documentation.html: First pass at unified table of contents.
[gcc.git] / libstdc++-v3 / include / bits / stl_function.h
1 // Functor implementations -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 // USA.
21
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
30
31 /*
32 *
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
35 *
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation. Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose. It is provided "as is" without express or implied warranty.
43 *
44 *
45 * Copyright (c) 1996-1998
46 * Silicon Graphics Computer Systems, Inc.
47 *
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation. Silicon Graphics makes no
53 * representations about the suitability of this software for any
54 * purpose. It is provided "as is" without express or implied warranty.
55 */
56
57 /** @file stl_function.h
58 * This is an internal header file, included by other library headers.
59 * You should not attempt to use it directly.
60 */
61
62 #ifndef _STL_FUNCTION_H
63 #define _STL_FUNCTION_H 1
64
65 _GLIBCXX_BEGIN_NAMESPACE(std)
66
67 // 20.3.1 base classes
68 /** @defgroup s20_3_1_base Functor Base Classes
69 * Function objects, or @e functors, are objects with an @c operator()
70 * defined and accessible. They can be passed as arguments to algorithm
71 * templates and used in place of a function pointer. Not only is the
72 * resulting expressiveness of the library increased, but the generated
73 * code can be more efficient than what you might write by hand. When we
74 * refer to "functors," then, generally we include function pointers in
75 * the description as well.
76 *
77 * Often, functors are only created as temporaries passed to algorithm
78 * calls, rather than being created as named variables.
79 *
80 * Two examples taken from the standard itself follow. To perform a
81 * by-element addition of two vectors @c a and @c b containing @c double,
82 * and put the result in @c a, use
83 * \code
84 * transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
85 * \endcode
86 * To negate every element in @c a, use
87 * \code
88 * transform(a.begin(), a.end(), a.begin(), negate<double>());
89 * \endcode
90 * The addition and negation functions will be inlined directly.
91 *
92 * The standard functors are derived from structs named @c unary_function
93 * and @c binary_function. These two classes contain nothing but typedefs,
94 * to aid in generic (template) programming. If you write your own
95 * functors, you might consider doing the same.
96 *
97 * @{
98 */
99 /**
100 * This is one of the @link s20_3_1_base functor base classes@endlink.
101 */
102 template<typename _Arg, typename _Result>
103 struct unary_function
104 {
105 typedef _Arg argument_type; ///< @c argument_type is the type of the
106 /// argument (no surprises here)
107
108 typedef _Result result_type; ///< @c result_type is the return type
109 };
110
111 /**
112 * This is one of the @link s20_3_1_base functor base classes@endlink.
113 */
114 template<typename _Arg1, typename _Arg2, typename _Result>
115 struct binary_function
116 {
117 typedef _Arg1 first_argument_type; ///< the type of the first argument
118 /// (no surprises here)
119
120 typedef _Arg2 second_argument_type; ///< the type of the second argument
121 typedef _Result result_type; ///< type of the return type
122 };
123 /** @} */
124
125 // 20.3.2 arithmetic
126 /** @defgroup s20_3_2_arithmetic Arithmetic Classes
127
128 * Because basic math often needs to be done during an algorithm,
129 * the library provides functors for those operations. See the
130 * documentation for @link s20_3_1_base the base classes@endlink
131 * for examples of their use.
132 *
133 * @{
134 */
135 /// One of the @link s20_3_2_arithmetic math functors@endlink.
136 template<typename _Tp>
137 struct plus : public binary_function<_Tp, _Tp, _Tp>
138 {
139 _Tp
140 operator()(const _Tp& __x, const _Tp& __y) const
141 { return __x + __y; }
142 };
143
144 /// One of the @link s20_3_2_arithmetic math functors@endlink.
145 template<typename _Tp>
146 struct minus : public binary_function<_Tp, _Tp, _Tp>
147 {
148 _Tp
149 operator()(const _Tp& __x, const _Tp& __y) const
150 { return __x - __y; }
151 };
152
153 /// One of the @link s20_3_2_arithmetic math functors@endlink.
154 template<typename _Tp>
155 struct multiplies : public binary_function<_Tp, _Tp, _Tp>
156 {
157 _Tp
158 operator()(const _Tp& __x, const _Tp& __y) const
159 { return __x * __y; }
160 };
161
162 /// One of the @link s20_3_2_arithmetic math functors@endlink.
163 template<typename _Tp>
164 struct divides : public binary_function<_Tp, _Tp, _Tp>
165 {
166 _Tp
167 operator()(const _Tp& __x, const _Tp& __y) const
168 { return __x / __y; }
169 };
170
171 /// One of the @link s20_3_2_arithmetic math functors@endlink.
172 template<typename _Tp>
173 struct modulus : public binary_function<_Tp, _Tp, _Tp>
174 {
175 _Tp
176 operator()(const _Tp& __x, const _Tp& __y) const
177 { return __x % __y; }
178 };
179
180 /// One of the @link s20_3_2_arithmetic math functors@endlink.
181 template<typename _Tp>
182 struct negate : public unary_function<_Tp, _Tp>
183 {
184 _Tp
185 operator()(const _Tp& __x) const
186 { return -__x; }
187 };
188 /** @} */
189
190 // 20.3.3 comparisons
191 /** @defgroup s20_3_3_comparisons Comparison Classes
192 * The library provides six wrapper functors for all the basic comparisons
193 * in C++, like @c <.
194 *
195 * @{
196 */
197 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
198 template<typename _Tp>
199 struct equal_to : public binary_function<_Tp, _Tp, bool>
200 {
201 bool
202 operator()(const _Tp& __x, const _Tp& __y) const
203 { return __x == __y; }
204 };
205
206 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
207 template<typename _Tp>
208 struct not_equal_to : public binary_function<_Tp, _Tp, bool>
209 {
210 bool
211 operator()(const _Tp& __x, const _Tp& __y) const
212 { return __x != __y; }
213 };
214
215 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
216 template<typename _Tp>
217 struct greater : public binary_function<_Tp, _Tp, bool>
218 {
219 bool
220 operator()(const _Tp& __x, const _Tp& __y) const
221 { return __x > __y; }
222 };
223
224 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
225 template<typename _Tp>
226 struct less : public binary_function<_Tp, _Tp, bool>
227 {
228 bool
229 operator()(const _Tp& __x, const _Tp& __y) const
230 { return __x < __y; }
231 };
232
233 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
234 template<typename _Tp>
235 struct greater_equal : public binary_function<_Tp, _Tp, bool>
236 {
237 bool
238 operator()(const _Tp& __x, const _Tp& __y) const
239 { return __x >= __y; }
240 };
241
242 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
243 template<typename _Tp>
244 struct less_equal : public binary_function<_Tp, _Tp, bool>
245 {
246 bool
247 operator()(const _Tp& __x, const _Tp& __y) const
248 { return __x <= __y; }
249 };
250 /** @} */
251
252 // 20.3.4 logical operations
253 /** @defgroup s20_3_4_logical Boolean Operations Classes
254 * Here are wrapper functors for Boolean operations: @c &&, @c ||,
255 * and @c !.
256 *
257 * @{
258 */
259 /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
260 template<typename _Tp>
261 struct logical_and : public binary_function<_Tp, _Tp, bool>
262 {
263 bool
264 operator()(const _Tp& __x, const _Tp& __y) const
265 { return __x && __y; }
266 };
267
268 /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
269 template<typename _Tp>
270 struct logical_or : public binary_function<_Tp, _Tp, bool>
271 {
272 bool
273 operator()(const _Tp& __x, const _Tp& __y) const
274 { return __x || __y; }
275 };
276
277 /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
278 template<typename _Tp>
279 struct logical_not : public unary_function<_Tp, bool>
280 {
281 bool
282 operator()(const _Tp& __x) const
283 { return !__x; }
284 };
285 /** @} */
286
287 // _GLIBCXX_RESOLVE_LIB_DEFECTS
288 // DR 660. Missing Bitwise Operations.
289 template<typename _Tp>
290 struct bit_and : public binary_function<_Tp, _Tp, _Tp>
291 {
292 _Tp
293 operator()(const _Tp& __x, const _Tp& __y) const
294 { return __x & __y; }
295 };
296
297 template<typename _Tp>
298 struct bit_or : public binary_function<_Tp, _Tp, _Tp>
299 {
300 _Tp
301 operator()(const _Tp& __x, const _Tp& __y) const
302 { return __x | __y; }
303 };
304
305 template<typename _Tp>
306 struct bit_xor : public binary_function<_Tp, _Tp, _Tp>
307 {
308 _Tp
309 operator()(const _Tp& __x, const _Tp& __y) const
310 { return __x ^ __y; }
311 };
312
313 // 20.3.5 negators
314 /** @defgroup s20_3_5_negators Negators
315 * The functions @c not1 and @c not2 each take a predicate functor
316 * and return an instance of @c unary_negate or
317 * @c binary_negate, respectively. These classes are functors whose
318 * @c operator() performs the stored predicate function and then returns
319 * the negation of the result.
320 *
321 * For example, given a vector of integers and a trivial predicate,
322 * \code
323 * struct IntGreaterThanThree
324 * : public std::unary_function<int, bool>
325 * {
326 * bool operator() (int x) { return x > 3; }
327 * };
328 *
329 * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
330 * \endcode
331 * The call to @c find_if will locate the first index (i) of @c v for which
332 * "!(v[i] > 3)" is true.
333 *
334 * The not1/unary_negate combination works on predicates taking a single
335 * argument. The not2/binary_negate combination works on predicates which
336 * take two arguments.
337 *
338 * @{
339 */
340 /// One of the @link s20_3_5_negators negation functors@endlink.
341 template<typename _Predicate>
342 class unary_negate
343 : public unary_function<typename _Predicate::argument_type, bool>
344 {
345 protected:
346 _Predicate _M_pred;
347
348 public:
349 explicit
350 unary_negate(const _Predicate& __x) : _M_pred(__x) { }
351
352 bool
353 operator()(const typename _Predicate::argument_type& __x) const
354 { return !_M_pred(__x); }
355 };
356
357 /// One of the @link s20_3_5_negators negation functors@endlink.
358 template<typename _Predicate>
359 inline unary_negate<_Predicate>
360 not1(const _Predicate& __pred)
361 { return unary_negate<_Predicate>(__pred); }
362
363 /// One of the @link s20_3_5_negators negation functors@endlink.
364 template<typename _Predicate>
365 class binary_negate
366 : public binary_function<typename _Predicate::first_argument_type,
367 typename _Predicate::second_argument_type, bool>
368 {
369 protected:
370 _Predicate _M_pred;
371
372 public:
373 explicit
374 binary_negate(const _Predicate& __x) : _M_pred(__x) { }
375
376 bool
377 operator()(const typename _Predicate::first_argument_type& __x,
378 const typename _Predicate::second_argument_type& __y) const
379 { return !_M_pred(__x, __y); }
380 };
381
382 /// One of the @link s20_3_5_negators negation functors@endlink.
383 template<typename _Predicate>
384 inline binary_negate<_Predicate>
385 not2(const _Predicate& __pred)
386 { return binary_negate<_Predicate>(__pred); }
387 /** @} */
388
389 // 20.3.7 adaptors pointers functions
390 /** @defgroup s20_3_7_adaptors Adaptors for pointers to functions
391 * The advantage of function objects over pointers to functions is that
392 * the objects in the standard library declare nested typedefs describing
393 * their argument and result types with uniform names (e.g., @c result_type
394 * from the base classes @c unary_function and @c binary_function).
395 * Sometimes those typedefs are required, not just optional.
396 *
397 * Adaptors are provided to turn pointers to unary (single-argument) and
398 * binary (double-argument) functions into function objects. The
399 * long-winded functor @c pointer_to_unary_function is constructed with a
400 * function pointer @c f, and its @c operator() called with argument @c x
401 * returns @c f(x). The functor @c pointer_to_binary_function does the same
402 * thing, but with a double-argument @c f and @c operator().
403 *
404 * The function @c ptr_fun takes a pointer-to-function @c f and constructs
405 * an instance of the appropriate functor.
406 *
407 * @{
408 */
409 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
410 template<typename _Arg, typename _Result>
411 class pointer_to_unary_function : public unary_function<_Arg, _Result>
412 {
413 protected:
414 _Result (*_M_ptr)(_Arg);
415
416 public:
417 pointer_to_unary_function() { }
418
419 explicit
420 pointer_to_unary_function(_Result (*__x)(_Arg))
421 : _M_ptr(__x) { }
422
423 _Result
424 operator()(_Arg __x) const
425 { return _M_ptr(__x); }
426 };
427
428 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
429 template<typename _Arg, typename _Result>
430 inline pointer_to_unary_function<_Arg, _Result>
431 ptr_fun(_Result (*__x)(_Arg))
432 { return pointer_to_unary_function<_Arg, _Result>(__x); }
433
434 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
435 template<typename _Arg1, typename _Arg2, typename _Result>
436 class pointer_to_binary_function
437 : public binary_function<_Arg1, _Arg2, _Result>
438 {
439 protected:
440 _Result (*_M_ptr)(_Arg1, _Arg2);
441
442 public:
443 pointer_to_binary_function() { }
444
445 explicit
446 pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
447 : _M_ptr(__x) { }
448
449 _Result
450 operator()(_Arg1 __x, _Arg2 __y) const
451 { return _M_ptr(__x, __y); }
452 };
453
454 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
455 template<typename _Arg1, typename _Arg2, typename _Result>
456 inline pointer_to_binary_function<_Arg1, _Arg2, _Result>
457 ptr_fun(_Result (*__x)(_Arg1, _Arg2))
458 { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); }
459 /** @} */
460
461 template<typename _Tp>
462 struct _Identity : public unary_function<_Tp,_Tp>
463 {
464 _Tp&
465 operator()(_Tp& __x) const
466 { return __x; }
467
468 const _Tp&
469 operator()(const _Tp& __x) const
470 { return __x; }
471 };
472
473 template<typename _Pair>
474 struct _Select1st : public unary_function<_Pair,
475 typename _Pair::first_type>
476 {
477 typename _Pair::first_type&
478 operator()(_Pair& __x) const
479 { return __x.first; }
480
481 const typename _Pair::first_type&
482 operator()(const _Pair& __x) const
483 { return __x.first; }
484 };
485
486 template<typename _Pair>
487 struct _Select2nd : public unary_function<_Pair,
488 typename _Pair::second_type>
489 {
490 typename _Pair::second_type&
491 operator()(_Pair& __x) const
492 { return __x.second; }
493
494 const typename _Pair::second_type&
495 operator()(const _Pair& __x) const
496 { return __x.second; }
497 };
498
499 // 20.3.8 adaptors pointers members
500 /** @defgroup s20_3_8_memadaptors Adaptors for pointers to members
501 * There are a total of 8 = 2^3 function objects in this family.
502 * (1) Member functions taking no arguments vs member functions taking
503 * one argument.
504 * (2) Call through pointer vs call through reference.
505 * (3) Const vs non-const member function.
506 *
507 * All of this complexity is in the function objects themselves. You can
508 * ignore it by using the helper function mem_fun and mem_fun_ref,
509 * which create whichever type of adaptor is appropriate.
510 *
511 * @{
512 */
513 /// One of the @link s20_3_8_memadaptors adaptors for member
514 /// pointers@endlink.
515 template<typename _Ret, typename _Tp>
516 class mem_fun_t : public unary_function<_Tp*, _Ret>
517 {
518 public:
519 explicit
520 mem_fun_t(_Ret (_Tp::*__pf)())
521 : _M_f(__pf) { }
522
523 _Ret
524 operator()(_Tp* __p) const
525 { return (__p->*_M_f)(); }
526
527 private:
528 _Ret (_Tp::*_M_f)();
529 };
530
531 /// One of the @link s20_3_8_memadaptors adaptors for member
532 /// pointers@endlink.
533 template<typename _Ret, typename _Tp>
534 class const_mem_fun_t : public unary_function<const _Tp*, _Ret>
535 {
536 public:
537 explicit
538 const_mem_fun_t(_Ret (_Tp::*__pf)() const)
539 : _M_f(__pf) { }
540
541 _Ret
542 operator()(const _Tp* __p) const
543 { return (__p->*_M_f)(); }
544
545 private:
546 _Ret (_Tp::*_M_f)() const;
547 };
548
549 /// One of the @link s20_3_8_memadaptors adaptors for member
550 /// pointers@endlink.
551 template<typename _Ret, typename _Tp>
552 class mem_fun_ref_t : public unary_function<_Tp, _Ret>
553 {
554 public:
555 explicit
556 mem_fun_ref_t(_Ret (_Tp::*__pf)())
557 : _M_f(__pf) { }
558
559 _Ret
560 operator()(_Tp& __r) const
561 { return (__r.*_M_f)(); }
562
563 private:
564 _Ret (_Tp::*_M_f)();
565 };
566
567 /// One of the @link s20_3_8_memadaptors adaptors for member
568 /// pointers@endlink.
569 template<typename _Ret, typename _Tp>
570 class const_mem_fun_ref_t : public unary_function<_Tp, _Ret>
571 {
572 public:
573 explicit
574 const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const)
575 : _M_f(__pf) { }
576
577 _Ret
578 operator()(const _Tp& __r) const
579 { return (__r.*_M_f)(); }
580
581 private:
582 _Ret (_Tp::*_M_f)() const;
583 };
584
585 /// One of the @link s20_3_8_memadaptors adaptors for member
586 /// pointers@endlink.
587 template<typename _Ret, typename _Tp, typename _Arg>
588 class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret>
589 {
590 public:
591 explicit
592 mem_fun1_t(_Ret (_Tp::*__pf)(_Arg))
593 : _M_f(__pf) { }
594
595 _Ret
596 operator()(_Tp* __p, _Arg __x) const
597 { return (__p->*_M_f)(__x); }
598
599 private:
600 _Ret (_Tp::*_M_f)(_Arg);
601 };
602
603 /// One of the @link s20_3_8_memadaptors adaptors for member
604 /// pointers@endlink.
605 template<typename _Ret, typename _Tp, typename _Arg>
606 class const_mem_fun1_t : public binary_function<const _Tp*, _Arg, _Ret>
607 {
608 public:
609 explicit
610 const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const)
611 : _M_f(__pf) { }
612
613 _Ret
614 operator()(const _Tp* __p, _Arg __x) const
615 { return (__p->*_M_f)(__x); }
616
617 private:
618 _Ret (_Tp::*_M_f)(_Arg) const;
619 };
620
621 /// One of the @link s20_3_8_memadaptors adaptors for member
622 /// pointers@endlink.
623 template<typename _Ret, typename _Tp, typename _Arg>
624 class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
625 {
626 public:
627 explicit
628 mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg))
629 : _M_f(__pf) { }
630
631 _Ret
632 operator()(_Tp& __r, _Arg __x) const
633 { return (__r.*_M_f)(__x); }
634
635 private:
636 _Ret (_Tp::*_M_f)(_Arg);
637 };
638
639 /// One of the @link s20_3_8_memadaptors adaptors for member
640 /// pointers@endlink.
641 template<typename _Ret, typename _Tp, typename _Arg>
642 class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
643 {
644 public:
645 explicit
646 const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const)
647 : _M_f(__pf) { }
648
649 _Ret
650 operator()(const _Tp& __r, _Arg __x) const
651 { return (__r.*_M_f)(__x); }
652
653 private:
654 _Ret (_Tp::*_M_f)(_Arg) const;
655 };
656
657 // Mem_fun adaptor helper functions. There are only two:
658 // mem_fun and mem_fun_ref.
659 template<typename _Ret, typename _Tp>
660 inline mem_fun_t<_Ret, _Tp>
661 mem_fun(_Ret (_Tp::*__f)())
662 { return mem_fun_t<_Ret, _Tp>(__f); }
663
664 template<typename _Ret, typename _Tp>
665 inline const_mem_fun_t<_Ret, _Tp>
666 mem_fun(_Ret (_Tp::*__f)() const)
667 { return const_mem_fun_t<_Ret, _Tp>(__f); }
668
669 template<typename _Ret, typename _Tp>
670 inline mem_fun_ref_t<_Ret, _Tp>
671 mem_fun_ref(_Ret (_Tp::*__f)())
672 { return mem_fun_ref_t<_Ret, _Tp>(__f); }
673
674 template<typename _Ret, typename _Tp>
675 inline const_mem_fun_ref_t<_Ret, _Tp>
676 mem_fun_ref(_Ret (_Tp::*__f)() const)
677 { return const_mem_fun_ref_t<_Ret, _Tp>(__f); }
678
679 template<typename _Ret, typename _Tp, typename _Arg>
680 inline mem_fun1_t<_Ret, _Tp, _Arg>
681 mem_fun(_Ret (_Tp::*__f)(_Arg))
682 { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
683
684 template<typename _Ret, typename _Tp, typename _Arg>
685 inline const_mem_fun1_t<_Ret, _Tp, _Arg>
686 mem_fun(_Ret (_Tp::*__f)(_Arg) const)
687 { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
688
689 template<typename _Ret, typename _Tp, typename _Arg>
690 inline mem_fun1_ref_t<_Ret, _Tp, _Arg>
691 mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
692 { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
693
694 template<typename _Ret, typename _Tp, typename _Arg>
695 inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg>
696 mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
697 { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
698
699 /** @} */
700
701 _GLIBCXX_END_NAMESPACE
702
703 #if !defined(__GXX_EXPERIMENTAL_CXX0X__) || _GLIBCXX_DEPRECATED
704 # include <backward/binders.h>
705 #endif
706
707 #endif /* _STL_FUNCTION_H */