stl_function.h: Remove two lines of comments; adjust copyright years.
[gcc.git] / libstdc++-v3 / include / bits / stl_function.h
1 // Functor implementations -*- C++ -*-
2
3 // Copyright (C) 2001, 2002 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996-1998
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
54 */
55
56 /** @file stl_function.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
59 */
60
61 #ifndef __GLIBCPP_INTERNAL_FUNCTION_H
62 #define __GLIBCPP_INTERNAL_FUNCTION_H
63
64 namespace std
65 {
66 // 20.3.1 base classes
67 /** @defgroup s20_3_1_base Functor Base Classes
68 * Function objects, or @e functors, are objects with an @c operator()
69 * defined and accessible. They can be passed as arguments to algorithm
70 * templates and used in place of a function pointer. Not only is the
71 * resulting expressiveness of the library increased, but the generated
72 * code can be more efficient than what you might write by hand. When we
73 * refer to "functors," then, generally we include function pointers in
74 * the description as well.
75 *
76 * Often, functors are only created as temporaries passed to algorithm
77 * calls, rather than being created as named variables.
78 *
79 * Two examples taken from the standard itself follow. To perform a
80 * by-element addition of two vectors @c a and @c b containing @c double,
81 * and put the result in @c a, use
82 * \code
83 * transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
84 * \endcode
85 * To negate every element in @c a, use
86 * \code
87 * transform(a.begin(), a.end(), a.begin(), negate<double>());
88 * \endcode
89 * The addition and negation functions will be inlined directly.
90 *
91 * The standard functiors are derived from structs named @c unary_function
92 * and @c binary_function. These two classes contain nothing but typedefs,
93 * to aid in generic (template) programming. If you write your own
94 * functors, you might consider doing the same.
95 *
96 * @{
97 */
98 /**
99 * This is one of the @link s20_3_1_base functor base classes@endlink.
100 */
101 template <class _Arg, class _Result>
102 struct unary_function {
103 typedef _Arg argument_type; ///< @c argument_type is the type of the argument (no surprises here)
104 typedef _Result result_type; ///< @c result_type is the return type
105 };
106
107 /**
108 * This is one of the @link s20_3_1_base functor base classes@endlink.
109 */
110 template <class _Arg1, class _Arg2, class _Result>
111 struct binary_function {
112 typedef _Arg1 first_argument_type; ///< the type of the first argument (no surprises here)
113 typedef _Arg2 second_argument_type; ///< the type of the second argument
114 typedef _Result result_type; ///< type of the return type
115 };
116 /** @} */
117
118 // 20.3.2 arithmetic
119 /** @defgroup s20_3_2_arithmetic Arithmetic Classes
120 * Because basic math often needs to be done during an algorithm, the library
121 * provides functors for those operations. See the documentation for
122 * @link s20_3_1_base the base classes@endlink for examples of their use.
123 *
124 * @{
125 */
126 /// One of the @link s20_3_2_arithmetic math functors@endlink.
127 template <class _Tp>
128 struct plus : public binary_function<_Tp,_Tp,_Tp> {
129 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; }
130 };
131
132 /// One of the @link s20_3_2_arithmetic math functors@endlink.
133 template <class _Tp>
134 struct minus : public binary_function<_Tp,_Tp,_Tp> {
135 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; }
136 };
137
138 /// One of the @link s20_3_2_arithmetic math functors@endlink.
139 template <class _Tp>
140 struct multiplies : public binary_function<_Tp,_Tp,_Tp> {
141 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; }
142 };
143
144 /// One of the @link s20_3_2_arithmetic math functors@endlink.
145 template <class _Tp>
146 struct divides : public binary_function<_Tp,_Tp,_Tp> {
147 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; }
148 };
149
150 /// One of the @link s20_3_2_arithmetic math functors@endlink.
151 template <class _Tp>
152 struct modulus : public binary_function<_Tp,_Tp,_Tp>
153 {
154 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; }
155 };
156
157 /// One of the @link s20_3_2_arithmetic math functors@endlink.
158 template <class _Tp>
159 struct negate : public unary_function<_Tp,_Tp>
160 {
161 _Tp operator()(const _Tp& __x) const { return -__x; }
162 };
163 /** @} */
164
165 // 20.3.3 comparisons
166 /** @defgroup s20_3_3_comparisons Comparison Classes
167 * The library provides six wrapper functors for all the basic comparisons
168 * in C++, like @c <.
169 *
170 * @{
171 */
172 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
173 template <class _Tp>
174 struct equal_to : public binary_function<_Tp,_Tp,bool>
175 {
176 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; }
177 };
178
179 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
180 template <class _Tp>
181 struct not_equal_to : public binary_function<_Tp,_Tp,bool>
182 {
183 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; }
184 };
185
186 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
187 template <class _Tp>
188 struct greater : public binary_function<_Tp,_Tp,bool>
189 {
190 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; }
191 };
192
193 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
194 template <class _Tp>
195 struct less : public binary_function<_Tp,_Tp,bool>
196 {
197 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; }
198 };
199
200 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
201 template <class _Tp>
202 struct greater_equal : public binary_function<_Tp,_Tp,bool>
203 {
204 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; }
205 };
206
207 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
208 template <class _Tp>
209 struct less_equal : public binary_function<_Tp,_Tp,bool>
210 {
211 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; }
212 };
213 /** @} */
214
215 // 20.3.4 logical operations
216 /** @defgroup s20_3_4_logical Boolean Operations Classes
217 * Here are wrapper functors for Boolean operations: @c &&, @c ||, and @c !.
218 *
219 * @{
220 */
221 /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
222 template <class _Tp>
223 struct logical_and : public binary_function<_Tp,_Tp,bool>
224 {
225 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; }
226 };
227
228 /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
229 template <class _Tp>
230 struct logical_or : public binary_function<_Tp,_Tp,bool>
231 {
232 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; }
233 };
234
235 /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
236 template <class _Tp>
237 struct logical_not : public unary_function<_Tp,bool>
238 {
239 bool operator()(const _Tp& __x) const { return !__x; }
240 };
241 /** @} */
242
243 // 20.3.5 negators
244 /** @defgroup s20_3_5_negators Negators
245 * The functions @c not1 and @c not2 each take a predicate functor
246 * and return an instance of @c unary_negate or
247 * @c binary_negate, respectively. These classes are functors whose
248 * @c operator() performs the stored predicate function and then returns
249 * the negation of the result.
250 *
251 * For example, given a vector of integers and a trivial predicate,
252 * \code
253 * struct IntGreaterThanThree
254 * : public std::unary_function<int, bool>
255 * {
256 * bool operator() (int x) { return x > 3; }
257 * };
258 *
259 * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
260 * \endcode
261 * The call to @c find_if will locate the first index (i) of @c v for which
262 * "!(v[i] > 3)" is true.
263 *
264 * The not1/unary_negate combination works on predicates taking a single
265 * argument. The not2/binary_negate combination works on predicates which
266 * take two arguments.
267 *
268 * @{
269 */
270 /// One of the @link s20_3_5_negators negation functors@endlink.
271 template <class _Predicate>
272 class unary_negate
273 : public unary_function<typename _Predicate::argument_type, bool> {
274 protected:
275 _Predicate _M_pred;
276 public:
277 explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {}
278 bool operator()(const typename _Predicate::argument_type& __x) const {
279 return !_M_pred(__x);
280 }
281 };
282
283 /// One of the @link s20_3_5_negators negation functors@endlink.
284 template <class _Predicate>
285 inline unary_negate<_Predicate>
286 not1(const _Predicate& __pred)
287 {
288 return unary_negate<_Predicate>(__pred);
289 }
290
291 /// One of the @link s20_3_5_negators negation functors@endlink.
292 template <class _Predicate>
293 class binary_negate
294 : public binary_function<typename _Predicate::first_argument_type,
295 typename _Predicate::second_argument_type,
296 bool> {
297 protected:
298 _Predicate _M_pred;
299 public:
300 explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {}
301 bool operator()(const typename _Predicate::first_argument_type& __x,
302 const typename _Predicate::second_argument_type& __y) const
303 {
304 return !_M_pred(__x, __y);
305 }
306 };
307
308 /// One of the @link s20_3_5_negators negation functors@endlink.
309 template <class _Predicate>
310 inline binary_negate<_Predicate>
311 not2(const _Predicate& __pred)
312 {
313 return binary_negate<_Predicate>(__pred);
314 }
315 /** @} */
316
317 // 20.3.6 binders
318 /** @defgroup s20_3_6_binder Binder Classes
319 * Binders turn functions/functors with two arguments into functors with
320 * a single argument, storing an argument to be applied later. For
321 * example, an variable @c B of type @c binder1st is constructed from a functor
322 * @c f and an argument @c x. Later, B's @c operator() is called with a
323 * single argument @c y. The return value is the value of @c f(x,y).
324 * @c B can be "called" with various arguments (y1, y2, ...) and will in
325 * turn call @c f(x,y1), @c f(x,y2), ...
326 *
327 * The function @c bind1st is provided to save some typing. It takes the
328 * function and an argument as parameters, and returns an instance of
329 * @c binder1st.
330 *
331 * The type @c binder2nd and its creator function @c bind2nd do the same
332 * thing, but the stored argument is passed as the second parameter instead
333 * of the first, e.g., @c bind2nd(std::minus<float>,1.3) will create a
334 * functor whose @c operator() accepts a floating-point number, subtracts
335 * 1.3 from it, and returns the result. (If @c bind1st had been used,
336 * the functor would perform "1.3 - x" instead.
337 *
338 * Creator-wrapper functions like @c bind1st are intended to be used in
339 * calling algorithms. Their return values will be temporary objects.
340 * (The goal is to not require you to type names like
341 * @c std::binder1st<std::plus<int>> for declaring a variable to hold the
342 * return value from @c bind1st(std::plus<int>,5).
343 *
344 * These become more useful when combined with the composition functions.
345 *
346 * @{
347 */
348 /// One of the @link s20_3_6_binder binder functors@endlink.
349 template <class _Operation>
350 class binder1st
351 : public unary_function<typename _Operation::second_argument_type,
352 typename _Operation::result_type> {
353 protected:
354 _Operation op;
355 typename _Operation::first_argument_type value;
356 public:
357 binder1st(const _Operation& __x,
358 const typename _Operation::first_argument_type& __y)
359 : op(__x), value(__y) {}
360 typename _Operation::result_type
361 operator()(const typename _Operation::second_argument_type& __x) const {
362 return op(value, __x);
363 }
364 #ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
365 //109. Missing binders for non-const sequence elements
366 typename _Operation::result_type
367 operator()(typename _Operation::second_argument_type& __x) const {
368 return op(value, __x);
369 }
370 #endif
371 };
372
373 /// One of the @link s20_3_6_binder binder functors@endlink.
374 template <class _Operation, class _Tp>
375 inline binder1st<_Operation>
376 bind1st(const _Operation& __fn, const _Tp& __x)
377 {
378 typedef typename _Operation::first_argument_type _Arg1_type;
379 return binder1st<_Operation>(__fn, _Arg1_type(__x));
380 }
381
382 /// One of the @link s20_3_6_binder binder functors@endlink.
383 template <class _Operation>
384 class binder2nd
385 : public unary_function<typename _Operation::first_argument_type,
386 typename _Operation::result_type> {
387 protected:
388 _Operation op;
389 typename _Operation::second_argument_type value;
390 public:
391 binder2nd(const _Operation& __x,
392 const typename _Operation::second_argument_type& __y)
393 : op(__x), value(__y) {}
394 typename _Operation::result_type
395 operator()(const typename _Operation::first_argument_type& __x) const {
396 return op(__x, value);
397 }
398 #ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
399 //109. Missing binders for non-const sequence elements
400 typename _Operation::result_type
401 operator()(typename _Operation::first_argument_type& __x) const {
402 return op(__x, value);
403 }
404 #endif
405 };
406
407 /// One of the @link s20_3_6_binder binder functors@endlink.
408 template <class _Operation, class _Tp>
409 inline binder2nd<_Operation>
410 bind2nd(const _Operation& __fn, const _Tp& __x)
411 {
412 typedef typename _Operation::second_argument_type _Arg2_type;
413 return binder2nd<_Operation>(__fn, _Arg2_type(__x));
414 }
415 /** @} */
416
417 // 20.3.7 adaptors pointers functions
418 /** @defgroup s20_3_7_adaptors Adaptors for pointers to functions
419 * The advantage of function objects over pointers to functions is that
420 * the objects in the standard library declare nested typedefs describing
421 * their argument and result types with uniform names (e.g., @c result_type
422 * from the base classes @c unary_function and @c binary_function).
423 * Sometimes those typedefs are required, not just optional.
424 *
425 * Adaptors are provided to turn pointers to unary (single-argument) and
426 * binary (double-argument) functions into function objects. The long-winded
427 * functor @c pointer_to_unary_function is constructed with a function
428 * pointer @c f, and its @c operator() called with argument @c x returns
429 * @c f(x). The functor @c pointer_to_binary_function does the same thing,
430 * but with a double-argument @c f and @c operator().
431 *
432 * The function @c ptr_fun takes a pointer-to-function @c f and constructs
433 * an instance of the appropriate functor.
434 *
435 * @{
436 */
437 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
438 template <class _Arg, class _Result>
439 class pointer_to_unary_function : public unary_function<_Arg, _Result> {
440 protected:
441 _Result (*_M_ptr)(_Arg);
442 public:
443 pointer_to_unary_function() {}
444 explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {}
445 _Result operator()(_Arg __x) const { return _M_ptr(__x); }
446 };
447
448 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
449 template <class _Arg, class _Result>
450 inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg))
451 {
452 return pointer_to_unary_function<_Arg, _Result>(__x);
453 }
454
455 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
456 template <class _Arg1, class _Arg2, class _Result>
457 class pointer_to_binary_function :
458 public binary_function<_Arg1,_Arg2,_Result> {
459 protected:
460 _Result (*_M_ptr)(_Arg1, _Arg2);
461 public:
462 pointer_to_binary_function() {}
463 explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
464 : _M_ptr(__x) {}
465 _Result operator()(_Arg1 __x, _Arg2 __y) const {
466 return _M_ptr(__x, __y);
467 }
468 };
469
470 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
471 template <class _Arg1, class _Arg2, class _Result>
472 inline pointer_to_binary_function<_Arg1,_Arg2,_Result>
473 ptr_fun(_Result (*__x)(_Arg1, _Arg2)) {
474 return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x);
475 }
476 /** @} */
477
478 template <class _Tp>
479 struct _Identity : public unary_function<_Tp,_Tp> {
480 _Tp& operator()(_Tp& __x) const { return __x; }
481 const _Tp& operator()(const _Tp& __x) const { return __x; }
482 };
483
484 template <class _Pair>
485 struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> {
486 typename _Pair::first_type& operator()(_Pair& __x) const {
487 return __x.first;
488 }
489 const typename _Pair::first_type& operator()(const _Pair& __x) const {
490 return __x.first;
491 }
492 };
493
494 template <class _Pair>
495 struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type>
496 {
497 typename _Pair::second_type& operator()(_Pair& __x) const {
498 return __x.second;
499 }
500 const typename _Pair::second_type& operator()(const _Pair& __x) const {
501 return __x.second;
502 }
503 };
504
505 // 20.3.8 adaptors pointers members
506 /** @defgroup s20_3_8_memadaptors Adaptors for pointers to members
507 * There are a total of 16 = 2^4 function objects in this family.
508 * (1) Member functions taking no arguments vs member functions taking
509 * one argument.
510 * (2) Call through pointer vs call through reference.
511 * (3) Member function with void return type vs member function with
512 * non-void return type.
513 * (4) Const vs non-const member function.
514 *
515 * Note that choice (3) is nothing more than a workaround: according
516 * to the draft, compilers should handle void and non-void the same way.
517 * This feature is not yet widely implemented, though. You can only use
518 * member functions returning void if your compiler supports partial
519 * specialization.
520 *
521 * All of this complexity is in the function objects themselves. You can
522 * ignore it by using the helper function mem_fun and mem_fun_ref,
523 * which create whichever type of adaptor is appropriate.
524 *
525 * @{
526 */
527 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
528 template <class _Ret, class _Tp>
529 class mem_fun_t : public unary_function<_Tp*,_Ret> {
530 public:
531 explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
532 _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); }
533 private:
534 _Ret (_Tp::*_M_f)();
535 };
536
537 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
538 template <class _Ret, class _Tp>
539 class const_mem_fun_t : public unary_function<const _Tp*,_Ret> {
540 public:
541 explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
542 _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); }
543 private:
544 _Ret (_Tp::*_M_f)() const;
545 };
546
547 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
548 template <class _Ret, class _Tp>
549 class mem_fun_ref_t : public unary_function<_Tp,_Ret> {
550 public:
551 explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
552 _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); }
553 private:
554 _Ret (_Tp::*_M_f)();
555 };
556
557 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
558 template <class _Ret, class _Tp>
559 class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> {
560 public:
561 explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
562 _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); }
563 private:
564 _Ret (_Tp::*_M_f)() const;
565 };
566
567 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
568 template <class _Ret, class _Tp, class _Arg>
569 class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> {
570 public:
571 explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
572 _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); }
573 private:
574 _Ret (_Tp::*_M_f)(_Arg);
575 };
576
577 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
578 template <class _Ret, class _Tp, class _Arg>
579 class const_mem_fun1_t : public binary_function<const _Tp*,_Arg,_Ret> {
580 public:
581 explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
582 _Ret operator()(const _Tp* __p, _Arg __x) const
583 { return (__p->*_M_f)(__x); }
584 private:
585 _Ret (_Tp::*_M_f)(_Arg) const;
586 };
587
588 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
589 template <class _Ret, class _Tp, class _Arg>
590 class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
591 public:
592 explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
593 _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
594 private:
595 _Ret (_Tp::*_M_f)(_Arg);
596 };
597
598 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
599 template <class _Ret, class _Tp, class _Arg>
600 class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
601 public:
602 explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
603 _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
604 private:
605 _Ret (_Tp::*_M_f)(_Arg) const;
606 };
607
608 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
609 template <class _Tp>
610 class mem_fun_t<void, _Tp> : public unary_function<_Tp*,void> {
611 public:
612 explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
613 void operator()(_Tp* __p) const { (__p->*_M_f)(); }
614 private:
615 void (_Tp::*_M_f)();
616 };
617
618 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
619 template <class _Tp>
620 class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*,void> {
621 public:
622 explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
623 void operator()(const _Tp* __p) const { (__p->*_M_f)(); }
624 private:
625 void (_Tp::*_M_f)() const;
626 };
627
628 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
629 template <class _Tp>
630 class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
631 public:
632 explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
633 void operator()(_Tp& __r) const { (__r.*_M_f)(); }
634 private:
635 void (_Tp::*_M_f)();
636 };
637
638 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
639 template <class _Tp>
640 class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
641 public:
642 explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
643 void operator()(const _Tp& __r) const { (__r.*_M_f)(); }
644 private:
645 void (_Tp::*_M_f)() const;
646 };
647
648 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
649 template <class _Tp, class _Arg>
650 class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*,_Arg,void> {
651 public:
652 explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
653 void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
654 private:
655 void (_Tp::*_M_f)(_Arg);
656 };
657
658 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
659 template <class _Tp, class _Arg>
660 class const_mem_fun1_t<void, _Tp, _Arg>
661 : public binary_function<const _Tp*,_Arg,void> {
662 public:
663 explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
664 void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
665 private:
666 void (_Tp::*_M_f)(_Arg) const;
667 };
668
669 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
670 template <class _Tp, class _Arg>
671 class mem_fun1_ref_t<void, _Tp, _Arg>
672 : public binary_function<_Tp,_Arg,void> {
673 public:
674 explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
675 void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
676 private:
677 void (_Tp::*_M_f)(_Arg);
678 };
679
680 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
681 template <class _Tp, class _Arg>
682 class const_mem_fun1_ref_t<void, _Tp, _Arg>
683 : public binary_function<_Tp,_Arg,void> {
684 public:
685 explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
686 void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
687 private:
688 void (_Tp::*_M_f)(_Arg) const;
689 };
690
691
692 // Mem_fun adaptor helper functions. There are only two:
693 // mem_fun and mem_fun_ref.
694
695 template <class _Ret, class _Tp>
696 inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)())
697 { return mem_fun_t<_Ret,_Tp>(__f); }
698
699 template <class _Ret, class _Tp>
700 inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const)
701 { return const_mem_fun_t<_Ret,_Tp>(__f); }
702
703 template <class _Ret, class _Tp>
704 inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)())
705 { return mem_fun_ref_t<_Ret,_Tp>(__f); }
706
707 template <class _Ret, class _Tp>
708 inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const)
709 { return const_mem_fun_ref_t<_Ret,_Tp>(__f); }
710
711 template <class _Ret, class _Tp, class _Arg>
712 inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg))
713 { return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
714
715 template <class _Ret, class _Tp, class _Arg>
716 inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const)
717 { return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
718
719 template <class _Ret, class _Tp, class _Arg>
720 inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
721 { return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
722
723 template <class _Ret, class _Tp, class _Arg>
724 inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
725 mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
726 { return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
727
728 /** @} */
729
730 } // namespace std
731
732 #endif /* __GLIBCPP_INTERNAL_FUNCTION_H */
733
734 // Local Variables:
735 // mode:C++
736 // End: