list.cc: Use noexcept per the FDIS.
[gcc.git] / libstdc++-v3 / include / bits / stl_deque.h
1 // Deque implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 // 2011 Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
25
26 /*
27 *
28 * Copyright (c) 1994
29 * Hewlett-Packard Company
30 *
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation. Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose. It is provided "as is" without express or implied warranty.
38 *
39 *
40 * Copyright (c) 1997
41 * Silicon Graphics Computer Systems, Inc.
42 *
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation. Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose. It is provided "as is" without express or implied warranty.
50 */
51
52 /** @file bits/stl_deque.h
53 * This is an internal header file, included by other library headers.
54 * Do not attempt to use it directly. @headername{deque}
55 */
56
57 #ifndef _STL_DEQUE_H
58 #define _STL_DEQUE_H 1
59
60 #include <bits/concept_check.h>
61 #include <bits/stl_iterator_base_types.h>
62 #include <bits/stl_iterator_base_funcs.h>
63 #include <initializer_list>
64
65 namespace std _GLIBCXX_VISIBILITY(default)
66 {
67 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
68
69 /**
70 * @brief This function controls the size of memory nodes.
71 * @param size The size of an element.
72 * @return The number (not byte size) of elements per node.
73 *
74 * This function started off as a compiler kludge from SGI, but
75 * seems to be a useful wrapper around a repeated constant
76 * expression. The @b 512 is tunable (and no other code needs to
77 * change), but no investigation has been done since inheriting the
78 * SGI code. Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
79 * you are doing, however: changing it breaks the binary
80 * compatibility!!
81 */
82
83 #ifndef _GLIBCXX_DEQUE_BUF_SIZE
84 #define _GLIBCXX_DEQUE_BUF_SIZE 512
85 #endif
86
87 inline size_t
88 __deque_buf_size(size_t __size)
89 { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
90 ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }
91
92
93 /**
94 * @brief A deque::iterator.
95 *
96 * Quite a bit of intelligence here. Much of the functionality of
97 * deque is actually passed off to this class. A deque holds two
98 * of these internally, marking its valid range. Access to
99 * elements is done as offsets of either of those two, relying on
100 * operator overloading in this class.
101 *
102 * All the functions are op overloads except for _M_set_node.
103 */
104 template<typename _Tp, typename _Ref, typename _Ptr>
105 struct _Deque_iterator
106 {
107 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
108 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
109
110 static size_t _S_buffer_size()
111 { return __deque_buf_size(sizeof(_Tp)); }
112
113 typedef std::random_access_iterator_tag iterator_category;
114 typedef _Tp value_type;
115 typedef _Ptr pointer;
116 typedef _Ref reference;
117 typedef size_t size_type;
118 typedef ptrdiff_t difference_type;
119 typedef _Tp** _Map_pointer;
120 typedef _Deque_iterator _Self;
121
122 _Tp* _M_cur;
123 _Tp* _M_first;
124 _Tp* _M_last;
125 _Map_pointer _M_node;
126
127 _Deque_iterator(_Tp* __x, _Map_pointer __y)
128 : _M_cur(__x), _M_first(*__y),
129 _M_last(*__y + _S_buffer_size()), _M_node(__y) { }
130
131 _Deque_iterator()
132 : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { }
133
134 _Deque_iterator(const iterator& __x)
135 : _M_cur(__x._M_cur), _M_first(__x._M_first),
136 _M_last(__x._M_last), _M_node(__x._M_node) { }
137
138 reference
139 operator*() const
140 { return *_M_cur; }
141
142 pointer
143 operator->() const
144 { return _M_cur; }
145
146 _Self&
147 operator++()
148 {
149 ++_M_cur;
150 if (_M_cur == _M_last)
151 {
152 _M_set_node(_M_node + 1);
153 _M_cur = _M_first;
154 }
155 return *this;
156 }
157
158 _Self
159 operator++(int)
160 {
161 _Self __tmp = *this;
162 ++*this;
163 return __tmp;
164 }
165
166 _Self&
167 operator--()
168 {
169 if (_M_cur == _M_first)
170 {
171 _M_set_node(_M_node - 1);
172 _M_cur = _M_last;
173 }
174 --_M_cur;
175 return *this;
176 }
177
178 _Self
179 operator--(int)
180 {
181 _Self __tmp = *this;
182 --*this;
183 return __tmp;
184 }
185
186 _Self&
187 operator+=(difference_type __n)
188 {
189 const difference_type __offset = __n + (_M_cur - _M_first);
190 if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
191 _M_cur += __n;
192 else
193 {
194 const difference_type __node_offset =
195 __offset > 0 ? __offset / difference_type(_S_buffer_size())
196 : -difference_type((-__offset - 1)
197 / _S_buffer_size()) - 1;
198 _M_set_node(_M_node + __node_offset);
199 _M_cur = _M_first + (__offset - __node_offset
200 * difference_type(_S_buffer_size()));
201 }
202 return *this;
203 }
204
205 _Self
206 operator+(difference_type __n) const
207 {
208 _Self __tmp = *this;
209 return __tmp += __n;
210 }
211
212 _Self&
213 operator-=(difference_type __n)
214 { return *this += -__n; }
215
216 _Self
217 operator-(difference_type __n) const
218 {
219 _Self __tmp = *this;
220 return __tmp -= __n;
221 }
222
223 reference
224 operator[](difference_type __n) const
225 { return *(*this + __n); }
226
227 /**
228 * Prepares to traverse new_node. Sets everything except
229 * _M_cur, which should therefore be set by the caller
230 * immediately afterwards, based on _M_first and _M_last.
231 */
232 void
233 _M_set_node(_Map_pointer __new_node)
234 {
235 _M_node = __new_node;
236 _M_first = *__new_node;
237 _M_last = _M_first + difference_type(_S_buffer_size());
238 }
239 };
240
241 // Note: we also provide overloads whose operands are of the same type in
242 // order to avoid ambiguous overload resolution when std::rel_ops operators
243 // are in scope (for additional details, see libstdc++/3628)
244 template<typename _Tp, typename _Ref, typename _Ptr>
245 inline bool
246 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
247 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
248 { return __x._M_cur == __y._M_cur; }
249
250 template<typename _Tp, typename _RefL, typename _PtrL,
251 typename _RefR, typename _PtrR>
252 inline bool
253 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
254 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
255 { return __x._M_cur == __y._M_cur; }
256
257 template<typename _Tp, typename _Ref, typename _Ptr>
258 inline bool
259 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
260 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
261 { return !(__x == __y); }
262
263 template<typename _Tp, typename _RefL, typename _PtrL,
264 typename _RefR, typename _PtrR>
265 inline bool
266 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
267 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
268 { return !(__x == __y); }
269
270 template<typename _Tp, typename _Ref, typename _Ptr>
271 inline bool
272 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
273 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
274 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
275 : (__x._M_node < __y._M_node); }
276
277 template<typename _Tp, typename _RefL, typename _PtrL,
278 typename _RefR, typename _PtrR>
279 inline bool
280 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
281 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
282 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
283 : (__x._M_node < __y._M_node); }
284
285 template<typename _Tp, typename _Ref, typename _Ptr>
286 inline bool
287 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
288 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
289 { return __y < __x; }
290
291 template<typename _Tp, typename _RefL, typename _PtrL,
292 typename _RefR, typename _PtrR>
293 inline bool
294 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
295 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
296 { return __y < __x; }
297
298 template<typename _Tp, typename _Ref, typename _Ptr>
299 inline bool
300 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
301 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
302 { return !(__y < __x); }
303
304 template<typename _Tp, typename _RefL, typename _PtrL,
305 typename _RefR, typename _PtrR>
306 inline bool
307 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
308 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
309 { return !(__y < __x); }
310
311 template<typename _Tp, typename _Ref, typename _Ptr>
312 inline bool
313 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
314 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
315 { return !(__x < __y); }
316
317 template<typename _Tp, typename _RefL, typename _PtrL,
318 typename _RefR, typename _PtrR>
319 inline bool
320 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
321 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
322 { return !(__x < __y); }
323
324 // _GLIBCXX_RESOLVE_LIB_DEFECTS
325 // According to the resolution of DR179 not only the various comparison
326 // operators but also operator- must accept mixed iterator/const_iterator
327 // parameters.
328 template<typename _Tp, typename _Ref, typename _Ptr>
329 inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
330 operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
331 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
332 {
333 return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
334 (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
335 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
336 + (__y._M_last - __y._M_cur);
337 }
338
339 template<typename _Tp, typename _RefL, typename _PtrL,
340 typename _RefR, typename _PtrR>
341 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
342 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
343 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
344 {
345 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
346 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
347 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
348 + (__y._M_last - __y._M_cur);
349 }
350
351 template<typename _Tp, typename _Ref, typename _Ptr>
352 inline _Deque_iterator<_Tp, _Ref, _Ptr>
353 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
354 { return __x + __n; }
355
356 template<typename _Tp>
357 void
358 fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,
359 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);
360
361 template<typename _Tp>
362 _Deque_iterator<_Tp, _Tp&, _Tp*>
363 copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
364 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
365 _Deque_iterator<_Tp, _Tp&, _Tp*>);
366
367 template<typename _Tp>
368 inline _Deque_iterator<_Tp, _Tp&, _Tp*>
369 copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
370 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
371 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
372 { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
373 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
374 __result); }
375
376 template<typename _Tp>
377 _Deque_iterator<_Tp, _Tp&, _Tp*>
378 copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
379 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
380 _Deque_iterator<_Tp, _Tp&, _Tp*>);
381
382 template<typename _Tp>
383 inline _Deque_iterator<_Tp, _Tp&, _Tp*>
384 copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
385 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
386 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
387 { return std::copy_backward(_Deque_iterator<_Tp,
388 const _Tp&, const _Tp*>(__first),
389 _Deque_iterator<_Tp,
390 const _Tp&, const _Tp*>(__last),
391 __result); }
392
393 #ifdef __GXX_EXPERIMENTAL_CXX0X__
394 template<typename _Tp>
395 _Deque_iterator<_Tp, _Tp&, _Tp*>
396 move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
397 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
398 _Deque_iterator<_Tp, _Tp&, _Tp*>);
399
400 template<typename _Tp>
401 inline _Deque_iterator<_Tp, _Tp&, _Tp*>
402 move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
403 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
404 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
405 { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
406 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
407 __result); }
408
409 template<typename _Tp>
410 _Deque_iterator<_Tp, _Tp&, _Tp*>
411 move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
412 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
413 _Deque_iterator<_Tp, _Tp&, _Tp*>);
414
415 template<typename _Tp>
416 inline _Deque_iterator<_Tp, _Tp&, _Tp*>
417 move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
418 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
419 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
420 { return std::move_backward(_Deque_iterator<_Tp,
421 const _Tp&, const _Tp*>(__first),
422 _Deque_iterator<_Tp,
423 const _Tp&, const _Tp*>(__last),
424 __result); }
425 #endif
426
427 /**
428 * Deque base class. This class provides the unified face for %deque's
429 * allocation. This class's constructor and destructor allocate and
430 * deallocate (but do not initialize) storage. This makes %exception
431 * safety easier.
432 *
433 * Nothing in this class ever constructs or destroys an actual Tp element.
434 * (Deque handles that itself.) Only/All memory management is performed
435 * here.
436 */
437 template<typename _Tp, typename _Alloc>
438 class _Deque_base
439 {
440 public:
441 typedef _Alloc allocator_type;
442
443 allocator_type
444 get_allocator() const _GLIBCXX_NOEXCEPT
445 { return allocator_type(_M_get_Tp_allocator()); }
446
447 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
448 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
449
450 _Deque_base()
451 : _M_impl()
452 { _M_initialize_map(0); }
453
454 _Deque_base(size_t __num_elements)
455 : _M_impl()
456 { _M_initialize_map(__num_elements); }
457
458 _Deque_base(const allocator_type& __a, size_t __num_elements)
459 : _M_impl(__a)
460 { _M_initialize_map(__num_elements); }
461
462 _Deque_base(const allocator_type& __a)
463 : _M_impl(__a)
464 { }
465
466 #ifdef __GXX_EXPERIMENTAL_CXX0X__
467 _Deque_base(_Deque_base&& __x)
468 : _M_impl(__x._M_get_Tp_allocator())
469 {
470 _M_initialize_map(0);
471 if (__x._M_impl._M_map)
472 {
473 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
474 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
475 std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
476 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
477 }
478 }
479 #endif
480
481 ~_Deque_base();
482
483 protected:
484 //This struct encapsulates the implementation of the std::deque
485 //standard container and at the same time makes use of the EBO
486 //for empty allocators.
487 typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
488
489 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
490
491 struct _Deque_impl
492 : public _Tp_alloc_type
493 {
494 _Tp** _M_map;
495 size_t _M_map_size;
496 iterator _M_start;
497 iterator _M_finish;
498
499 _Deque_impl()
500 : _Tp_alloc_type(), _M_map(0), _M_map_size(0),
501 _M_start(), _M_finish()
502 { }
503
504 _Deque_impl(const _Tp_alloc_type& __a)
505 : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
506 _M_start(), _M_finish()
507 { }
508 };
509
510 _Tp_alloc_type&
511 _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
512 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
513
514 const _Tp_alloc_type&
515 _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
516 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
517
518 _Map_alloc_type
519 _M_get_map_allocator() const _GLIBCXX_NOEXCEPT
520 { return _Map_alloc_type(_M_get_Tp_allocator()); }
521
522 _Tp*
523 _M_allocate_node()
524 {
525 return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
526 }
527
528 void
529 _M_deallocate_node(_Tp* __p)
530 {
531 _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
532 }
533
534 _Tp**
535 _M_allocate_map(size_t __n)
536 { return _M_get_map_allocator().allocate(__n); }
537
538 void
539 _M_deallocate_map(_Tp** __p, size_t __n)
540 { _M_get_map_allocator().deallocate(__p, __n); }
541
542 protected:
543 void _M_initialize_map(size_t);
544 void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
545 void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
546 enum { _S_initial_map_size = 8 };
547
548 _Deque_impl _M_impl;
549 };
550
551 template<typename _Tp, typename _Alloc>
552 _Deque_base<_Tp, _Alloc>::
553 ~_Deque_base()
554 {
555 if (this->_M_impl._M_map)
556 {
557 _M_destroy_nodes(this->_M_impl._M_start._M_node,
558 this->_M_impl._M_finish._M_node + 1);
559 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
560 }
561 }
562
563 /**
564 * @brief Layout storage.
565 * @param num_elements The count of T's for which to allocate space
566 * at first.
567 * @return Nothing.
568 *
569 * The initial underlying memory layout is a bit complicated...
570 */
571 template<typename _Tp, typename _Alloc>
572 void
573 _Deque_base<_Tp, _Alloc>::
574 _M_initialize_map(size_t __num_elements)
575 {
576 const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
577 + 1);
578
579 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
580 size_t(__num_nodes + 2));
581 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
582
583 // For "small" maps (needing less than _M_map_size nodes), allocation
584 // starts in the middle elements and grows outwards. So nstart may be
585 // the beginning of _M_map, but for small maps it may be as far in as
586 // _M_map+3.
587
588 _Tp** __nstart = (this->_M_impl._M_map
589 + (this->_M_impl._M_map_size - __num_nodes) / 2);
590 _Tp** __nfinish = __nstart + __num_nodes;
591
592 __try
593 { _M_create_nodes(__nstart, __nfinish); }
594 __catch(...)
595 {
596 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
597 this->_M_impl._M_map = 0;
598 this->_M_impl._M_map_size = 0;
599 __throw_exception_again;
600 }
601
602 this->_M_impl._M_start._M_set_node(__nstart);
603 this->_M_impl._M_finish._M_set_node(__nfinish - 1);
604 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
605 this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
606 + __num_elements
607 % __deque_buf_size(sizeof(_Tp)));
608 }
609
610 template<typename _Tp, typename _Alloc>
611 void
612 _Deque_base<_Tp, _Alloc>::
613 _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
614 {
615 _Tp** __cur;
616 __try
617 {
618 for (__cur = __nstart; __cur < __nfinish; ++__cur)
619 *__cur = this->_M_allocate_node();
620 }
621 __catch(...)
622 {
623 _M_destroy_nodes(__nstart, __cur);
624 __throw_exception_again;
625 }
626 }
627
628 template<typename _Tp, typename _Alloc>
629 void
630 _Deque_base<_Tp, _Alloc>::
631 _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
632 {
633 for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
634 _M_deallocate_node(*__n);
635 }
636
637 /**
638 * @brief A standard container using fixed-size memory allocation and
639 * constant-time manipulation of elements at either end.
640 *
641 * @ingroup sequences
642 *
643 * Meets the requirements of a <a href="tables.html#65">container</a>, a
644 * <a href="tables.html#66">reversible container</a>, and a
645 * <a href="tables.html#67">sequence</a>, including the
646 * <a href="tables.html#68">optional sequence requirements</a>.
647 *
648 * In previous HP/SGI versions of deque, there was an extra template
649 * parameter so users could control the node size. This extension turned
650 * out to violate the C++ standard (it can be detected using template
651 * template parameters), and it was removed.
652 *
653 * Here's how a deque<Tp> manages memory. Each deque has 4 members:
654 *
655 * - Tp** _M_map
656 * - size_t _M_map_size
657 * - iterator _M_start, _M_finish
658 *
659 * map_size is at least 8. %map is an array of map_size
660 * pointers-to-@anodes. (The name %map has nothing to do with the
661 * std::map class, and @b nodes should not be confused with
662 * std::list's usage of @a node.)
663 *
664 * A @a node has no specific type name as such, but it is referred
665 * to as @a node in this file. It is a simple array-of-Tp. If Tp
666 * is very large, there will be one Tp element per node (i.e., an
667 * @a array of one). For non-huge Tp's, node size is inversely
668 * related to Tp size: the larger the Tp, the fewer Tp's will fit
669 * in a node. The goal here is to keep the total size of a node
670 * relatively small and constant over different Tp's, to improve
671 * allocator efficiency.
672 *
673 * Not every pointer in the %map array will point to a node. If
674 * the initial number of elements in the deque is small, the
675 * /middle/ %map pointers will be valid, and the ones at the edges
676 * will be unused. This same situation will arise as the %map
677 * grows: available %map pointers, if any, will be on the ends. As
678 * new nodes are created, only a subset of the %map's pointers need
679 * to be copied @a outward.
680 *
681 * Class invariants:
682 * - For any nonsingular iterator i:
683 * - i.node points to a member of the %map array. (Yes, you read that
684 * correctly: i.node does not actually point to a node.) The member of
685 * the %map array is what actually points to the node.
686 * - i.first == *(i.node) (This points to the node (first Tp element).)
687 * - i.last == i.first + node_size
688 * - i.cur is a pointer in the range [i.first, i.last). NOTE:
689 * the implication of this is that i.cur is always a dereferenceable
690 * pointer, even if i is a past-the-end iterator.
691 * - Start and Finish are always nonsingular iterators. NOTE: this
692 * means that an empty deque must have one node, a deque with <N
693 * elements (where N is the node buffer size) must have one node, a
694 * deque with N through (2N-1) elements must have two nodes, etc.
695 * - For every node other than start.node and finish.node, every
696 * element in the node is an initialized object. If start.node ==
697 * finish.node, then [start.cur, finish.cur) are initialized
698 * objects, and the elements outside that range are uninitialized
699 * storage. Otherwise, [start.cur, start.last) and [finish.first,
700 * finish.cur) are initialized objects, and [start.first, start.cur)
701 * and [finish.cur, finish.last) are uninitialized storage.
702 * - [%map, %map + map_size) is a valid, non-empty range.
703 * - [start.node, finish.node] is a valid range contained within
704 * [%map, %map + map_size).
705 * - A pointer in the range [%map, %map + map_size) points to an allocated
706 * node if and only if the pointer is in the range
707 * [start.node, finish.node].
708 *
709 * Here's the magic: nothing in deque is @b aware of the discontiguous
710 * storage!
711 *
712 * The memory setup and layout occurs in the parent, _Base, and the iterator
713 * class is entirely responsible for @a leaping from one node to the next.
714 * All the implementation routines for deque itself work only through the
715 * start and finish iterators. This keeps the routines simple and sane,
716 * and we can use other standard algorithms as well.
717 */
718 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
719 class deque : protected _Deque_base<_Tp, _Alloc>
720 {
721 // concept requirements
722 typedef typename _Alloc::value_type _Alloc_value_type;
723 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
724 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
725
726 typedef _Deque_base<_Tp, _Alloc> _Base;
727 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
728
729 public:
730 typedef _Tp value_type;
731 typedef typename _Tp_alloc_type::pointer pointer;
732 typedef typename _Tp_alloc_type::const_pointer const_pointer;
733 typedef typename _Tp_alloc_type::reference reference;
734 typedef typename _Tp_alloc_type::const_reference const_reference;
735 typedef typename _Base::iterator iterator;
736 typedef typename _Base::const_iterator const_iterator;
737 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
738 typedef std::reverse_iterator<iterator> reverse_iterator;
739 typedef size_t size_type;
740 typedef ptrdiff_t difference_type;
741 typedef _Alloc allocator_type;
742
743 protected:
744 typedef pointer* _Map_pointer;
745
746 static size_t _S_buffer_size()
747 { return __deque_buf_size(sizeof(_Tp)); }
748
749 // Functions controlling memory layout, and nothing else.
750 using _Base::_M_initialize_map;
751 using _Base::_M_create_nodes;
752 using _Base::_M_destroy_nodes;
753 using _Base::_M_allocate_node;
754 using _Base::_M_deallocate_node;
755 using _Base::_M_allocate_map;
756 using _Base::_M_deallocate_map;
757 using _Base::_M_get_Tp_allocator;
758
759 /**
760 * A total of four data members accumulated down the hierarchy.
761 * May be accessed via _M_impl.*
762 */
763 using _Base::_M_impl;
764
765 public:
766 // [23.2.1.1] construct/copy/destroy
767 // (assign() and get_allocator() are also listed in this section)
768 /**
769 * @brief Default constructor creates no elements.
770 */
771 deque()
772 : _Base() { }
773
774 /**
775 * @brief Creates a %deque with no elements.
776 * @param a An allocator object.
777 */
778 explicit
779 deque(const allocator_type& __a)
780 : _Base(__a, 0) { }
781
782 #ifdef __GXX_EXPERIMENTAL_CXX0X__
783 /**
784 * @brief Creates a %deque with default constructed elements.
785 * @param n The number of elements to initially create.
786 *
787 * This constructor fills the %deque with @a n default
788 * constructed elements.
789 */
790 explicit
791 deque(size_type __n)
792 : _Base(__n)
793 { _M_default_initialize(); }
794
795 /**
796 * @brief Creates a %deque with copies of an exemplar element.
797 * @param n The number of elements to initially create.
798 * @param value An element to copy.
799 * @param a An allocator.
800 *
801 * This constructor fills the %deque with @a n copies of @a value.
802 */
803 deque(size_type __n, const value_type& __value,
804 const allocator_type& __a = allocator_type())
805 : _Base(__a, __n)
806 { _M_fill_initialize(__value); }
807 #else
808 /**
809 * @brief Creates a %deque with copies of an exemplar element.
810 * @param n The number of elements to initially create.
811 * @param value An element to copy.
812 * @param a An allocator.
813 *
814 * This constructor fills the %deque with @a n copies of @a value.
815 */
816 explicit
817 deque(size_type __n, const value_type& __value = value_type(),
818 const allocator_type& __a = allocator_type())
819 : _Base(__a, __n)
820 { _M_fill_initialize(__value); }
821 #endif
822
823 /**
824 * @brief %Deque copy constructor.
825 * @param x A %deque of identical element and allocator types.
826 *
827 * The newly-created %deque uses a copy of the allocation object used
828 * by @a x.
829 */
830 deque(const deque& __x)
831 : _Base(__x._M_get_Tp_allocator(), __x.size())
832 { std::__uninitialized_copy_a(__x.begin(), __x.end(),
833 this->_M_impl._M_start,
834 _M_get_Tp_allocator()); }
835
836 #ifdef __GXX_EXPERIMENTAL_CXX0X__
837 /**
838 * @brief %Deque move constructor.
839 * @param x A %deque of identical element and allocator types.
840 *
841 * The newly-created %deque contains the exact contents of @a x.
842 * The contents of @a x are a valid, but unspecified %deque.
843 */
844 deque(deque&& __x)
845 : _Base(std::move(__x)) { }
846
847 /**
848 * @brief Builds a %deque from an initializer list.
849 * @param l An initializer_list.
850 * @param a An allocator object.
851 *
852 * Create a %deque consisting of copies of the elements in the
853 * initializer_list @a l.
854 *
855 * This will call the element type's copy constructor N times
856 * (where N is l.size()) and do no memory reallocation.
857 */
858 deque(initializer_list<value_type> __l,
859 const allocator_type& __a = allocator_type())
860 : _Base(__a)
861 {
862 _M_range_initialize(__l.begin(), __l.end(),
863 random_access_iterator_tag());
864 }
865 #endif
866
867 /**
868 * @brief Builds a %deque from a range.
869 * @param first An input iterator.
870 * @param last An input iterator.
871 * @param a An allocator object.
872 *
873 * Create a %deque consisting of copies of the elements from [first,
874 * last).
875 *
876 * If the iterators are forward, bidirectional, or random-access, then
877 * this will call the elements' copy constructor N times (where N is
878 * distance(first,last)) and do no memory reallocation. But if only
879 * input iterators are used, then this will do at most 2N calls to the
880 * copy constructor, and logN memory reallocations.
881 */
882 template<typename _InputIterator>
883 deque(_InputIterator __first, _InputIterator __last,
884 const allocator_type& __a = allocator_type())
885 : _Base(__a)
886 {
887 // Check whether it's an integral type. If so, it's not an iterator.
888 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
889 _M_initialize_dispatch(__first, __last, _Integral());
890 }
891
892 /**
893 * The dtor only erases the elements, and note that if the elements
894 * themselves are pointers, the pointed-to memory is not touched in any
895 * way. Managing the pointer is the user's responsibility.
896 */
897 ~deque()
898 { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
899
900 /**
901 * @brief %Deque assignment operator.
902 * @param x A %deque of identical element and allocator types.
903 *
904 * All the elements of @a x are copied, but unlike the copy constructor,
905 * the allocator object is not copied.
906 */
907 deque&
908 operator=(const deque& __x);
909
910 #ifdef __GXX_EXPERIMENTAL_CXX0X__
911 /**
912 * @brief %Deque move assignment operator.
913 * @param x A %deque of identical element and allocator types.
914 *
915 * The contents of @a x are moved into this deque (without copying).
916 * @a x is a valid, but unspecified %deque.
917 */
918 deque&
919 operator=(deque&& __x)
920 {
921 // NB: DR 1204.
922 // NB: DR 675.
923 this->clear();
924 this->swap(__x);
925 return *this;
926 }
927
928 /**
929 * @brief Assigns an initializer list to a %deque.
930 * @param l An initializer_list.
931 *
932 * This function fills a %deque with copies of the elements in the
933 * initializer_list @a l.
934 *
935 * Note that the assignment completely changes the %deque and that the
936 * resulting %deque's size is the same as the number of elements
937 * assigned. Old data may be lost.
938 */
939 deque&
940 operator=(initializer_list<value_type> __l)
941 {
942 this->assign(__l.begin(), __l.end());
943 return *this;
944 }
945 #endif
946
947 /**
948 * @brief Assigns a given value to a %deque.
949 * @param n Number of elements to be assigned.
950 * @param val Value to be assigned.
951 *
952 * This function fills a %deque with @a n copies of the given
953 * value. Note that the assignment completely changes the
954 * %deque and that the resulting %deque's size is the same as
955 * the number of elements assigned. Old data may be lost.
956 */
957 void
958 assign(size_type __n, const value_type& __val)
959 { _M_fill_assign(__n, __val); }
960
961 /**
962 * @brief Assigns a range to a %deque.
963 * @param first An input iterator.
964 * @param last An input iterator.
965 *
966 * This function fills a %deque with copies of the elements in the
967 * range [first,last).
968 *
969 * Note that the assignment completely changes the %deque and that the
970 * resulting %deque's size is the same as the number of elements
971 * assigned. Old data may be lost.
972 */
973 template<typename _InputIterator>
974 void
975 assign(_InputIterator __first, _InputIterator __last)
976 {
977 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
978 _M_assign_dispatch(__first, __last, _Integral());
979 }
980
981 #ifdef __GXX_EXPERIMENTAL_CXX0X__
982 /**
983 * @brief Assigns an initializer list to a %deque.
984 * @param l An initializer_list.
985 *
986 * This function fills a %deque with copies of the elements in the
987 * initializer_list @a l.
988 *
989 * Note that the assignment completely changes the %deque and that the
990 * resulting %deque's size is the same as the number of elements
991 * assigned. Old data may be lost.
992 */
993 void
994 assign(initializer_list<value_type> __l)
995 { this->assign(__l.begin(), __l.end()); }
996 #endif
997
998 /// Get a copy of the memory allocation object.
999 allocator_type
1000 get_allocator() const _GLIBCXX_NOEXCEPT
1001 { return _Base::get_allocator(); }
1002
1003 // iterators
1004 /**
1005 * Returns a read/write iterator that points to the first element in the
1006 * %deque. Iteration is done in ordinary element order.
1007 */
1008 iterator
1009 begin() _GLIBCXX_NOEXCEPT
1010 { return this->_M_impl._M_start; }
1011
1012 /**
1013 * Returns a read-only (constant) iterator that points to the first
1014 * element in the %deque. Iteration is done in ordinary element order.
1015 */
1016 const_iterator
1017 begin() const _GLIBCXX_NOEXCEPT
1018 { return this->_M_impl._M_start; }
1019
1020 /**
1021 * Returns a read/write iterator that points one past the last
1022 * element in the %deque. Iteration is done in ordinary
1023 * element order.
1024 */
1025 iterator
1026 end() _GLIBCXX_NOEXCEPT
1027 { return this->_M_impl._M_finish; }
1028
1029 /**
1030 * Returns a read-only (constant) iterator that points one past
1031 * the last element in the %deque. Iteration is done in
1032 * ordinary element order.
1033 */
1034 const_iterator
1035 end() const _GLIBCXX_NOEXCEPT
1036 { return this->_M_impl._M_finish; }
1037
1038 /**
1039 * Returns a read/write reverse iterator that points to the
1040 * last element in the %deque. Iteration is done in reverse
1041 * element order.
1042 */
1043 reverse_iterator
1044 rbegin() _GLIBCXX_NOEXCEPT
1045 { return reverse_iterator(this->_M_impl._M_finish); }
1046
1047 /**
1048 * Returns a read-only (constant) reverse iterator that points
1049 * to the last element in the %deque. Iteration is done in
1050 * reverse element order.
1051 */
1052 const_reverse_iterator
1053 rbegin() const _GLIBCXX_NOEXCEPT
1054 { return const_reverse_iterator(this->_M_impl._M_finish); }
1055
1056 /**
1057 * Returns a read/write reverse iterator that points to one
1058 * before the first element in the %deque. Iteration is done
1059 * in reverse element order.
1060 */
1061 reverse_iterator
1062 rend() _GLIBCXX_NOEXCEPT
1063 { return reverse_iterator(this->_M_impl._M_start); }
1064
1065 /**
1066 * Returns a read-only (constant) reverse iterator that points
1067 * to one before the first element in the %deque. Iteration is
1068 * done in reverse element order.
1069 */
1070 const_reverse_iterator
1071 rend() const _GLIBCXX_NOEXCEPT
1072 { return const_reverse_iterator(this->_M_impl._M_start); }
1073
1074 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1075 /**
1076 * Returns a read-only (constant) iterator that points to the first
1077 * element in the %deque. Iteration is done in ordinary element order.
1078 */
1079 const_iterator
1080 cbegin() const noexcept
1081 { return this->_M_impl._M_start; }
1082
1083 /**
1084 * Returns a read-only (constant) iterator that points one past
1085 * the last element in the %deque. Iteration is done in
1086 * ordinary element order.
1087 */
1088 const_iterator
1089 cend() const noexcept
1090 { return this->_M_impl._M_finish; }
1091
1092 /**
1093 * Returns a read-only (constant) reverse iterator that points
1094 * to the last element in the %deque. Iteration is done in
1095 * reverse element order.
1096 */
1097 const_reverse_iterator
1098 crbegin() const noexcept
1099 { return const_reverse_iterator(this->_M_impl._M_finish); }
1100
1101 /**
1102 * Returns a read-only (constant) reverse iterator that points
1103 * to one before the first element in the %deque. Iteration is
1104 * done in reverse element order.
1105 */
1106 const_reverse_iterator
1107 crend() const noexcept
1108 { return const_reverse_iterator(this->_M_impl._M_start); }
1109 #endif
1110
1111 // [23.2.1.2] capacity
1112 /** Returns the number of elements in the %deque. */
1113 size_type
1114 size() const _GLIBCXX_NOEXCEPT
1115 { return this->_M_impl._M_finish - this->_M_impl._M_start; }
1116
1117 /** Returns the size() of the largest possible %deque. */
1118 size_type
1119 max_size() const _GLIBCXX_NOEXCEPT
1120 { return _M_get_Tp_allocator().max_size(); }
1121
1122 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1123 /**
1124 * @brief Resizes the %deque to the specified number of elements.
1125 * @param new_size Number of elements the %deque should contain.
1126 *
1127 * This function will %resize the %deque to the specified
1128 * number of elements. If the number is smaller than the
1129 * %deque's current size the %deque is truncated, otherwise
1130 * default constructed elements are appended.
1131 */
1132 void
1133 resize(size_type __new_size)
1134 {
1135 const size_type __len = size();
1136 if (__new_size > __len)
1137 _M_default_append(__new_size - __len);
1138 else if (__new_size < __len)
1139 _M_erase_at_end(this->_M_impl._M_start
1140 + difference_type(__new_size));
1141 }
1142
1143 /**
1144 * @brief Resizes the %deque to the specified number of elements.
1145 * @param new_size Number of elements the %deque should contain.
1146 * @param x Data with which new elements should be populated.
1147 *
1148 * This function will %resize the %deque to the specified
1149 * number of elements. If the number is smaller than the
1150 * %deque's current size the %deque is truncated, otherwise the
1151 * %deque is extended and new elements are populated with given
1152 * data.
1153 */
1154 void
1155 resize(size_type __new_size, const value_type& __x)
1156 {
1157 const size_type __len = size();
1158 if (__new_size > __len)
1159 insert(this->_M_impl._M_finish, __new_size - __len, __x);
1160 else if (__new_size < __len)
1161 _M_erase_at_end(this->_M_impl._M_start
1162 + difference_type(__new_size));
1163 }
1164 #else
1165 /**
1166 * @brief Resizes the %deque to the specified number of elements.
1167 * @param new_size Number of elements the %deque should contain.
1168 * @param x Data with which new elements should be populated.
1169 *
1170 * This function will %resize the %deque to the specified
1171 * number of elements. If the number is smaller than the
1172 * %deque's current size the %deque is truncated, otherwise the
1173 * %deque is extended and new elements are populated with given
1174 * data.
1175 */
1176 void
1177 resize(size_type __new_size, value_type __x = value_type())
1178 {
1179 const size_type __len = size();
1180 if (__new_size > __len)
1181 insert(this->_M_impl._M_finish, __new_size - __len, __x);
1182 else if (__new_size < __len)
1183 _M_erase_at_end(this->_M_impl._M_start
1184 + difference_type(__new_size));
1185 }
1186 #endif
1187
1188 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1189 /** A non-binding request to reduce memory use. */
1190 void
1191 shrink_to_fit()
1192 { std::__shrink_to_fit<deque>::_S_do_it(*this); }
1193 #endif
1194
1195 /**
1196 * Returns true if the %deque is empty. (Thus begin() would
1197 * equal end().)
1198 */
1199 bool
1200 empty() const _GLIBCXX_NOEXCEPT
1201 { return this->_M_impl._M_finish == this->_M_impl._M_start; }
1202
1203 // element access
1204 /**
1205 * @brief Subscript access to the data contained in the %deque.
1206 * @param n The index of the element for which data should be
1207 * accessed.
1208 * @return Read/write reference to data.
1209 *
1210 * This operator allows for easy, array-style, data access.
1211 * Note that data access with this operator is unchecked and
1212 * out_of_range lookups are not defined. (For checked lookups
1213 * see at().)
1214 */
1215 reference
1216 operator[](size_type __n)
1217 { return this->_M_impl._M_start[difference_type(__n)]; }
1218
1219 /**
1220 * @brief Subscript access to the data contained in the %deque.
1221 * @param n The index of the element for which data should be
1222 * accessed.
1223 * @return Read-only (constant) reference to data.
1224 *
1225 * This operator allows for easy, array-style, data access.
1226 * Note that data access with this operator is unchecked and
1227 * out_of_range lookups are not defined. (For checked lookups
1228 * see at().)
1229 */
1230 const_reference
1231 operator[](size_type __n) const
1232 { return this->_M_impl._M_start[difference_type(__n)]; }
1233
1234 protected:
1235 /// Safety check used only from at().
1236 void
1237 _M_range_check(size_type __n) const
1238 {
1239 if (__n >= this->size())
1240 __throw_out_of_range(__N("deque::_M_range_check"));
1241 }
1242
1243 public:
1244 /**
1245 * @brief Provides access to the data contained in the %deque.
1246 * @param n The index of the element for which data should be
1247 * accessed.
1248 * @return Read/write reference to data.
1249 * @throw std::out_of_range If @a n is an invalid index.
1250 *
1251 * This function provides for safer data access. The parameter
1252 * is first checked that it is in the range of the deque. The
1253 * function throws out_of_range if the check fails.
1254 */
1255 reference
1256 at(size_type __n)
1257 {
1258 _M_range_check(__n);
1259 return (*this)[__n];
1260 }
1261
1262 /**
1263 * @brief Provides access to the data contained in the %deque.
1264 * @param n The index of the element for which data should be
1265 * accessed.
1266 * @return Read-only (constant) reference to data.
1267 * @throw std::out_of_range If @a n is an invalid index.
1268 *
1269 * This function provides for safer data access. The parameter is first
1270 * checked that it is in the range of the deque. The function throws
1271 * out_of_range if the check fails.
1272 */
1273 const_reference
1274 at(size_type __n) const
1275 {
1276 _M_range_check(__n);
1277 return (*this)[__n];
1278 }
1279
1280 /**
1281 * Returns a read/write reference to the data at the first
1282 * element of the %deque.
1283 */
1284 reference
1285 front()
1286 { return *begin(); }
1287
1288 /**
1289 * Returns a read-only (constant) reference to the data at the first
1290 * element of the %deque.
1291 */
1292 const_reference
1293 front() const
1294 { return *begin(); }
1295
1296 /**
1297 * Returns a read/write reference to the data at the last element of the
1298 * %deque.
1299 */
1300 reference
1301 back()
1302 {
1303 iterator __tmp = end();
1304 --__tmp;
1305 return *__tmp;
1306 }
1307
1308 /**
1309 * Returns a read-only (constant) reference to the data at the last
1310 * element of the %deque.
1311 */
1312 const_reference
1313 back() const
1314 {
1315 const_iterator __tmp = end();
1316 --__tmp;
1317 return *__tmp;
1318 }
1319
1320 // [23.2.1.2] modifiers
1321 /**
1322 * @brief Add data to the front of the %deque.
1323 * @param x Data to be added.
1324 *
1325 * This is a typical stack operation. The function creates an
1326 * element at the front of the %deque and assigns the given
1327 * data to it. Due to the nature of a %deque this operation
1328 * can be done in constant time.
1329 */
1330 void
1331 push_front(const value_type& __x)
1332 {
1333 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1334 {
1335 this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1336 --this->_M_impl._M_start._M_cur;
1337 }
1338 else
1339 _M_push_front_aux(__x);
1340 }
1341
1342 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1343 void
1344 push_front(value_type&& __x)
1345 { emplace_front(std::move(__x)); }
1346
1347 template<typename... _Args>
1348 void
1349 emplace_front(_Args&&... __args);
1350 #endif
1351
1352 /**
1353 * @brief Add data to the end of the %deque.
1354 * @param x Data to be added.
1355 *
1356 * This is a typical stack operation. The function creates an
1357 * element at the end of the %deque and assigns the given data
1358 * to it. Due to the nature of a %deque this operation can be
1359 * done in constant time.
1360 */
1361 void
1362 push_back(const value_type& __x)
1363 {
1364 if (this->_M_impl._M_finish._M_cur
1365 != this->_M_impl._M_finish._M_last - 1)
1366 {
1367 this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1368 ++this->_M_impl._M_finish._M_cur;
1369 }
1370 else
1371 _M_push_back_aux(__x);
1372 }
1373
1374 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1375 void
1376 push_back(value_type&& __x)
1377 { emplace_back(std::move(__x)); }
1378
1379 template<typename... _Args>
1380 void
1381 emplace_back(_Args&&... __args);
1382 #endif
1383
1384 /**
1385 * @brief Removes first element.
1386 *
1387 * This is a typical stack operation. It shrinks the %deque by one.
1388 *
1389 * Note that no data is returned, and if the first element's data is
1390 * needed, it should be retrieved before pop_front() is called.
1391 */
1392 void
1393 pop_front()
1394 {
1395 if (this->_M_impl._M_start._M_cur
1396 != this->_M_impl._M_start._M_last - 1)
1397 {
1398 this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1399 ++this->_M_impl._M_start._M_cur;
1400 }
1401 else
1402 _M_pop_front_aux();
1403 }
1404
1405 /**
1406 * @brief Removes last element.
1407 *
1408 * This is a typical stack operation. It shrinks the %deque by one.
1409 *
1410 * Note that no data is returned, and if the last element's data is
1411 * needed, it should be retrieved before pop_back() is called.
1412 */
1413 void
1414 pop_back()
1415 {
1416 if (this->_M_impl._M_finish._M_cur
1417 != this->_M_impl._M_finish._M_first)
1418 {
1419 --this->_M_impl._M_finish._M_cur;
1420 this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1421 }
1422 else
1423 _M_pop_back_aux();
1424 }
1425
1426 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1427 /**
1428 * @brief Inserts an object in %deque before specified iterator.
1429 * @param position An iterator into the %deque.
1430 * @param args Arguments.
1431 * @return An iterator that points to the inserted data.
1432 *
1433 * This function will insert an object of type T constructed
1434 * with T(std::forward<Args>(args)...) before the specified location.
1435 */
1436 template<typename... _Args>
1437 iterator
1438 emplace(iterator __position, _Args&&... __args);
1439 #endif
1440
1441 /**
1442 * @brief Inserts given value into %deque before specified iterator.
1443 * @param position An iterator into the %deque.
1444 * @param x Data to be inserted.
1445 * @return An iterator that points to the inserted data.
1446 *
1447 * This function will insert a copy of the given value before the
1448 * specified location.
1449 */
1450 iterator
1451 insert(iterator __position, const value_type& __x);
1452
1453 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1454 /**
1455 * @brief Inserts given rvalue into %deque before specified iterator.
1456 * @param position An iterator into the %deque.
1457 * @param x Data to be inserted.
1458 * @return An iterator that points to the inserted data.
1459 *
1460 * This function will insert a copy of the given rvalue before the
1461 * specified location.
1462 */
1463 iterator
1464 insert(iterator __position, value_type&& __x)
1465 { return emplace(__position, std::move(__x)); }
1466
1467 /**
1468 * @brief Inserts an initializer list into the %deque.
1469 * @param p An iterator into the %deque.
1470 * @param l An initializer_list.
1471 *
1472 * This function will insert copies of the data in the
1473 * initializer_list @a l into the %deque before the location
1474 * specified by @a p. This is known as <em>list insert</em>.
1475 */
1476 void
1477 insert(iterator __p, initializer_list<value_type> __l)
1478 { this->insert(__p, __l.begin(), __l.end()); }
1479 #endif
1480
1481 /**
1482 * @brief Inserts a number of copies of given data into the %deque.
1483 * @param position An iterator into the %deque.
1484 * @param n Number of elements to be inserted.
1485 * @param x Data to be inserted.
1486 *
1487 * This function will insert a specified number of copies of the given
1488 * data before the location specified by @a position.
1489 */
1490 void
1491 insert(iterator __position, size_type __n, const value_type& __x)
1492 { _M_fill_insert(__position, __n, __x); }
1493
1494 /**
1495 * @brief Inserts a range into the %deque.
1496 * @param position An iterator into the %deque.
1497 * @param first An input iterator.
1498 * @param last An input iterator.
1499 *
1500 * This function will insert copies of the data in the range
1501 * [first,last) into the %deque before the location specified
1502 * by @a pos. This is known as <em>range insert</em>.
1503 */
1504 template<typename _InputIterator>
1505 void
1506 insert(iterator __position, _InputIterator __first,
1507 _InputIterator __last)
1508 {
1509 // Check whether it's an integral type. If so, it's not an iterator.
1510 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1511 _M_insert_dispatch(__position, __first, __last, _Integral());
1512 }
1513
1514 /**
1515 * @brief Remove element at given position.
1516 * @param position Iterator pointing to element to be erased.
1517 * @return An iterator pointing to the next element (or end()).
1518 *
1519 * This function will erase the element at the given position and thus
1520 * shorten the %deque by one.
1521 *
1522 * The user is cautioned that
1523 * this function only erases the element, and that if the element is
1524 * itself a pointer, the pointed-to memory is not touched in any way.
1525 * Managing the pointer is the user's responsibility.
1526 */
1527 iterator
1528 erase(iterator __position);
1529
1530 /**
1531 * @brief Remove a range of elements.
1532 * @param first Iterator pointing to the first element to be erased.
1533 * @param last Iterator pointing to one past the last element to be
1534 * erased.
1535 * @return An iterator pointing to the element pointed to by @a last
1536 * prior to erasing (or end()).
1537 *
1538 * This function will erase the elements in the range [first,last) and
1539 * shorten the %deque accordingly.
1540 *
1541 * The user is cautioned that
1542 * this function only erases the elements, and that if the elements
1543 * themselves are pointers, the pointed-to memory is not touched in any
1544 * way. Managing the pointer is the user's responsibility.
1545 */
1546 iterator
1547 erase(iterator __first, iterator __last);
1548
1549 /**
1550 * @brief Swaps data with another %deque.
1551 * @param x A %deque of the same element and allocator types.
1552 *
1553 * This exchanges the elements between two deques in constant time.
1554 * (Four pointers, so it should be quite fast.)
1555 * Note that the global std::swap() function is specialized such that
1556 * std::swap(d1,d2) will feed to this function.
1557 */
1558 void
1559 swap(deque& __x)
1560 {
1561 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1562 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1563 std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1564 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1565
1566 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1567 // 431. Swapping containers with unequal allocators.
1568 std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1569 __x._M_get_Tp_allocator());
1570 }
1571
1572 /**
1573 * Erases all the elements. Note that this function only erases the
1574 * elements, and that if the elements themselves are pointers, the
1575 * pointed-to memory is not touched in any way. Managing the pointer is
1576 * the user's responsibility.
1577 */
1578 void
1579 clear() _GLIBCXX_NOEXCEPT
1580 { _M_erase_at_end(begin()); }
1581
1582 protected:
1583 // Internal constructor functions follow.
1584
1585 // called by the range constructor to implement [23.1.1]/9
1586
1587 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1588 // 438. Ambiguity in the "do the right thing" clause
1589 template<typename _Integer>
1590 void
1591 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1592 {
1593 _M_initialize_map(static_cast<size_type>(__n));
1594 _M_fill_initialize(__x);
1595 }
1596
1597 // called by the range constructor to implement [23.1.1]/9
1598 template<typename _InputIterator>
1599 void
1600 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1601 __false_type)
1602 {
1603 typedef typename std::iterator_traits<_InputIterator>::
1604 iterator_category _IterCategory;
1605 _M_range_initialize(__first, __last, _IterCategory());
1606 }
1607
1608 // called by the second initialize_dispatch above
1609 //@{
1610 /**
1611 * @brief Fills the deque with whatever is in [first,last).
1612 * @param first An input iterator.
1613 * @param last An input iterator.
1614 * @return Nothing.
1615 *
1616 * If the iterators are actually forward iterators (or better), then the
1617 * memory layout can be done all at once. Else we move forward using
1618 * push_back on each value from the iterator.
1619 */
1620 template<typename _InputIterator>
1621 void
1622 _M_range_initialize(_InputIterator __first, _InputIterator __last,
1623 std::input_iterator_tag);
1624
1625 // called by the second initialize_dispatch above
1626 template<typename _ForwardIterator>
1627 void
1628 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1629 std::forward_iterator_tag);
1630 //@}
1631
1632 /**
1633 * @brief Fills the %deque with copies of value.
1634 * @param value Initial value.
1635 * @return Nothing.
1636 * @pre _M_start and _M_finish have already been initialized,
1637 * but none of the %deque's elements have yet been constructed.
1638 *
1639 * This function is called only when the user provides an explicit size
1640 * (with or without an explicit exemplar value).
1641 */
1642 void
1643 _M_fill_initialize(const value_type& __value);
1644
1645 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1646 // called by deque(n).
1647 void
1648 _M_default_initialize();
1649 #endif
1650
1651 // Internal assign functions follow. The *_aux functions do the actual
1652 // assignment work for the range versions.
1653
1654 // called by the range assign to implement [23.1.1]/9
1655
1656 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1657 // 438. Ambiguity in the "do the right thing" clause
1658 template<typename _Integer>
1659 void
1660 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1661 { _M_fill_assign(__n, __val); }
1662
1663 // called by the range assign to implement [23.1.1]/9
1664 template<typename _InputIterator>
1665 void
1666 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1667 __false_type)
1668 {
1669 typedef typename std::iterator_traits<_InputIterator>::
1670 iterator_category _IterCategory;
1671 _M_assign_aux(__first, __last, _IterCategory());
1672 }
1673
1674 // called by the second assign_dispatch above
1675 template<typename _InputIterator>
1676 void
1677 _M_assign_aux(_InputIterator __first, _InputIterator __last,
1678 std::input_iterator_tag);
1679
1680 // called by the second assign_dispatch above
1681 template<typename _ForwardIterator>
1682 void
1683 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1684 std::forward_iterator_tag)
1685 {
1686 const size_type __len = std::distance(__first, __last);
1687 if (__len > size())
1688 {
1689 _ForwardIterator __mid = __first;
1690 std::advance(__mid, size());
1691 std::copy(__first, __mid, begin());
1692 insert(end(), __mid, __last);
1693 }
1694 else
1695 _M_erase_at_end(std::copy(__first, __last, begin()));
1696 }
1697
1698 // Called by assign(n,t), and the range assign when it turns out
1699 // to be the same thing.
1700 void
1701 _M_fill_assign(size_type __n, const value_type& __val)
1702 {
1703 if (__n > size())
1704 {
1705 std::fill(begin(), end(), __val);
1706 insert(end(), __n - size(), __val);
1707 }
1708 else
1709 {
1710 _M_erase_at_end(begin() + difference_type(__n));
1711 std::fill(begin(), end(), __val);
1712 }
1713 }
1714
1715 //@{
1716 /// Helper functions for push_* and pop_*.
1717 #ifndef __GXX_EXPERIMENTAL_CXX0X__
1718 void _M_push_back_aux(const value_type&);
1719
1720 void _M_push_front_aux(const value_type&);
1721 #else
1722 template<typename... _Args>
1723 void _M_push_back_aux(_Args&&... __args);
1724
1725 template<typename... _Args>
1726 void _M_push_front_aux(_Args&&... __args);
1727 #endif
1728
1729 void _M_pop_back_aux();
1730
1731 void _M_pop_front_aux();
1732 //@}
1733
1734 // Internal insert functions follow. The *_aux functions do the actual
1735 // insertion work when all shortcuts fail.
1736
1737 // called by the range insert to implement [23.1.1]/9
1738
1739 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1740 // 438. Ambiguity in the "do the right thing" clause
1741 template<typename _Integer>
1742 void
1743 _M_insert_dispatch(iterator __pos,
1744 _Integer __n, _Integer __x, __true_type)
1745 { _M_fill_insert(__pos, __n, __x); }
1746
1747 // called by the range insert to implement [23.1.1]/9
1748 template<typename _InputIterator>
1749 void
1750 _M_insert_dispatch(iterator __pos,
1751 _InputIterator __first, _InputIterator __last,
1752 __false_type)
1753 {
1754 typedef typename std::iterator_traits<_InputIterator>::
1755 iterator_category _IterCategory;
1756 _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1757 }
1758
1759 // called by the second insert_dispatch above
1760 template<typename _InputIterator>
1761 void
1762 _M_range_insert_aux(iterator __pos, _InputIterator __first,
1763 _InputIterator __last, std::input_iterator_tag);
1764
1765 // called by the second insert_dispatch above
1766 template<typename _ForwardIterator>
1767 void
1768 _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1769 _ForwardIterator __last, std::forward_iterator_tag);
1770
1771 // Called by insert(p,n,x), and the range insert when it turns out to be
1772 // the same thing. Can use fill functions in optimal situations,
1773 // otherwise passes off to insert_aux(p,n,x).
1774 void
1775 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1776
1777 // called by insert(p,x)
1778 #ifndef __GXX_EXPERIMENTAL_CXX0X__
1779 iterator
1780 _M_insert_aux(iterator __pos, const value_type& __x);
1781 #else
1782 template<typename... _Args>
1783 iterator
1784 _M_insert_aux(iterator __pos, _Args&&... __args);
1785 #endif
1786
1787 // called by insert(p,n,x) via fill_insert
1788 void
1789 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1790
1791 // called by range_insert_aux for forward iterators
1792 template<typename _ForwardIterator>
1793 void
1794 _M_insert_aux(iterator __pos,
1795 _ForwardIterator __first, _ForwardIterator __last,
1796 size_type __n);
1797
1798
1799 // Internal erase functions follow.
1800
1801 void
1802 _M_destroy_data_aux(iterator __first, iterator __last);
1803
1804 // Called by ~deque().
1805 // NB: Doesn't deallocate the nodes.
1806 template<typename _Alloc1>
1807 void
1808 _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
1809 { _M_destroy_data_aux(__first, __last); }
1810
1811 void
1812 _M_destroy_data(iterator __first, iterator __last,
1813 const std::allocator<_Tp>&)
1814 {
1815 if (!__has_trivial_destructor(value_type))
1816 _M_destroy_data_aux(__first, __last);
1817 }
1818
1819 // Called by erase(q1, q2).
1820 void
1821 _M_erase_at_begin(iterator __pos)
1822 {
1823 _M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
1824 _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
1825 this->_M_impl._M_start = __pos;
1826 }
1827
1828 // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
1829 // _M_fill_assign, operator=.
1830 void
1831 _M_erase_at_end(iterator __pos)
1832 {
1833 _M_destroy_data(__pos, end(), _M_get_Tp_allocator());
1834 _M_destroy_nodes(__pos._M_node + 1,
1835 this->_M_impl._M_finish._M_node + 1);
1836 this->_M_impl._M_finish = __pos;
1837 }
1838
1839 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1840 // Called by resize(sz).
1841 void
1842 _M_default_append(size_type __n);
1843 #endif
1844
1845 //@{
1846 /// Memory-handling helpers for the previous internal insert functions.
1847 iterator
1848 _M_reserve_elements_at_front(size_type __n)
1849 {
1850 const size_type __vacancies = this->_M_impl._M_start._M_cur
1851 - this->_M_impl._M_start._M_first;
1852 if (__n > __vacancies)
1853 _M_new_elements_at_front(__n - __vacancies);
1854 return this->_M_impl._M_start - difference_type(__n);
1855 }
1856
1857 iterator
1858 _M_reserve_elements_at_back(size_type __n)
1859 {
1860 const size_type __vacancies = (this->_M_impl._M_finish._M_last
1861 - this->_M_impl._M_finish._M_cur) - 1;
1862 if (__n > __vacancies)
1863 _M_new_elements_at_back(__n - __vacancies);
1864 return this->_M_impl._M_finish + difference_type(__n);
1865 }
1866
1867 void
1868 _M_new_elements_at_front(size_type __new_elements);
1869
1870 void
1871 _M_new_elements_at_back(size_type __new_elements);
1872 //@}
1873
1874
1875 //@{
1876 /**
1877 * @brief Memory-handling helpers for the major %map.
1878 *
1879 * Makes sure the _M_map has space for new nodes. Does not
1880 * actually add the nodes. Can invalidate _M_map pointers.
1881 * (And consequently, %deque iterators.)
1882 */
1883 void
1884 _M_reserve_map_at_back(size_type __nodes_to_add = 1)
1885 {
1886 if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1887 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1888 _M_reallocate_map(__nodes_to_add, false);
1889 }
1890
1891 void
1892 _M_reserve_map_at_front(size_type __nodes_to_add = 1)
1893 {
1894 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1895 - this->_M_impl._M_map))
1896 _M_reallocate_map(__nodes_to_add, true);
1897 }
1898
1899 void
1900 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1901 //@}
1902 };
1903
1904
1905 /**
1906 * @brief Deque equality comparison.
1907 * @param x A %deque.
1908 * @param y A %deque of the same type as @a x.
1909 * @return True iff the size and elements of the deques are equal.
1910 *
1911 * This is an equivalence relation. It is linear in the size of the
1912 * deques. Deques are considered equivalent if their sizes are equal,
1913 * and if corresponding elements compare equal.
1914 */
1915 template<typename _Tp, typename _Alloc>
1916 inline bool
1917 operator==(const deque<_Tp, _Alloc>& __x,
1918 const deque<_Tp, _Alloc>& __y)
1919 { return __x.size() == __y.size()
1920 && std::equal(__x.begin(), __x.end(), __y.begin()); }
1921
1922 /**
1923 * @brief Deque ordering relation.
1924 * @param x A %deque.
1925 * @param y A %deque of the same type as @a x.
1926 * @return True iff @a x is lexicographically less than @a y.
1927 *
1928 * This is a total ordering relation. It is linear in the size of the
1929 * deques. The elements must be comparable with @c <.
1930 *
1931 * See std::lexicographical_compare() for how the determination is made.
1932 */
1933 template<typename _Tp, typename _Alloc>
1934 inline bool
1935 operator<(const deque<_Tp, _Alloc>& __x,
1936 const deque<_Tp, _Alloc>& __y)
1937 { return std::lexicographical_compare(__x.begin(), __x.end(),
1938 __y.begin(), __y.end()); }
1939
1940 /// Based on operator==
1941 template<typename _Tp, typename _Alloc>
1942 inline bool
1943 operator!=(const deque<_Tp, _Alloc>& __x,
1944 const deque<_Tp, _Alloc>& __y)
1945 { return !(__x == __y); }
1946
1947 /// Based on operator<
1948 template<typename _Tp, typename _Alloc>
1949 inline bool
1950 operator>(const deque<_Tp, _Alloc>& __x,
1951 const deque<_Tp, _Alloc>& __y)
1952 { return __y < __x; }
1953
1954 /// Based on operator<
1955 template<typename _Tp, typename _Alloc>
1956 inline bool
1957 operator<=(const deque<_Tp, _Alloc>& __x,
1958 const deque<_Tp, _Alloc>& __y)
1959 { return !(__y < __x); }
1960
1961 /// Based on operator<
1962 template<typename _Tp, typename _Alloc>
1963 inline bool
1964 operator>=(const deque<_Tp, _Alloc>& __x,
1965 const deque<_Tp, _Alloc>& __y)
1966 { return !(__x < __y); }
1967
1968 /// See std::deque::swap().
1969 template<typename _Tp, typename _Alloc>
1970 inline void
1971 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
1972 { __x.swap(__y); }
1973
1974 #undef _GLIBCXX_DEQUE_BUF_SIZE
1975
1976 _GLIBCXX_END_NAMESPACE_CONTAINER
1977 } // namespace std
1978
1979 #endif /* _STL_DEQUE_H */