template<typename _Tp, typename _RefL, typename _PtrL,
297 typename _RefR, typename _PtrR>
298 inline bool
299 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
300 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
301 { return __y < __x; }
302
303 template<typename _Tp, typename _Ref, typename _Ptr>
304 inline bool
305 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
306 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
307 { return !(__y < __x); }
308
309 template<typename _Tp, typename _RefL, typename _PtrL,
310 typename _RefR, typename _PtrR>
311 inline bool
312 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
313 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
314 { return !(__y < __x); }
315
316 template<typename _Tp, typename _Ref, typename _Ptr>
317 inline bool
318 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
319 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
320 { return !(__x < __y); }
321
322 template<typename _Tp, typename _RefL, typename _PtrL,
323 typename _RefR, typename _PtrR>
324 inline bool
325 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
326 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
327 { return !(__x < __y); }
328
329 // _GLIBCXX_RESOLVE_LIB_DEFECTS
330 // According to the resolution of DR179 not only the various comparison
331 // operators but also operator- must accept mixed iterator/const_iterator
332 // parameters.
333 template<typename _Tp, typename _Ref, typename _Ptr>
334 inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
335 operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
336 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
337 {
338 return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
339 (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
340 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
341 + (__y._M_last - __y._M_cur);
342 }
343
344 template<typename _Tp, typename _RefL, typename _PtrL,
345 typename _RefR, typename _PtrR>
346 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
347 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
348 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
349 {
350 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
351 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
352 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
353 + (__y._M_last - __y._M_cur);
354 }
355
356 template<typename _Tp, typename _Ref, typename _Ptr>
357 inline _Deque_iterator<_Tp, _Ref, _Ptr>
358 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
359 _GLIBCXX_NOEXCEPT
360 { return __x + __n; }
361
362 template<typename _Tp>
363 void
364 fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,
365 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);
366
367 template<typename _Tp>
368 _Deque_iterator<_Tp, _Tp&, _Tp*>
369 copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
370 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
371 _Deque_iterator<_Tp, _Tp&, _Tp*>);
372
373 template<typename _Tp>
374 inline _Deque_iterator<_Tp, _Tp&, _Tp*>
375 copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
376 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
377 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
378 { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
379 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
380 __result); }
381
382 template<typename _Tp>
383 _Deque_iterator<_Tp, _Tp&, _Tp*>
384 copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
385 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
386 _Deque_iterator<_Tp, _Tp&, _Tp*>);
387
388 template<typename _Tp>
389 inline _Deque_iterator<_Tp, _Tp&, _Tp*>
390 copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
391 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
392 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
393 { return std::copy_backward(_Deque_iterator<_Tp,
394 const _Tp&, const _Tp*>(__first),
395 _Deque_iterator<_Tp,
396 const _Tp&, const _Tp*>(__last),
397 __result); }
398
399 #if __cplusplus >= 201103L
400 template<typename _Tp>
401 _Deque_iterator<_Tp, _Tp&, _Tp*>
402 move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
403 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
404 _Deque_iterator<_Tp, _Tp&, _Tp*>);
405
406 template<typename _Tp>
407 inline _Deque_iterator<_Tp, _Tp&, _Tp*>
408 move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
409 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
410 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
411 { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
412 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
413 __result); }
414
415 template<typename _Tp>
416 _Deque_iterator<_Tp, _Tp&, _Tp*>
417 move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
418 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
419 _Deque_iterator<_Tp, _Tp&, _Tp*>);
420
421 template<typename _Tp>
422 inline _Deque_iterator<_Tp, _Tp&, _Tp*>
423 move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
424 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
425 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
426 { return std::move_backward(_Deque_iterator<_Tp,
427 const _Tp&, const _Tp*>(__first),
428 _Deque_iterator<_Tp,
429 const _Tp&, const _Tp*>(__last),
430 __result); }
431 #endif
432
433 /**
434 * Deque base class. This class provides the unified face for %deque's
435 * allocation. This class's constructor and destructor allocate and
436 * deallocate (but do not initialize) storage. This makes %exception
437 * safety easier.
438 *
439 * Nothing in this class ever constructs or destroys an actual Tp element.
440 * (Deque handles that itself.) Only/All memory management is performed
441 * here.
442 */
443 template<typename _Tp, typename _Alloc>
444 class _Deque_base
445 {
446 public:
447 typedef _Alloc allocator_type;
448
449 allocator_type
450 get_allocator() const _GLIBCXX_NOEXCEPT
451 { return allocator_type(_M_get_Tp_allocator()); }
452
453 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
454 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
455
456 _Deque_base()
457 : _M_impl()
458 { _M_initialize_map(0); }
459
460 _Deque_base(size_t __num_elements)
461 : _M_impl()
462 { _M_initialize_map(__num_elements); }
463
464 _Deque_base(const allocator_type& __a, size_t __num_elements)
465 : _M_impl(__a)
466 { _M_initialize_map(__num_elements); }
467
468 _Deque_base(const allocator_type& __a)
469 : _M_impl(__a)
470 { _M_initialize_map(0); }
471
472 #if __cplusplus >= 201103L
473 _Deque_base(_Deque_base&& __x)
474 : _M_impl(std::move(__x._M_get_Tp_allocator()))
475 {
476 _M_initialize_map(0);
477 if (__x._M_impl._M_map)
478 {
479 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
480 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
481 std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
482 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
483 }
484 }
485 #endif
486
487 ~_Deque_base() _GLIBCXX_NOEXCEPT;
488
489 protected:
490 typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
491
492 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
493
494 //This struct encapsulates the implementation of the std::deque
495 //standard container and at the same time makes use of the EBO
496 //for empty allocators.
497 struct _Deque_impl
498 : public _Tp_alloc_type
499 {
500 _Tp** _M_map;
501 size_t _M_map_size;
502 iterator _M_start;
503 iterator _M_finish;
504
505 _Deque_impl()
506 : _Tp_alloc_type(), _M_map(0), _M_map_size(0),
507 _M_start(), _M_finish()
508 { }
509
510 _Deque_impl(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT
511 : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
512 _M_start(), _M_finish()
513 { }
514
515 #if __cplusplus >= 201103L
516 _Deque_impl(_Tp_alloc_type&& __a) _GLIBCXX_NOEXCEPT
517 : _Tp_alloc_type(std::move(__a)), _M_map(0), _M_map_size(0),
518 _M_start(), _M_finish()
519 { }
520 #endif
521 };
522
523 _Tp_alloc_type&
524 _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
525 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
526
527 const _Tp_alloc_type&
528 _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
529 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
530
531 _Map_alloc_type
532 _M_get_map_allocator() const _GLIBCXX_NOEXCEPT
533 { return _Map_alloc_type(_M_get_Tp_allocator()); }
534
535 _Tp*
536 _M_allocate_node()
537 {
538 return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
539 }
540
541 void
542 _M_deallocate_node(_Tp* __p) _GLIBCXX_NOEXCEPT
543 {
544 _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
545 }
546
547 _Tp**
548 _M_allocate_map(size_t __n)
549 { return _M_get_map_allocator().allocate(__n); }
550
551 void
552 _M_deallocate_map(_Tp** __p, size_t __n) _GLIBCXX_NOEXCEPT
553 { _M_get_map_allocator().deallocate(__p, __n); }
554
555 protected:
556 void _M_initialize_map(size_t);
557 void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
558 void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) _GLIBCXX_NOEXCEPT;
559 enum { _S_initial_map_size = 8 };
560
561 _Deque_impl _M_impl;
562 };
563
564 template<typename _Tp, typename _Alloc>
565 _Deque_base<_Tp, _Alloc>::
566 ~_Deque_base() _GLIBCXX_NOEXCEPT
567 {
568 if (this->_M_impl._M_map)
569 {
570 _M_destroy_nodes(this->_M_impl._M_start._M_node,
571 this->_M_impl._M_finish._M_node + 1);
572 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
573 }
574 }
575
576 /**
577 * @brief Layout storage.
578 * @param __num_elements The count of T's for which to allocate space
579 * at first.
580 * @return Nothing.
581 *
582 * The initial underlying memory layout is a bit complicated...
583 */
584 template<typename _Tp, typename _Alloc>
585 void
586 _Deque_base<_Tp, _Alloc>::
587 _M_initialize_map(size_t __num_elements)
588 {
589 const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
590 + 1);
591
592 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
593 size_t(__num_nodes + 2));
594 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
595
596 // For "small" maps (needing less than _M_map_size nodes), allocation
597 // starts in the middle elements and grows outwards. So nstart may be
598 // the beginning of _M_map, but for small maps it may be as far in as
599 // _M_map+3.
600
601 _Tp** __nstart = (this->_M_impl._M_map
602 + (this->_M_impl._M_map_size - __num_nodes) / 2);
603 _Tp** __nfinish = __nstart + __num_nodes;
604
605 __try
606 { _M_create_nodes(__nstart, __nfinish); }
607 __catch(...)
608 {
609 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
610 this->_M_impl._M_map = 0;
611 this->_M_impl._M_map_size = 0;
612 __throw_exception_again;
613 }
614
615 this->_M_impl._M_start._M_set_node(__nstart);
616 this->_M_impl._M_finish._M_set_node(__nfinish - 1);
617 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
618 this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
619 + __num_elements
620 % __deque_buf_size(sizeof(_Tp)));
621 }
622
623 template<typename _Tp, typename _Alloc>
624 void
625 _Deque_base<_Tp, _Alloc>::
626 _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
627 {
628 _Tp** __cur;
629 __try
630 {
631 for (__cur = __nstart; __cur < __nfinish; ++__cur)
632 *__cur = this->_M_allocate_node();
633 }
634 __catch(...)
635 {
636 _M_destroy_nodes(__nstart, __cur);
637 __throw_exception_again;
638 }
639 }
640
641 template<typename _Tp, typename _Alloc>
642 void
643 _Deque_base<_Tp, _Alloc>::
644 _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) _GLIBCXX_NOEXCEPT
645 {
646 for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
647 _M_deallocate_node(*__n);
648 }
649
650 /**
651 * @brief A standard container using fixed-size memory allocation and
652 * constant-time manipulation of elements at either end.
653 *
654 * @ingroup sequences
655 *
656 * @tparam _Tp Type of element.
657 * @tparam _Alloc Allocator type, defaults to allocator<_Tp>.
658 *
659 * Meets the requirements of a <a href="tables.html#65">container</a>, a
660 * <a href="tables.html#66">reversible container</a>, and a
661 * <a href="tables.html#67">sequence</a>, including the
662 * <a href="tables.html#68">optional sequence requirements</a>.
663 *
664 * In previous HP/SGI versions of deque, there was an extra template
665 * parameter so users could control the node size. This extension turned
666 * out to violate the C++ standard (it can be detected using template
667 * template parameters), and it was removed.
668 *
669 * Here's how a deque<Tp> manages memory. Each deque has 4 members:
670 *
671 * - Tp** _M_map
672 * - size_t _M_map_size
673 * - iterator _M_start, _M_finish
674 *
675 * map_size is at least 8. %map is an array of map_size
676 * pointers-to-@a nodes. (The name %map has nothing to do with the
677 * std::map class, and @b nodes should not be confused with
678 * std::list's usage of @a node.)
679 *
680 * A @a node has no specific type name as such, but it is referred
681 * to as @a node in this file. It is a simple array-of-Tp. If Tp
682 * is very large, there will be one Tp element per node (i.e., an
683 * @a array of one). For non-huge Tp's, node size is inversely
684 * related to Tp size: the larger the Tp, the fewer Tp's will fit
685 * in a node. The goal here is to keep the total size of a node
686 * relatively small and constant over different Tp's, to improve
687 * allocator efficiency.
688 *
689 * Not every pointer in the %map array will point to a node. If
690 * the initial number of elements in the deque is small, the
691 * /middle/ %map pointers will be valid, and the ones at the edges
692 * will be unused. This same situation will arise as the %map
693 * grows: available %map pointers, if any, will be on the ends. As
694 * new nodes are created, only a subset of the %map's pointers need
695 * to be copied @a outward.
696 *
697 * Class invariants:
698 * - For any nonsingular iterator i:
699 * - i.node points to a member of the %map array. (Yes, you read that
700 * correctly: i.node does not actually point to a node.) The member of
701 * the %map array is what actually points to the node.
702 * - i.first == *(i.node) (This points to the node (first Tp element).)
703 * - i.last == i.first + node_size
704 * - i.cur is a pointer in the range [i.first, i.last). NOTE:
705 * the implication of this is that i.cur is always a dereferenceable
706 * pointer, even if i is a past-the-end iterator.
707 * - Start and Finish are always nonsingular iterators. NOTE: this
708 * means that an empty deque must have one node, a deque with <N
709 * elements (where N is the node buffer size) must have one node, a
710 * deque with N through (2N-1) elements must have two nodes, etc.
711 * - For every node other than start.node and finish.node, every
712 * element in the node is an initialized object. If start.node ==
713 * finish.node, then [start.cur, finish.cur) are initialized
714 * objects, and the elements outside that range are uninitialized
715 * storage. Otherwise, [start.cur, start.last) and [finish.first,
716 * finish.cur) are initialized objects, and [start.first, start.cur)
717 * and [finish.cur, finish.last) are uninitialized storage.
718 * - [%map, %map + map_size) is a valid, non-empty range.
719 * - [start.node, finish.node] is a valid range contained within
720 * [%map, %map + map_size).
721 * - A pointer in the range [%map, %map + map_size) points to an allocated
722 * node if and only if the pointer is in the range
723 * [start.node, finish.node].
724 *
725 * Here's the magic: nothing in deque is @b aware of the discontiguous
726 * storage!
727 *
728 * The memory setup and layout occurs in the parent, _Base, and the iterator
729 * class is entirely responsible for @a leaping from one node to the next.
730 * All the implementation routines for deque itself work only through the
731 * start and finish iterators. This keeps the routines simple and sane,
732 * and we can use other standard algorithms as well.
733 */
734 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
735 class deque : protected _Deque_base<_Tp, _Alloc>
736 {
737 // concept requirements
738 typedef typename _Alloc::value_type _Alloc_value_type;
739 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
740 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
741
742 typedef _Deque_base<_Tp, _Alloc> _Base;
743 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
744
745 public:
746 typedef _Tp value_type;
747 typedef typename _Tp_alloc_type::pointer pointer;
748 typedef typename _Tp_alloc_type::const_pointer const_pointer;
749 typedef typename _Tp_alloc_type::reference reference;
750 typedef typename _Tp_alloc_type::const_reference const_reference;
751 typedef typename _Base::iterator iterator;
752 typedef typename _Base::const_iterator const_iterator;
753 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
754 typedef std::reverse_iterator<iterator> reverse_iterator;
755 typedef size_t size_type;
756 typedef ptrdiff_t difference_type;
757 typedef _Alloc allocator_type;
758
759 protected:
760 typedef pointer* _Map_pointer;
761
762 static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
763 { return __deque_buf_size(sizeof(_Tp)); }
764
765 // Functions controlling memory layout, and nothing else.
766 using _Base::_M_initialize_map;
767 using _Base::_M_create_nodes;
768 using _Base::_M_destroy_nodes;
769 using _Base::_M_allocate_node;
770 using _Base::_M_deallocate_node;
771 using _Base::_M_allocate_map;
772 using _Base::_M_deallocate_map;
773 using _Base::_M_get_Tp_allocator;
774
775 /**
776 * A total of four data members accumulated down the hierarchy.
777 * May be accessed via _M_impl.*
778 */
779 using _Base::_M_impl;
780
781 public:
782 // [23.2.1.1] construct/copy/destroy
783 // (assign() and get_allocator() are also listed in this section)
784
785 /**
786 * @brief Creates a %deque with no elements.
787 */
788 deque() : _Base() { }
789
790 /**
791 * @brief Creates a %deque with no elements.
792 * @param __a An allocator object.
793 */
794 explicit
795 deque(const allocator_type& __a)
796 : _Base(__a) { }
797
798 #if __cplusplus >= 201103L
799 /**
800 * @brief Creates a %deque with default constructed elements.
801 * @param __n The number of elements to initially create.
802 *
803 * This constructor fills the %deque with @a n default
804 * constructed elements.
805 */
806 explicit
807 deque(size_type __n)
808 : _Base(__n)
809 { _M_default_initialize(); }
810
811 /**
812 * @brief Creates a %deque with copies of an exemplar element.
813 * @param __n The number of elements to initially create.
814 * @param __value An element to copy.
815 * @param __a An allocator.
816 *
817 * This constructor fills the %deque with @a __n copies of @a __value.
818 */
819 deque(size_type __n, const value_type& __value,
820 const allocator_type& __a = allocator_type())
821 : _Base(__a, __n)
822 { _M_fill_initialize(__value); }
823 #else
824 /**
825 * @brief Creates a %deque with copies of an exemplar element.
826 * @param __n The number of elements to initially create.
827 * @param __value An element to copy.
828 * @param __a An allocator.
829 *
830 * This constructor fills the %deque with @a __n copies of @a __value.
831 */
832 explicit
833 deque(size_type __n, const value_type& __value = value_type(),
834 const allocator_type& __a = allocator_type())
835 : _Base(__a, __n)
836 { _M_fill_initialize(__value); }
837 #endif
838
839 /**
840 * @brief %Deque copy constructor.
841 * @param __x A %deque of identical element and allocator types.
842 *
843 * The newly-created %deque uses a copy of the allocation object used
844 * by @a __x.
845 */
846 deque(const deque& __x)
847 : _Base(__x._M_get_Tp_allocator(), __x.size())
848 { std::__uninitialized_copy_a(__x.begin(), __x.end(),
849 this->_M_impl._M_start,
850 _M_get_Tp_allocator()); }
851
852 #if __cplusplus >= 201103L
853 /**
854 * @brief %Deque move constructor.
855 * @param __x A %deque of identical element and allocator types.
856 *
857 * The newly-created %deque contains the exact contents of @a __x.
858 * The contents of @a __x are a valid, but unspecified %deque.
859 */
860 deque(deque&& __x)
861 : _Base(std::move(__x)) { }
862
863 /**
864 * @brief Builds a %deque from an initializer list.
865 * @param __l An initializer_list.
866 * @param __a An allocator object.
867 *
868 * Create a %deque consisting of copies of the elements in the
869 * initializer_list @a __l.
870 *
871 * This will call the element type's copy constructor N times
872 * (where N is __l.size()) and do no memory reallocation.
873 */
874 deque(initializer_list<value_type> __l,
875 const allocator_type& __a = allocator_type())
876 : _Base(__a)
877 {
878 _M_range_initialize(__l.begin(), __l.end(),
879 random_access_iterator_tag());
880 }
881 #endif
882
883 /**
884 * @brief Builds a %deque from a range.
885 * @param __first An input iterator.
886 * @param __last An input iterator.
887 * @param __a An allocator object.
888 *
889 * Create a %deque consisting of copies of the elements from [__first,
890 * __last).
891 *
892 * If the iterators are forward, bidirectional, or random-access, then
893 * this will call the elements' copy constructor N times (where N is
894 * distance(__first,__last)) and do no memory reallocation. But if only
895 * input iterators are used, then this will do at most 2N calls to the
896 * copy constructor, and logN memory reallocations.
897 */
898 #if __cplusplus >= 201103L
899 template<typename _InputIterator,
900 typename = std::_RequireInputIter<_InputIterator>>
901 deque(_InputIterator __first, _InputIterator __last,
902 const allocator_type& __a = allocator_type())
903 : _Base(__a)
904 { _M_initialize_dispatch(__first, __last, __false_type()); }
905 #else
906 template<typename _InputIterator>
907 deque(_InputIterator __first, _InputIterator __last,
908 const allocator_type& __a = allocator_type())
909 : _Base(__a)
910 {
911 // Check whether it's an integral type. If so, it's not an iterator.
912 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
913 _M_initialize_dispatch(__first, __last, _Integral());
914 }
915 #endif
916
917 /**
918 * The dtor only erases the elements, and note that if the elements
919 * themselves are pointers, the pointed-to memory is not touched in any
920 * way. Managing the pointer is the user's responsibility.
921 */
922 ~deque() _GLIBCXX_NOEXCEPT
923 { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
924
925 /**
926 * @brief %Deque assignment operator.
927 * @param __x A %deque of identical element and allocator types.
928 *
929 * All the elements of @a x are copied, but unlike the copy constructor,
930 * the allocator object is not copied.
931 */
932 deque&
933 operator=(const deque& __x);
934
935 #if __cplusplus >= 201103L
936 /**
937 * @brief %Deque move assignment operator.
938 * @param __x A %deque of identical element and allocator types.
939 *
940 * The contents of @a __x are moved into this deque (without copying).
941 * @a __x is a valid, but unspecified %deque.
942 */
943 deque&
944 operator=(deque&& __x) noexcept
945 {
946 // NB: DR 1204.
947 // NB: DR 675.
948 this->clear();
949 this->swap(__x);
950 return *this;
951 }
952
953 /**
954 * @brief Assigns an initializer list to a %deque.
955 * @param __l An initializer_list.
956 *
957 * This function fills a %deque with copies of the elements in the
958 * initializer_list @a __l.
959 *
960 * Note that the assignment completely changes the %deque and that the
961 * resulting %deque's size is the same as the number of elements
962 * assigned. Old data may be lost.
963 */
964 deque&
965 operator=(initializer_list<value_type> __l)
966 {
967 this->assign(__l.begin(), __l.end());
968 return *this;
969 }
970 #endif
971
972 /**
973 * @brief Assigns a given value to a %deque.
974 * @param __n Number of elements to be assigned.
975 * @param __val Value to be assigned.
976 *
977 * This function fills a %deque with @a n copies of the given
978 * value. Note that the assignment completely changes the
979 * %deque and that the resulting %deque's size is the same as
980 * the number of elements assigned. Old data may be lost.
981 */
982 void
983 assign(size_type __n, const value_type& __val)
984 { _M_fill_assign(__n, __val); }
985
986 /**
987 * @brief Assigns a range to a %deque.
988 * @param __first An input iterator.
989 * @param __last An input iterator.
990 *
991 * This function fills a %deque with copies of the elements in the
992 * range [__first,__last).
993 *
994 * Note that the assignment completely changes the %deque and that the
995 * resulting %deque's size is the same as the number of elements
996 * assigned. Old data may be lost.
997 */
998 #if __cplusplus >= 201103L
999 template<typename _InputIterator,
1000 typename = std::_RequireInputIter<_InputIterator>>
1001 void
1002 assign(_InputIterator __first, _InputIterator __last)
1003 { _M_assign_dispatch(__first, __last, __false_type()); }
1004 #else
1005 template<typename _InputIterator>
1006 void
1007 assign(_InputIterator __first, _InputIterator __last)
1008 {
1009 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1010 _M_assign_dispatch(__first, __last, _Integral());
1011 }
1012 #endif
1013
1014 #if __cplusplus >= 201103L
1015 /**
1016 * @brief Assigns an initializer list to a %deque.
1017 * @param __l An initializer_list.
1018 *
1019 * This function fills a %deque with copies of the elements in the
1020 * initializer_list @a __l.
1021 *
1022 * Note that the assignment completely changes the %deque and that the
1023 * resulting %deque's size is the same as the number of elements
1024 * assigned. Old data may be lost.
1025 */
1026 void
1027 assign(initializer_list<value_type> __l)
1028 { this->assign(__l.begin(), __l.end()); }
1029 #endif
1030
1031 /// Get a copy of the memory allocation object.
1032 allocator_type
1033 get_allocator() const _GLIBCXX_NOEXCEPT
1034 { return _Base::get_allocator(); }
1035
1036 // iterators
1037 /**
1038 * Returns a read/write iterator that points to the first element in the
1039 * %deque. Iteration is done in ordinary element order.
1040 */
1041 iterator
1042 begin() _GLIBCXX_NOEXCEPT
1043 { return this->_M_impl._M_start; }
1044
1045 /**
1046 * Returns a read-only (constant) iterator that points to the first
1047 * element in the %deque. Iteration is done in ordinary element order.
1048 */
1049 const_iterator
1050 begin() const _GLIBCXX_NOEXCEPT
1051 { return this->_M_impl._M_start; }
1052
1053 /**
1054 * Returns a read/write iterator that points one past the last
1055 * element in the %deque. Iteration is done in ordinary
1056 * element order.
1057 */
1058 iterator
1059 end() _GLIBCXX_NOEXCEPT
1060 { return this->_M_impl._M_finish; }
1061
1062 /**
1063 * Returns a read-only (constant) iterator that points one past
1064 * the last element in the %deque. Iteration is done in
1065 * ordinary element order.
1066 */
1067 const_iterator
1068 end() const _GLIBCXX_NOEXCEPT
1069 { return this->_M_impl._M_finish; }
1070
1071 /**
1072 * Returns a read/write reverse iterator that points to the
1073 * last element in the %deque. Iteration is done in reverse
1074 * element order.
1075 */
1076 reverse_iterator
1077 rbegin() _GLIBCXX_NOEXCEPT
1078 { return reverse_iterator(this->_M_impl._M_finish); }
1079
1080 /**
1081 * Returns a read-only (constant) reverse iterator that points
1082 * to the last element in the %deque. Iteration is done in
1083 * reverse element order.
1084 */
1085 const_reverse_iterator
1086 rbegin() const _GLIBCXX_NOEXCEPT
1087 { return const_reverse_iterator(this->_M_impl._M_finish); }
1088
1089 /**
1090 * Returns a read/write reverse iterator that points to one
1091 * before the first element in the %deque. Iteration is done
1092 * in reverse element order.
1093 */
1094 reverse_iterator
1095 rend() _GLIBCXX_NOEXCEPT
1096 { return reverse_iterator(this->_M_impl._M_start); }
1097
1098 /**
1099 * Returns a read-only (constant) reverse iterator that points
1100 * to one before the first element in the %deque. Iteration is
1101 * done in reverse element order.
1102 */
1103 const_reverse_iterator
1104 rend() const _GLIBCXX_NOEXCEPT
1105 { return const_reverse_iterator(this->_M_impl._M_start); }
1106
1107 #if __cplusplus >= 201103L
1108 /**
1109 * Returns a read-only (constant) iterator that points to the first
1110 * element in the %deque. Iteration is done in ordinary element order.
1111 */
1112 const_iterator
1113 cbegin() const noexcept
1114 { return this->_M_impl._M_start; }
1115
1116 /**
1117 * Returns a read-only (constant) iterator that points one past
1118 * the last element in the %deque. Iteration is done in
1119 * ordinary element order.
1120 */
1121 const_iterator
1122 cend() const noexcept
1123 { return this->_M_impl._M_finish; }
1124
1125 /**
1126 * Returns a read-only (constant) reverse iterator that points
1127 * to the last element in the %deque. Iteration is done in
1128 * reverse element order.
1129 */
1130 const_reverse_iterator
1131 crbegin() const noexcept
1132 { return const_reverse_iterator(this->_M_impl._M_finish); }
1133
1134 /**
1135 * Returns a read-only (constant) reverse iterator that points
1136 * to one before the first element in the %deque. Iteration is
1137 * done in reverse element order.
1138 */
1139 const_reverse_iterator
1140 crend() const noexcept
1141 { return const_reverse_iterator(this->_M_impl._M_start); }
1142 #endif
1143
1144 // [23.2.1.2] capacity
1145 /** Returns the number of elements in the %deque. */
1146 size_type
1147 size() const _GLIBCXX_NOEXCEPT
1148 { return this->_M_impl._M_finish - this->_M_impl._M_start; }
1149
1150 /** Returns the size() of the largest possible %deque. */
1151 size_type
1152 max_size() const _GLIBCXX_NOEXCEPT
1153 { return _M_get_Tp_allocator().max_size(); }
1154
1155 #if __cplusplus >= 201103L
1156 /**
1157 * @brief Resizes the %deque to the specified number of elements.
1158 * @param __new_size Number of elements the %deque should contain.
1159 *
1160 * This function will %resize the %deque to the specified
1161 * number of elements. If the number is smaller than the
1162 * %deque's current size the %deque is truncated, otherwise
1163 * default constructed elements are appended.
1164 */
1165 void
1166 resize(size_type __new_size)
1167 {
1168 const size_type __len = size();
1169 if (__new_size > __len)
1170 _M_default_append(__new_size - __len);
1171 else if (__new_size < __len)
1172 _M_erase_at_end(this->_M_impl._M_start
1173 + difference_type(__new_size));
1174 }
1175
1176 /**
1177 * @brief Resizes the %deque to the specified number of elements.
1178 * @param __new_size Number of elements the %deque should contain.
1179 * @param __x Data with which new elements should be populated.
1180 *
1181 * This function will %resize the %deque to the specified
1182 * number of elements. If the number is smaller than the
1183 * %deque's current size the %deque is truncated, otherwise the
1184 * %deque is extended and new elements are populated with given
1185 * data.
1186 */
1187 void
1188 resize(size_type __new_size, const value_type& __x)
1189 {
1190 const size_type __len = size();
1191 if (__new_size > __len)
1192 insert(this->_M_impl._M_finish, __new_size - __len, __x);
1193 else if (__new_size < __len)
1194 _M_erase_at_end(this->_M_impl._M_start
1195 + difference_type(__new_size));
1196 }
1197 #else
1198 /**
1199 * @brief Resizes the %deque to the specified number of elements.
1200 * @param __new_size Number of elements the %deque should contain.
1201 * @param __x Data with which new elements should be populated.
1202 *
1203 * This function will %resize the %deque to the specified
1204 * number of elements. If the number is smaller than the
1205 * %deque's current size the %deque is truncated, otherwise the
1206 * %deque is extended and new elements are populated with given
1207 * data.
1208 */
1209 void
1210 resize(size_type __new_size, value_type __x = value_type())
1211 {
1212 const size_type __len = size();
1213 if (__new_size > __len)
1214 insert(this->_M_impl._M_finish, __new_size - __len, __x);
1215 else if (__new_size < __len)
1216 _M_erase_at_end(this->_M_impl._M_start
1217 + difference_type(__new_size));
1218 }
1219 #endif
1220
1221 #if __cplusplus >= 201103L
1222 /** A non-binding request to reduce memory use. */
1223 void
1224 shrink_to_fit() noexcept
1225 { _M_shrink_to_fit(); }
1226 #endif
1227
1228 /**
1229 * Returns true if the %deque is empty. (Thus begin() would
1230 * equal end().)
1231 */
1232 bool
1233 empty() const _GLIBCXX_NOEXCEPT
1234 { return this->_M_impl._M_finish == this->_M_impl._M_start; }
1235
1236 // element access
1237 /**
1238 * @brief Subscript access to the data contained in the %deque.
1239 * @param __n The index of the element for which data should be
1240 * accessed.
1241 * @return Read/write reference to data.
1242 *
1243 * This operator allows for easy, array-style, data access.
1244 * Note that data access with this operator is unchecked and
1245 * out_of_range lookups are not defined. (For checked lookups
1246 * see at().)
1247 */
1248 reference
1249 operator[](size_type __n) _GLIBCXX_NOEXCEPT
1250 { return this->_M_impl._M_start[difference_type(__n)]; }
1251
1252 /**
1253 * @brief Subscript access to the data contained in the %deque.
1254 * @param __n The index of the element for which data should be
1255 * accessed.
1256 * @return Read-only (constant) reference to data.
1257 *
1258 * This operator allows for easy, array-style, data access.
1259 * Note that data access with this operator is unchecked and
1260 * out_of_range lookups are not defined. (For checked lookups
1261 * see at().)
1262 */
1263 const_reference
1264 operator[](size_type __n) const _GLIBCXX_NOEXCEPT
1265 { return this->_M_impl._M_start[difference_type(__n)]; }
1266
1267 protected:
1268 /// Safety check used only from at().
1269 void
1270 _M_range_check(size_type __n) const
1271 {
1272 if (__n >= this->size())
1273 __throw_out_of_range_fmt(__N("deque::_M_range_check: __n "
1274 "(which is %zu)>= this->size() "
1275 "(which is %zu)"),
1276 __n, this->size());
1277 }
1278
1279 public:
1280 /**
1281 * @brief Provides access to the data contained in the %deque.
1282 * @param __n The index of the element for which data should be
1283 * accessed.
1284 * @return Read/write reference to data.
1285 * @throw std::out_of_range If @a __n is an invalid index.
1286 *
1287 * This function provides for safer data access. The parameter
1288 * is first checked that it is in the range of the deque. The
1289 * function throws out_of_range if the check fails.
1290 */
1291 reference
1292 at(size_type __n)
1293 {
1294 _M_range_check(__n);
1295 return (*this)[__n];
1296 }
1297
1298 /**
1299 * @brief Provides access to the data contained in the %deque.
1300 * @param __n The index of the element for which data should be
1301 * accessed.
1302 * @return Read-only (constant) reference to data.
1303 * @throw std::out_of_range If @a __n is an invalid index.
1304 *
1305 * This function provides for safer data access. The parameter is first
1306 * checked that it is in the range of the deque. The function throws
1307 * out_of_range if the check fails.
1308 */
1309 const_reference
1310 at(size_type __n) const
1311 {
1312 _M_range_check(__n);
1313 return (*this)[__n];
1314 }
1315
1316 /**
1317 * Returns a read/write reference to the data at the first
1318 * element of the %deque.
1319 */
1320 reference
1321 front() _GLIBCXX_NOEXCEPT
1322 { return *begin(); }
1323
1324 /**
1325 * Returns a read-only (constant) reference to the data at the first
1326 * element of the %deque.
1327 */
1328 const_reference
1329 front() const _GLIBCXX_NOEXCEPT
1330 { return *begin(); }
1331
1332 /**
1333 * Returns a read/write reference to the data at the last element of the
1334 * %deque.
1335 */
1336 reference
1337 back() _GLIBCXX_NOEXCEPT
1338 {
1339 iterator __tmp = end();
1340 --__tmp;
1341 return *__tmp;
1342 }
1343
1344 /**
1345 * Returns a read-only (constant) reference to the data at the last
1346 * element of the %deque.
1347 */
1348 const_reference
1349 back() const _GLIBCXX_NOEXCEPT
1350 {
1351 const_iterator __tmp = end();
1352 --__tmp;
1353 return *__tmp;
1354 }
1355
1356 // [23.2.1.2] modifiers
1357 /**
1358 * @brief Add data to the front of the %deque.
1359 * @param __x Data to be added.
1360 *
1361 * This is a typical stack operation. The function creates an
1362 * element at the front of the %deque and assigns the given
1363 * data to it. Due to the nature of a %deque this operation
1364 * can be done in constant time.
1365 */
1366 void
1367 push_front(const value_type& __x)
1368 {
1369 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1370 {
1371 this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1372 --this->_M_impl._M_start._M_cur;
1373 }
1374 else
1375 _M_push_front_aux(__x);
1376 }
1377
1378 #if __cplusplus >= 201103L
1379 void
1380 push_front(value_type&& __x)
1381 { emplace_front(std::move(__x)); }
1382
1383 template<typename... _Args>
1384 void
1385 emplace_front(_Args&&... __args);
1386 #endif
1387
1388 /**
1389 * @brief Add data to the end of the %deque.
1390 * @param __x Data to be added.
1391 *
1392 * This is a typical stack operation. The function creates an
1393 * element at the end of the %deque and assigns the given data
1394 * to it. Due to the nature of a %deque this operation can be
1395 * done in constant time.
1396 */
1397 void
1398 push_back(const value_type& __x)
1399 {
1400 if (this->_M_impl._M_finish._M_cur
1401 != this->_M_impl._M_finish._M_last - 1)
1402 {
1403 this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1404 ++this->_M_impl._M_finish._M_cur;
1405 }
1406 else
1407 _M_push_back_aux(__x);
1408 }
1409
1410 #if __cplusplus >= 201103L
1411 void
1412 push_back(value_type&& __x)
1413 { emplace_back(std::move(__x)); }
1414
1415 template<typename... _Args>
1416 void
1417 emplace_back(_Args&&... __args);
1418 #endif
1419
1420 /**
1421 * @brief Removes first element.
1422 *
1423 * This is a typical stack operation. It shrinks the %deque by one.
1424 *
1425 * Note that no data is returned, and if the first element's data is
1426 * needed, it should be retrieved before pop_front() is called.
1427 */
1428 void
1429 pop_front() _GLIBCXX_NOEXCEPT
1430 {
1431 if (this->_M_impl._M_start._M_cur
1432 != this->_M_impl._M_start._M_last - 1)
1433 {
1434 this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1435 ++this->_M_impl._M_start._M_cur;
1436 }
1437 else
1438 _M_pop_front_aux();
1439 }
1440
1441 /**
1442 * @brief Removes last element.
1443 *
1444 * This is a typical stack operation. It shrinks the %deque by one.
1445 *
1446 * Note that no data is returned, and if the last element's data is
1447 * needed, it should be retrieved before pop_back() is called.
1448 */
1449 void
1450 pop_back() _GLIBCXX_NOEXCEPT
1451 {
1452 if (this->_M_impl._M_finish._M_cur
1453 != this->_M_impl._M_finish._M_first)
1454 {
1455 --this->_M_impl._M_finish._M_cur;
1456 this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1457 }
1458 else
1459 _M_pop_back_aux();
1460 }
1461
1462 #if __cplusplus >= 201103L
1463 /**
1464 * @brief Inserts an object in %deque before specified iterator.
1465 * @param __position A const_iterator into the %deque.
1466 * @param __args Arguments.
1467 * @return An iterator that points to the inserted data.
1468 *
1469 * This function will insert an object of type T constructed
1470 * with T(std::forward<Args>(args)...) before the specified location.
1471 */
1472 template<typename... _Args>
1473 iterator
1474 emplace(const_iterator __position, _Args&&... __args);
1475
1476 /**
1477 * @brief Inserts given value into %deque before specified iterator.
1478 * @param __position A const_iterator into the %deque.
1479 * @param __x Data to be inserted.
1480 * @return An iterator that points to the inserted data.
1481 *
1482 * This function will insert a copy of the given value before the
1483 * specified location.
1484 */
1485 iterator
1486 insert(const_iterator __position, const value_type& __x);
1487 #else
1488 /**
1489 * @brief Inserts given value into %deque before specified iterator.
1490 * @param __position An iterator into the %deque.
1491 * @param __x Data to be inserted.
1492 * @return An iterator that points to the inserted data.
1493 *
1494 * This function will insert a copy of the given value before the
1495 * specified location.
1496 */
1497 iterator
1498 insert(iterator __position, const value_type& __x);
1499 #endif
1500
1501 #if __cplusplus >= 201103L
1502 /**
1503 * @brief Inserts given rvalue into %deque before specified iterator.
1504 * @param __position A const_iterator into the %deque.
1505 * @param __x Data to be inserted.
1506 * @return An iterator that points to the inserted data.
1507 *
1508 * This function will insert a copy of the given rvalue before the
1509 * specified location.
1510 */
1511 iterator
1512 insert(const_iterator __position, value_type&& __x)
1513 { return emplace(__position, std::move(__x)); }
1514
1515 /**
1516 * @brief Inserts an initializer list into the %deque.
1517 * @param __p An iterator into the %deque.
1518 * @param __l An initializer_list.
1519 *
1520 * This function will insert copies of the data in the
1521 * initializer_list @a __l into the %deque before the location
1522 * specified by @a __p. This is known as <em>list insert</em>.
1523 */
1524 iterator
1525 insert(const_iterator __p, initializer_list<value_type> __l)
1526 { return this->insert(__p, __l.begin(), __l.end()); }
1527 #endif
1528
1529 #if __cplusplus >= 201103L
1530 /**
1531 * @brief Inserts a number of copies of given data into the %deque.
1532 * @param __position A const_iterator into the %deque.
1533 * @param __n Number of elements to be inserted.
1534 * @param __x Data to be inserted.
1535 * @return An iterator that points to the inserted data.
1536 *
1537 * This function will insert a specified number of copies of the given
1538 * data before the location specified by @a __position.
1539 */
1540 iterator
1541 insert(const_iterator __position, size_type __n, const value_type& __x)
1542 {
1543 difference_type __offset = __position - cbegin();
1544 _M_fill_insert(__position._M_const_cast(), __n, __x);
1545 return begin() + __offset;
1546 }
1547 #else
1548 /**
1549 * @brief Inserts a number of copies of given data into the %deque.
1550 * @param __position An iterator into the %deque.
1551 * @param __n Number of elements to be inserted.
1552 * @param __x Data to be inserted.
1553 *
1554 * This function will insert a specified number of copies of the given
1555 * data before the location specified by @a __position.
1556 */
1557 void
1558 insert(iterator __position, size_type __n, const value_type& __x)
1559 { _M_fill_insert(__position, __n, __x); }
1560 #endif
1561
1562 #if __cplusplus >= 201103L
1563 /**
1564 * @brief Inserts a range into the %deque.
1565 * @param __position A const_iterator into the %deque.
1566 * @param __first An input iterator.
1567 * @param __last An input iterator.
1568 * @return An iterator that points to the inserted data.
1569 *
1570 * This function will insert copies of the data in the range
1571 * [__first,__last) into the %deque before the location specified
1572 * by @a __position. This is known as <em>range insert</em>.
1573 */
1574 template<typename _InputIterator,
1575 typename = std::_RequireInputIter<_InputIterator>>
1576 iterator
1577 insert(const_iterator __position, _InputIterator __first,
1578 _InputIterator __last)
1579 {
1580 difference_type __offset = __position - cbegin();
1581 _M_insert_dispatch(__position._M_const_cast(),
1582 __first, __last, __false_type());
1583 return begin() + __offset;
1584 }
1585 #else
1586 /**
1587 * @brief Inserts a range into the %deque.
1588 * @param __position An iterator into the %deque.
1589 * @param __first An input iterator.
1590 * @param __last An input iterator.
1591 *
1592 * This function will insert copies of the data in the range
1593 * [__first,__last) into the %deque before the location specified
1594 * by @a __position. This is known as <em>range insert</em>.
1595 */
1596 template<typename _InputIterator>
1597 void
1598 insert(iterator __position, _InputIterator __first,
1599 _InputIterator __last)
1600 {
1601 // Check whether it's an integral type. If so, it's not an iterator.
1602 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1603 _M_insert_dispatch(__position, __first, __last, _Integral());
1604 }
1605 #endif
1606
1607 /**
1608 * @brief Remove element at given position.
1609 * @param __position Iterator pointing to element to be erased.
1610 * @return An iterator pointing to the next element (or end()).
1611 *
1612 * This function will erase the element at the given position and thus
1613 * shorten the %deque by one.
1614 *
1615 * The user is cautioned that
1616 * this function only erases the element, and that if the element is
1617 * itself a pointer, the pointed-to memory is not touched in any way.
1618 * Managing the pointer is the user's responsibility.
1619 */
1620 iterator
1621 #if __cplusplus >= 201103L
1622 erase(const_iterator __position)
1623 #else
1624 erase(iterator __position)
1625 #endif
1626 { return _M_erase(__position._M_const_cast()); }
1627
1628 /**
1629 * @brief Remove a range of elements.
1630 * @param __first Iterator pointing to the first element to be erased.
1631 * @param __last Iterator pointing to one past the last element to be
1632 * erased.
1633 * @return An iterator pointing to the element pointed to by @a last
1634 * prior to erasing (or end()).
1635 *
1636 * This function will erase the elements in the range
1637 * [__first,__last) and shorten the %deque accordingly.
1638 *
1639 * The user is cautioned that
1640 * this function only erases the elements, and that if the elements
1641 * themselves are pointers, the pointed-to memory is not touched in any
1642 * way. Managing the pointer is the user's responsibility.
1643 */
1644 iterator
1645 #if __cplusplus >= 201103L
1646 erase(const_iterator __first, const_iterator __last)
1647 #else
1648 erase(iterator __first, iterator __last)
1649 #endif
1650 { return _M_erase(__first._M_const_cast(), __last._M_const_cast()); }
1651
1652 /**
1653 * @brief Swaps data with another %deque.
1654 * @param __x A %deque of the same element and allocator types.
1655 *
1656 * This exchanges the elements between two deques in constant time.
1657 * (Four pointers, so it should be quite fast.)
1658 * Note that the global std::swap() function is specialized such that
1659 * std::swap(d1,d2) will feed to this function.
1660 */
1661 void
1662 swap(deque& __x) _GLIBCXX_NOEXCEPT
1663 {
1664 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1665 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1666 std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1667 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1668
1669 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1670 // 431. Swapping containers with unequal allocators.
1671 std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1672 __x._M_get_Tp_allocator());
1673 }
1674
1675 /**
1676 * Erases all the elements. Note that this function only erases the
1677 * elements, and that if the elements themselves are pointers, the
1678 * pointed-to memory is not touched in any way. Managing the pointer is
1679 * the user's responsibility.
1680 */
1681 void
1682 clear() _GLIBCXX_NOEXCEPT
1683 { _M_erase_at_end(begin()); }
1684
1685 protected:
1686 // Internal constructor functions follow.
1687
1688 // called by the range constructor to implement [23.1.1]/9
1689
1690 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1691 // 438. Ambiguity in the "do the right thing" clause
1692 template<typename _Integer>
1693 void
1694 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1695 {
1696 _M_initialize_map(static_cast<size_type>(__n));
1697 _M_fill_initialize(__x);
1698 }
1699
1700 // called by the range constructor to implement [23.1.1]/9
1701 template<typename _InputIterator>
1702 void
1703 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1704 __false_type)
1705 {
1706 typedef typename std::iterator_traits<_InputIterator>::
1707 iterator_category _IterCategory;
1708 _M_range_initialize(__first, __last, _IterCategory());
1709 }
1710
1711 // called by the second initialize_dispatch above
1712 //@{
1713 /**
1714 * @brief Fills the deque with whatever is in [first,last).
1715 * @param __first An input iterator.
1716 * @param __last An input iterator.
1717 * @return Nothing.
1718 *
1719 * If the iterators are actually forward iterators (or better), then the
1720 * memory layout can be done all at once. Else we move forward using
1721 * push_back on each value from the iterator.
1722 */
1723 template<typename _InputIterator>
1724 void
1725 _M_range_initialize(_InputIterator __first, _InputIterator __last,
1726 std::input_iterator_tag);
1727
1728 // called by the second initialize_dispatch above
1729 template<typename _ForwardIterator>
1730 void
1731 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1732 std::forward_iterator_tag);
1733 //@}
1734
1735 /**
1736 * @brief Fills the %deque with copies of value.
1737 * @param __value Initial value.
1738 * @return Nothing.
1739 * @pre _M_start and _M_finish have already been initialized,
1740 * but none of the %deque's elements have yet been constructed.
1741 *
1742 * This function is called only when the user provides an explicit size
1743 * (with or without an explicit exemplar value).
1744 */
1745 void
1746 _M_fill_initialize(const value_type& __value);
1747
1748 #if __cplusplus >= 201103L
1749 // called by deque(n).
1750 void
1751 _M_default_initialize();
1752 #endif
1753
1754 // Internal assign functions follow. The *_aux functions do the actual
1755 // assignment work for the range versions.
1756
1757 // called by the range assign to implement [23.1.1]/9
1758
1759 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1760 // 438. Ambiguity in the "do the right thing" clause
1761 template<typename _Integer>
1762 void
1763 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1764 { _M_fill_assign(__n, __val); }
1765
1766 // called by the range assign to implement [23.1.1]/9
1767 template<typename _InputIterator>
1768 void
1769 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1770 __false_type)
1771 {
1772 typedef typename std::iterator_traits<_InputIterator>::
1773 iterator_category _IterCategory;
1774 _M_assign_aux(__first, __last, _IterCategory());
1775 }
1776
1777 // called by the second assign_dispatch above
1778 template<typename _InputIterator>
1779 void
1780 _M_assign_aux(_InputIterator __first, _InputIterator __last,
1781 std::input_iterator_tag);
1782
1783 // called by the second assign_dispatch above
1784 template<typename _ForwardIterator>
1785 void
1786 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1787 std::forward_iterator_tag)
1788 {
1789 const size_type __len = std::distance(__first, __last);
1790 if (__len > size())
1791 {
1792 _ForwardIterator __mid = __first;
1793 std::advance(__mid, size());
1794 std::copy(__first, __mid, begin());
1795 insert(end(), __mid, __last);
1796 }
1797 else
1798 _M_erase_at_end(std::copy(__first, __last, begin()));
1799 }
1800
1801 // Called by assign(n,t), and the range assign when it turns out
1802 // to be the same thing.
1803 void
1804 _M_fill_assign(size_type __n, const value_type& __val)
1805 {
1806 if (__n > size())
1807 {
1808 std::fill(begin(), end(), __val);
1809 insert(end(), __n - size(), __val);
1810 }
1811 else
1812 {
1813 _M_erase_at_end(begin() + difference_type(__n));
1814 std::fill(begin(), end(), __val);
1815 }
1816 }
1817
1818 //@{
1819 /// Helper functions for push_* and pop_*.
1820 #if __cplusplus < 201103L
1821 void _M_push_back_aux(const value_type&);
1822
1823 void _M_push_front_aux(const value_type&);
1824 #else
1825 template<typename... _Args>
1826 void _M_push_back_aux(_Args&&... __args);
1827
1828 template<typename... _Args>
1829 void _M_push_front_aux(_Args&&... __args);
1830 #endif
1831
1832 void _M_pop_back_aux();
1833
1834 void _M_pop_front_aux();
1835 //@}
1836
1837 // Internal insert functions follow. The *_aux functions do the actual
1838 // insertion work when all shortcuts fail.
1839
1840 // called by the range insert to implement [23.1.1]/9
1841
1842 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1843 // 438. Ambiguity in the "do the right thing" clause
1844 template<typename _Integer>
1845 void
1846 _M_insert_dispatch(iterator __pos,
1847 _Integer __n, _Integer __x, __true_type)
1848 { _M_fill_insert(__pos, __n, __x); }
1849
1850 // called by the range insert to implement [23.1.1]/9
1851 template<typename _InputIterator>
1852 void
1853 _M_insert_dispatch(iterator __pos,
1854 _InputIterator __first, _InputIterator __last,
1855 __false_type)
1856 {
1857 typedef typename std::iterator_traits<_InputIterator>::
1858 iterator_category _IterCategory;
1859 _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1860 }
1861
1862 // called by the second insert_dispatch above
1863 template<typename _InputIterator>
1864 void
1865 _M_range_insert_aux(iterator __pos, _InputIterator __first,
1866 _InputIterator __last, std::input_iterator_tag);
1867
1868 // called by the second insert_dispatch above
1869 template<typename _ForwardIterator>
1870 void
1871 _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1872 _ForwardIterator __last, std::forward_iterator_tag);
1873
1874 // Called by insert(p,n,x), and the range insert when it turns out to be
1875 // the same thing. Can use fill functions in optimal situations,
1876 // otherwise passes off to insert_aux(p,n,x).
1877 void
1878 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1879
1880 // called by insert(p,x)
1881 #if __cplusplus < 201103L
1882 iterator
1883 _M_insert_aux(iterator __pos, const value_type& __x);
1884 #else
1885 template<typename... _Args>
1886 iterator
1887 _M_insert_aux(iterator __pos, _Args&&... __args);
1888 #endif
1889
1890 // called by insert(p,n,x) via fill_insert
1891 void
1892 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1893
1894 // called by range_insert_aux for forward iterators
1895 template<typename _ForwardIterator>
1896 void
1897 _M_insert_aux(iterator __pos,
1898 _ForwardIterator __first, _ForwardIterator __last,
1899 size_type __n);
1900
1901
1902 // Internal erase functions follow.
1903
1904 void
1905 _M_destroy_data_aux(iterator __first, iterator __last);
1906
1907 // Called by ~deque().
1908 // NB: Doesn't deallocate the nodes.
1909 template<typename _Alloc1>
1910 void
1911 _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
1912 { _M_destroy_data_aux(__first, __last); }
1913
1914 void
1915 _M_destroy_data(iterator __first, iterator __last,
1916 const std::allocator<_Tp>&)
1917 {
1918 if (!__has_trivial_destructor(value_type))
1919 _M_destroy_data_aux(__first, __last);
1920 }
1921
1922 // Called by erase(q1, q2).
1923 void
1924 _M_erase_at_begin(iterator __pos)
1925 {
1926 _M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
1927 _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
1928 this->_M_impl._M_start = __pos;
1929 }
1930
1931 // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
1932 // _M_fill_assign, operator=.
1933 void
1934 _M_erase_at_end(iterator __pos)
1935 {
1936 _M_destroy_data(__pos, end(), _M_get_Tp_allocator());
1937 _M_destroy_nodes(__pos._M_node + 1,
1938 this->_M_impl._M_finish._M_node + 1);
1939 this->_M_impl._M_finish = __pos;
1940 }
1941
1942 iterator
1943 _M_erase(iterator __pos);
1944
1945 iterator
1946 _M_erase(iterator __first, iterator __last);
1947
1948 #if __cplusplus >= 201103L
1949 // Called by resize(sz).
1950 void
1951 _M_default_append(size_type __n);
1952
1953 bool
1954 _M_shrink_to_fit();
1955 #endif
1956
1957 //@{
1958 /// Memory-handling helpers for the previous internal insert functions.
1959 iterator
1960 _M_reserve_elements_at_front(size_type __n)
1961 {
1962 const size_type __vacancies = this->_M_impl._M_start._M_cur
1963 - this->_M_impl._M_start._M_first;
1964 if (__n > __vacancies)
1965 _M_new_elements_at_front(__n - __vacancies);
1966 return this->_M_impl._M_start - difference_type(__n);
1967 }
1968
1969 iterator
1970 _M_reserve_elements_at_back(size_type __n)
1971 {
1972 const size_type __vacancies = (this->_M_impl._M_finish._M_last
1973 - this->_M_impl._M_finish._M_cur) - 1;
1974 if (__n > __vacancies)
1975 _M_new_elements_at_back(__n - __vacancies);
1976 return this->_M_impl._M_finish + difference_type(__n);
1977 }
1978
1979 void
1980 _M_new_elements_at_front(size_type __new_elements);
1981
1982 void
1983 _M_new_elements_at_back(size_type __new_elements);
1984 //@}
1985
1986
1987 //@{
1988 /**
1989 * @brief Memory-handling helpers for the major %map.
1990 *
1991 * Makes sure the _M_map has space for new nodes. Does not
1992 * actually add the nodes. Can invalidate _M_map pointers.
1993 * (And consequently, %deque iterators.)
1994 */
1995 void
1996 _M_reserve_map_at_back(size_type __nodes_to_add = 1)
1997 {
1998 if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1999 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
2000 _M_reallocate_map(__nodes_to_add, false);
2001 }
2002
2003 void
2004 _M_reserve_map_at_front(size_type __nodes_to_add = 1)
2005 {
2006 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
2007 - this->_M_impl._M_map))
2008 _M_reallocate_map(__nodes_to_add, true);
2009 }
2010
2011 void
2012 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
2013 //@}
2014 };
2015
2016
2017 /**
2018 * @brief Deque equality comparison.
2019 * @param __x A %deque.
2020 * @param __y A %deque of the same type as @a __x.
2021 * @return True iff the size and elements of the deques are equal.
2022 *
2023 * This is an equivalence relation. It is linear in the size of the
2024 * deques. Deques are considered equivalent if their sizes are equal,
2025 * and if corresponding elements compare equal.
2026 */
2027 template<typename _Tp, typename _Alloc>
2028 inline bool
2029 operator==(const deque<_Tp, _Alloc>& __x,
2030 const deque<_Tp, _Alloc>& __y)
2031 { return __x.size() == __y.size()
2032 && std::equal(__x.begin(), __x.end(), __y.begin()); }
2033
2034 /**
2035 * @brief Deque ordering relation.
2036 * @param __x A %deque.
2037 * @param __y A %deque of the same type as @a __x.
2038 * @return True iff @a x is lexicographically less than @a __y.
2039 *
2040 * This is a total ordering relation. It is linear in the size of the
2041 * deques. The elements must be comparable with @c <.
2042 *
2043 * See std::lexicographical_compare() for how the determination is made.
2044 */
2045 template<typename _Tp, typename _Alloc>
2046 inline bool
2047 operator<(const deque<_Tp, _Alloc>& __x,
2048 const deque<_Tp, _Alloc>& __y)
2049 { return std::lexicographical_compare(__x.begin(), __x.end(),
2050 __y.begin(), __y.end()); }
2051
2052 /// Based on operator==
2053 template<typename _Tp, typename _Alloc>
2054 inline bool
2055 operator!=(const deque<_Tp, _Alloc>& __x,
2056 const deque<_Tp, _Alloc>& __y)
2057 { return !(__x == __y); }
2058
2059 /// Based on operator<
2060 template<typename _Tp, typename _Alloc>
2061 inline bool
2062 operator>(const deque<_Tp, _Alloc>& __x,
2063 const deque<_Tp, _Alloc>& __y)
2064 { return __y < __x; }
2065
2066 /// Based on operator<
2067 template<typename _Tp, typename _Alloc>
2068 inline bool
2069 operator<=(const deque<_Tp, _Alloc>& __x,
2070 const deque<_Tp, _Alloc>& __y)
2071 { return !(__y < __x); }
2072
2073 /// Based on operator<
2074 template<typename _Tp, typename _Alloc>
2075 inline bool
2076 operator>=(const deque<_Tp, _Alloc>& __x,
2077 const deque<_Tp, _Alloc>& __y)
2078 { return !(__x < __y); }
2079
2080 /// See std::deque::swap().
2081 template<typename _Tp, typename _Alloc>
2082 inline void
2083 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
2084 { __x.swap(__y); }
2085
2086 #undef _GLIBCXX_DEQUE_BUF_SIZE
2087
2088 _GLIBCXX_END_NAMESPACE_CONTAINER
2089 } // namespace std
2090
2091 #endif /* _STL_DEQUE_H */