basic_string.h: Use noexcept per the FDIS (minus compare(const string&)...
[gcc.git] / libstdc++-v3 / include / bits / stl_list.h
1 // List implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 // 2011 Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
25
26 /*
27 *
28 * Copyright (c) 1994
29 * Hewlett-Packard Company
30 *
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation. Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose. It is provided "as is" without express or implied warranty.
38 *
39 *
40 * Copyright (c) 1996,1997
41 * Silicon Graphics Computer Systems, Inc.
42 *
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation. Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose. It is provided "as is" without express or implied warranty.
50 */
51
52 /** @file bits/stl_list.h
53 * This is an internal header file, included by other library headers.
54 * Do not attempt to use it directly. @headername{list}
55 */
56
57 #ifndef _STL_LIST_H
58 #define _STL_LIST_H 1
59
60 #include <bits/concept_check.h>
61 #include <initializer_list>
62
63 namespace std _GLIBCXX_VISIBILITY(default)
64 {
65 namespace __detail
66 {
67 _GLIBCXX_BEGIN_NAMESPACE_VERSION
68
69 // Supporting structures are split into common and templated
70 // types; the latter publicly inherits from the former in an
71 // effort to reduce code duplication. This results in some
72 // "needless" static_cast'ing later on, but it's all safe
73 // downcasting.
74
75 /// Common part of a node in the %list.
76 struct _List_node_base
77 {
78 _List_node_base* _M_next;
79 _List_node_base* _M_prev;
80
81 static void
82 swap(_List_node_base& __x, _List_node_base& __y) _GLIBCXX_USE_NOEXCEPT;
83
84 void
85 _M_transfer(_List_node_base* const __first,
86 _List_node_base* const __last) _GLIBCXX_USE_NOEXCEPT;
87
88 void
89 _M_reverse() _GLIBCXX_USE_NOEXCEPT;
90
91 void
92 _M_hook(_List_node_base* const __position) _GLIBCXX_USE_NOEXCEPT;
93
94 void
95 _M_unhook() _GLIBCXX_USE_NOEXCEPT;
96 };
97
98 _GLIBCXX_END_NAMESPACE_VERSION
99 } // namespace detail
100
101 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
102
103 /// An actual node in the %list.
104 template<typename _Tp>
105 struct _List_node : public __detail::_List_node_base
106 {
107 ///< User's data.
108 _Tp _M_data;
109
110 #ifdef __GXX_EXPERIMENTAL_CXX0X__
111 template<typename... _Args>
112 _List_node(_Args&&... __args)
113 : __detail::_List_node_base(), _M_data(std::forward<_Args>(__args)...)
114 { }
115 #endif
116 };
117
118 /**
119 * @brief A list::iterator.
120 *
121 * All the functions are op overloads.
122 */
123 template<typename _Tp>
124 struct _List_iterator
125 {
126 typedef _List_iterator<_Tp> _Self;
127 typedef _List_node<_Tp> _Node;
128
129 typedef ptrdiff_t difference_type;
130 typedef std::bidirectional_iterator_tag iterator_category;
131 typedef _Tp value_type;
132 typedef _Tp* pointer;
133 typedef _Tp& reference;
134
135 _List_iterator()
136 : _M_node() { }
137
138 explicit
139 _List_iterator(__detail::_List_node_base* __x)
140 : _M_node(__x) { }
141
142 // Must downcast from _List_node_base to _List_node to get to _M_data.
143 reference
144 operator*() const
145 { return static_cast<_Node*>(_M_node)->_M_data; }
146
147 pointer
148 operator->() const
149 { return std::__addressof(static_cast<_Node*>(_M_node)->_M_data); }
150
151 _Self&
152 operator++()
153 {
154 _M_node = _M_node->_M_next;
155 return *this;
156 }
157
158 _Self
159 operator++(int)
160 {
161 _Self __tmp = *this;
162 _M_node = _M_node->_M_next;
163 return __tmp;
164 }
165
166 _Self&
167 operator--()
168 {
169 _M_node = _M_node->_M_prev;
170 return *this;
171 }
172
173 _Self
174 operator--(int)
175 {
176 _Self __tmp = *this;
177 _M_node = _M_node->_M_prev;
178 return __tmp;
179 }
180
181 bool
182 operator==(const _Self& __x) const
183 { return _M_node == __x._M_node; }
184
185 bool
186 operator!=(const _Self& __x) const
187 { return _M_node != __x._M_node; }
188
189 // The only member points to the %list element.
190 __detail::_List_node_base* _M_node;
191 };
192
193 /**
194 * @brief A list::const_iterator.
195 *
196 * All the functions are op overloads.
197 */
198 template<typename _Tp>
199 struct _List_const_iterator
200 {
201 typedef _List_const_iterator<_Tp> _Self;
202 typedef const _List_node<_Tp> _Node;
203 typedef _List_iterator<_Tp> iterator;
204
205 typedef ptrdiff_t difference_type;
206 typedef std::bidirectional_iterator_tag iterator_category;
207 typedef _Tp value_type;
208 typedef const _Tp* pointer;
209 typedef const _Tp& reference;
210
211 _List_const_iterator()
212 : _M_node() { }
213
214 explicit
215 _List_const_iterator(const __detail::_List_node_base* __x)
216 : _M_node(__x) { }
217
218 _List_const_iterator(const iterator& __x)
219 : _M_node(__x._M_node) { }
220
221 // Must downcast from List_node_base to _List_node to get to
222 // _M_data.
223 reference
224 operator*() const
225 { return static_cast<_Node*>(_M_node)->_M_data; }
226
227 pointer
228 operator->() const
229 { return std::__addressof(static_cast<_Node*>(_M_node)->_M_data); }
230
231 _Self&
232 operator++()
233 {
234 _M_node = _M_node->_M_next;
235 return *this;
236 }
237
238 _Self
239 operator++(int)
240 {
241 _Self __tmp = *this;
242 _M_node = _M_node->_M_next;
243 return __tmp;
244 }
245
246 _Self&
247 operator--()
248 {
249 _M_node = _M_node->_M_prev;
250 return *this;
251 }
252
253 _Self
254 operator--(int)
255 {
256 _Self __tmp = *this;
257 _M_node = _M_node->_M_prev;
258 return __tmp;
259 }
260
261 bool
262 operator==(const _Self& __x) const
263 { return _M_node == __x._M_node; }
264
265 bool
266 operator!=(const _Self& __x) const
267 { return _M_node != __x._M_node; }
268
269 // The only member points to the %list element.
270 const __detail::_List_node_base* _M_node;
271 };
272
273 template<typename _Val>
274 inline bool
275 operator==(const _List_iterator<_Val>& __x,
276 const _List_const_iterator<_Val>& __y)
277 { return __x._M_node == __y._M_node; }
278
279 template<typename _Val>
280 inline bool
281 operator!=(const _List_iterator<_Val>& __x,
282 const _List_const_iterator<_Val>& __y)
283 { return __x._M_node != __y._M_node; }
284
285
286 /// See bits/stl_deque.h's _Deque_base for an explanation.
287 template<typename _Tp, typename _Alloc>
288 class _List_base
289 {
290 protected:
291 // NOTA BENE
292 // The stored instance is not actually of "allocator_type"'s
293 // type. Instead we rebind the type to
294 // Allocator<List_node<Tp>>, which according to [20.1.5]/4
295 // should probably be the same. List_node<Tp> is not the same
296 // size as Tp (it's two pointers larger), and specializations on
297 // Tp may go unused because List_node<Tp> is being bound
298 // instead.
299 //
300 // We put this to the test in the constructors and in
301 // get_allocator, where we use conversions between
302 // allocator_type and _Node_alloc_type. The conversion is
303 // required by table 32 in [20.1.5].
304 typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
305 _Node_alloc_type;
306
307 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
308
309 struct _List_impl
310 : public _Node_alloc_type
311 {
312 __detail::_List_node_base _M_node;
313
314 _List_impl()
315 : _Node_alloc_type(), _M_node()
316 { }
317
318 _List_impl(const _Node_alloc_type& __a)
319 : _Node_alloc_type(__a), _M_node()
320 { }
321 };
322
323 _List_impl _M_impl;
324
325 _List_node<_Tp>*
326 _M_get_node()
327 { return _M_impl._Node_alloc_type::allocate(1); }
328
329 void
330 _M_put_node(_List_node<_Tp>* __p)
331 { _M_impl._Node_alloc_type::deallocate(__p, 1); }
332
333 public:
334 typedef _Alloc allocator_type;
335
336 _Node_alloc_type&
337 _M_get_Node_allocator() _GLIBCXX_NOEXCEPT
338 { return *static_cast<_Node_alloc_type*>(&this->_M_impl); }
339
340 const _Node_alloc_type&
341 _M_get_Node_allocator() const _GLIBCXX_NOEXCEPT
342 { return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
343
344 _Tp_alloc_type
345 _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
346 { return _Tp_alloc_type(_M_get_Node_allocator()); }
347
348 allocator_type
349 get_allocator() const _GLIBCXX_NOEXCEPT
350 { return allocator_type(_M_get_Node_allocator()); }
351
352 _List_base()
353 : _M_impl()
354 { _M_init(); }
355
356 _List_base(const allocator_type& __a)
357 : _M_impl(__a)
358 { _M_init(); }
359
360 #ifdef __GXX_EXPERIMENTAL_CXX0X__
361 _List_base(_List_base&& __x)
362 : _M_impl(__x._M_get_Node_allocator())
363 {
364 _M_init();
365 __detail::_List_node_base::swap(this->_M_impl._M_node,
366 __x._M_impl._M_node);
367 }
368 #endif
369
370 // This is what actually destroys the list.
371 ~_List_base()
372 { _M_clear(); }
373
374 void
375 _M_clear();
376
377 void
378 _M_init()
379 {
380 this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
381 this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
382 }
383 };
384
385 /**
386 * @brief A standard container with linear time access to elements,
387 * and fixed time insertion/deletion at any point in the sequence.
388 *
389 * @ingroup sequences
390 *
391 * Meets the requirements of a <a href="tables.html#65">container</a>, a
392 * <a href="tables.html#66">reversible container</a>, and a
393 * <a href="tables.html#67">sequence</a>, including the
394 * <a href="tables.html#68">optional sequence requirements</a> with the
395 * %exception of @c at and @c operator[].
396 *
397 * This is a @e doubly @e linked %list. Traversal up and down the
398 * %list requires linear time, but adding and removing elements (or
399 * @e nodes) is done in constant time, regardless of where the
400 * change takes place. Unlike std::vector and std::deque,
401 * random-access iterators are not provided, so subscripting ( @c
402 * [] ) access is not allowed. For algorithms which only need
403 * sequential access, this lack makes no difference.
404 *
405 * Also unlike the other standard containers, std::list provides
406 * specialized algorithms %unique to linked lists, such as
407 * splicing, sorting, and in-place reversal.
408 *
409 * A couple points on memory allocation for list<Tp>:
410 *
411 * First, we never actually allocate a Tp, we allocate
412 * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
413 * that after elements from %list<X,Alloc1> are spliced into
414 * %list<X,Alloc2>, destroying the memory of the second %list is a
415 * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
416 *
417 * Second, a %list conceptually represented as
418 * @code
419 * A <---> B <---> C <---> D
420 * @endcode
421 * is actually circular; a link exists between A and D. The %list
422 * class holds (as its only data member) a private list::iterator
423 * pointing to @e D, not to @e A! To get to the head of the %list,
424 * we start at the tail and move forward by one. When this member
425 * iterator's next/previous pointers refer to itself, the %list is
426 * %empty.
427 */
428 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
429 class list : protected _List_base<_Tp, _Alloc>
430 {
431 // concept requirements
432 typedef typename _Alloc::value_type _Alloc_value_type;
433 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
434 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
435
436 typedef _List_base<_Tp, _Alloc> _Base;
437 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
438
439 public:
440 typedef _Tp value_type;
441 typedef typename _Tp_alloc_type::pointer pointer;
442 typedef typename _Tp_alloc_type::const_pointer const_pointer;
443 typedef typename _Tp_alloc_type::reference reference;
444 typedef typename _Tp_alloc_type::const_reference const_reference;
445 typedef _List_iterator<_Tp> iterator;
446 typedef _List_const_iterator<_Tp> const_iterator;
447 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
448 typedef std::reverse_iterator<iterator> reverse_iterator;
449 typedef size_t size_type;
450 typedef ptrdiff_t difference_type;
451 typedef _Alloc allocator_type;
452
453 protected:
454 // Note that pointers-to-_Node's can be ctor-converted to
455 // iterator types.
456 typedef _List_node<_Tp> _Node;
457
458 using _Base::_M_impl;
459 using _Base::_M_put_node;
460 using _Base::_M_get_node;
461 using _Base::_M_get_Tp_allocator;
462 using _Base::_M_get_Node_allocator;
463
464 /**
465 * @param x An instance of user data.
466 *
467 * Allocates space for a new node and constructs a copy of @a x in it.
468 */
469 #ifndef __GXX_EXPERIMENTAL_CXX0X__
470 _Node*
471 _M_create_node(const value_type& __x)
472 {
473 _Node* __p = this->_M_get_node();
474 __try
475 {
476 _M_get_Tp_allocator().construct
477 (std::__addressof(__p->_M_data), __x);
478 }
479 __catch(...)
480 {
481 _M_put_node(__p);
482 __throw_exception_again;
483 }
484 return __p;
485 }
486 #else
487 template<typename... _Args>
488 _Node*
489 _M_create_node(_Args&&... __args)
490 {
491 _Node* __p = this->_M_get_node();
492 __try
493 {
494 _M_get_Node_allocator().construct(__p,
495 std::forward<_Args>(__args)...);
496 }
497 __catch(...)
498 {
499 _M_put_node(__p);
500 __throw_exception_again;
501 }
502 return __p;
503 }
504 #endif
505
506 public:
507 // [23.2.2.1] construct/copy/destroy
508 // (assign() and get_allocator() are also listed in this section)
509 /**
510 * @brief Default constructor creates no elements.
511 */
512 list()
513 : _Base() { }
514
515 /**
516 * @brief Creates a %list with no elements.
517 * @param a An allocator object.
518 */
519 explicit
520 list(const allocator_type& __a)
521 : _Base(__a) { }
522
523 #ifdef __GXX_EXPERIMENTAL_CXX0X__
524 /**
525 * @brief Creates a %list with default constructed elements.
526 * @param n The number of elements to initially create.
527 *
528 * This constructor fills the %list with @a n default
529 * constructed elements.
530 */
531 explicit
532 list(size_type __n)
533 : _Base()
534 { _M_default_initialize(__n); }
535
536 /**
537 * @brief Creates a %list with copies of an exemplar element.
538 * @param n The number of elements to initially create.
539 * @param value An element to copy.
540 * @param a An allocator object.
541 *
542 * This constructor fills the %list with @a n copies of @a value.
543 */
544 list(size_type __n, const value_type& __value,
545 const allocator_type& __a = allocator_type())
546 : _Base(__a)
547 { _M_fill_initialize(__n, __value); }
548 #else
549 /**
550 * @brief Creates a %list with copies of an exemplar element.
551 * @param n The number of elements to initially create.
552 * @param value An element to copy.
553 * @param a An allocator object.
554 *
555 * This constructor fills the %list with @a n copies of @a value.
556 */
557 explicit
558 list(size_type __n, const value_type& __value = value_type(),
559 const allocator_type& __a = allocator_type())
560 : _Base(__a)
561 { _M_fill_initialize(__n, __value); }
562 #endif
563
564 /**
565 * @brief %List copy constructor.
566 * @param x A %list of identical element and allocator types.
567 *
568 * The newly-created %list uses a copy of the allocation object used
569 * by @a x.
570 */
571 list(const list& __x)
572 : _Base(__x._M_get_Node_allocator())
573 { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
574
575 #ifdef __GXX_EXPERIMENTAL_CXX0X__
576 /**
577 * @brief %List move constructor.
578 * @param x A %list of identical element and allocator types.
579 *
580 * The newly-created %list contains the exact contents of @a x.
581 * The contents of @a x are a valid, but unspecified %list.
582 */
583 list(list&& __x)
584 : _Base(std::move(__x)) { }
585
586 /**
587 * @brief Builds a %list from an initializer_list
588 * @param l An initializer_list of value_type.
589 * @param a An allocator object.
590 *
591 * Create a %list consisting of copies of the elements in the
592 * initializer_list @a l. This is linear in l.size().
593 */
594 list(initializer_list<value_type> __l,
595 const allocator_type& __a = allocator_type())
596 : _Base(__a)
597 { _M_initialize_dispatch(__l.begin(), __l.end(), __false_type()); }
598 #endif
599
600 /**
601 * @brief Builds a %list from a range.
602 * @param first An input iterator.
603 * @param last An input iterator.
604 * @param a An allocator object.
605 *
606 * Create a %list consisting of copies of the elements from
607 * [@a first,@a last). This is linear in N (where N is
608 * distance(@a first,@a last)).
609 */
610 template<typename _InputIterator>
611 list(_InputIterator __first, _InputIterator __last,
612 const allocator_type& __a = allocator_type())
613 : _Base(__a)
614 {
615 // Check whether it's an integral type. If so, it's not an iterator.
616 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
617 _M_initialize_dispatch(__first, __last, _Integral());
618 }
619
620 /**
621 * No explicit dtor needed as the _Base dtor takes care of
622 * things. The _Base dtor only erases the elements, and note
623 * that if the elements themselves are pointers, the pointed-to
624 * memory is not touched in any way. Managing the pointer is
625 * the user's responsibility.
626 */
627
628 /**
629 * @brief %List assignment operator.
630 * @param x A %list of identical element and allocator types.
631 *
632 * All the elements of @a x are copied, but unlike the copy
633 * constructor, the allocator object is not copied.
634 */
635 list&
636 operator=(const list& __x);
637
638 #ifdef __GXX_EXPERIMENTAL_CXX0X__
639 /**
640 * @brief %List move assignment operator.
641 * @param x A %list of identical element and allocator types.
642 *
643 * The contents of @a x are moved into this %list (without copying).
644 * @a x is a valid, but unspecified %list
645 */
646 list&
647 operator=(list&& __x)
648 {
649 // NB: DR 1204.
650 // NB: DR 675.
651 this->clear();
652 this->swap(__x);
653 return *this;
654 }
655
656 /**
657 * @brief %List initializer list assignment operator.
658 * @param l An initializer_list of value_type.
659 *
660 * Replace the contents of the %list with copies of the elements
661 * in the initializer_list @a l. This is linear in l.size().
662 */
663 list&
664 operator=(initializer_list<value_type> __l)
665 {
666 this->assign(__l.begin(), __l.end());
667 return *this;
668 }
669 #endif
670
671 /**
672 * @brief Assigns a given value to a %list.
673 * @param n Number of elements to be assigned.
674 * @param val Value to be assigned.
675 *
676 * This function fills a %list with @a n copies of the given
677 * value. Note that the assignment completely changes the %list
678 * and that the resulting %list's size is the same as the number
679 * of elements assigned. Old data may be lost.
680 */
681 void
682 assign(size_type __n, const value_type& __val)
683 { _M_fill_assign(__n, __val); }
684
685 /**
686 * @brief Assigns a range to a %list.
687 * @param first An input iterator.
688 * @param last An input iterator.
689 *
690 * This function fills a %list with copies of the elements in the
691 * range [@a first,@a last).
692 *
693 * Note that the assignment completely changes the %list and
694 * that the resulting %list's size is the same as the number of
695 * elements assigned. Old data may be lost.
696 */
697 template<typename _InputIterator>
698 void
699 assign(_InputIterator __first, _InputIterator __last)
700 {
701 // Check whether it's an integral type. If so, it's not an iterator.
702 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
703 _M_assign_dispatch(__first, __last, _Integral());
704 }
705
706 #ifdef __GXX_EXPERIMENTAL_CXX0X__
707 /**
708 * @brief Assigns an initializer_list to a %list.
709 * @param l An initializer_list of value_type.
710 *
711 * Replace the contents of the %list with copies of the elements
712 * in the initializer_list @a l. This is linear in l.size().
713 */
714 void
715 assign(initializer_list<value_type> __l)
716 { this->assign(__l.begin(), __l.end()); }
717 #endif
718
719 /// Get a copy of the memory allocation object.
720 allocator_type
721 get_allocator() const _GLIBCXX_NOEXCEPT
722 { return _Base::get_allocator(); }
723
724 // iterators
725 /**
726 * Returns a read/write iterator that points to the first element in the
727 * %list. Iteration is done in ordinary element order.
728 */
729 iterator
730 begin() _GLIBCXX_NOEXCEPT
731 { return iterator(this->_M_impl._M_node._M_next); }
732
733 /**
734 * Returns a read-only (constant) iterator that points to the
735 * first element in the %list. Iteration is done in ordinary
736 * element order.
737 */
738 const_iterator
739 begin() const _GLIBCXX_NOEXCEPT
740 { return const_iterator(this->_M_impl._M_node._M_next); }
741
742 /**
743 * Returns a read/write iterator that points one past the last
744 * element in the %list. Iteration is done in ordinary element
745 * order.
746 */
747 iterator
748 end() _GLIBCXX_NOEXCEPT
749 { return iterator(&this->_M_impl._M_node); }
750
751 /**
752 * Returns a read-only (constant) iterator that points one past
753 * the last element in the %list. Iteration is done in ordinary
754 * element order.
755 */
756 const_iterator
757 end() const _GLIBCXX_NOEXCEPT
758 { return const_iterator(&this->_M_impl._M_node); }
759
760 /**
761 * Returns a read/write reverse iterator that points to the last
762 * element in the %list. Iteration is done in reverse element
763 * order.
764 */
765 reverse_iterator
766 rbegin() _GLIBCXX_NOEXCEPT
767 { return reverse_iterator(end()); }
768
769 /**
770 * Returns a read-only (constant) reverse iterator that points to
771 * the last element in the %list. Iteration is done in reverse
772 * element order.
773 */
774 const_reverse_iterator
775 rbegin() const _GLIBCXX_NOEXCEPT
776 { return const_reverse_iterator(end()); }
777
778 /**
779 * Returns a read/write reverse iterator that points to one
780 * before the first element in the %list. Iteration is done in
781 * reverse element order.
782 */
783 reverse_iterator
784 rend() _GLIBCXX_NOEXCEPT
785 { return reverse_iterator(begin()); }
786
787 /**
788 * Returns a read-only (constant) reverse iterator that points to one
789 * before the first element in the %list. Iteration is done in reverse
790 * element order.
791 */
792 const_reverse_iterator
793 rend() const _GLIBCXX_NOEXCEPT
794 { return const_reverse_iterator(begin()); }
795
796 #ifdef __GXX_EXPERIMENTAL_CXX0X__
797 /**
798 * Returns a read-only (constant) iterator that points to the
799 * first element in the %list. Iteration is done in ordinary
800 * element order.
801 */
802 const_iterator
803 cbegin() const noexcept
804 { return const_iterator(this->_M_impl._M_node._M_next); }
805
806 /**
807 * Returns a read-only (constant) iterator that points one past
808 * the last element in the %list. Iteration is done in ordinary
809 * element order.
810 */
811 const_iterator
812 cend() const noexcept
813 { return const_iterator(&this->_M_impl._M_node); }
814
815 /**
816 * Returns a read-only (constant) reverse iterator that points to
817 * the last element in the %list. Iteration is done in reverse
818 * element order.
819 */
820 const_reverse_iterator
821 crbegin() const noexcept
822 { return const_reverse_iterator(end()); }
823
824 /**
825 * Returns a read-only (constant) reverse iterator that points to one
826 * before the first element in the %list. Iteration is done in reverse
827 * element order.
828 */
829 const_reverse_iterator
830 crend() const noexcept
831 { return const_reverse_iterator(begin()); }
832 #endif
833
834 // [23.2.2.2] capacity
835 /**
836 * Returns true if the %list is empty. (Thus begin() would equal
837 * end().)
838 */
839 bool
840 empty() const _GLIBCXX_NOEXCEPT
841 { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
842
843 /** Returns the number of elements in the %list. */
844 size_type
845 size() const _GLIBCXX_NOEXCEPT
846 { return std::distance(begin(), end()); }
847
848 /** Returns the size() of the largest possible %list. */
849 size_type
850 max_size() const _GLIBCXX_NOEXCEPT
851 { return _M_get_Node_allocator().max_size(); }
852
853 #ifdef __GXX_EXPERIMENTAL_CXX0X__
854 /**
855 * @brief Resizes the %list to the specified number of elements.
856 * @param new_size Number of elements the %list should contain.
857 *
858 * This function will %resize the %list to the specified number
859 * of elements. If the number is smaller than the %list's
860 * current size the %list is truncated, otherwise default
861 * constructed elements are appended.
862 */
863 void
864 resize(size_type __new_size);
865
866 /**
867 * @brief Resizes the %list to the specified number of elements.
868 * @param new_size Number of elements the %list should contain.
869 * @param x Data with which new elements should be populated.
870 *
871 * This function will %resize the %list to the specified number
872 * of elements. If the number is smaller than the %list's
873 * current size the %list is truncated, otherwise the %list is
874 * extended and new elements are populated with given data.
875 */
876 void
877 resize(size_type __new_size, const value_type& __x);
878 #else
879 /**
880 * @brief Resizes the %list to the specified number of elements.
881 * @param new_size Number of elements the %list should contain.
882 * @param x Data with which new elements should be populated.
883 *
884 * This function will %resize the %list to the specified number
885 * of elements. If the number is smaller than the %list's
886 * current size the %list is truncated, otherwise the %list is
887 * extended and new elements are populated with given data.
888 */
889 void
890 resize(size_type __new_size, value_type __x = value_type());
891 #endif
892
893 // element access
894 /**
895 * Returns a read/write reference to the data at the first
896 * element of the %list.
897 */
898 reference
899 front()
900 { return *begin(); }
901
902 /**
903 * Returns a read-only (constant) reference to the data at the first
904 * element of the %list.
905 */
906 const_reference
907 front() const
908 { return *begin(); }
909
910 /**
911 * Returns a read/write reference to the data at the last element
912 * of the %list.
913 */
914 reference
915 back()
916 {
917 iterator __tmp = end();
918 --__tmp;
919 return *__tmp;
920 }
921
922 /**
923 * Returns a read-only (constant) reference to the data at the last
924 * element of the %list.
925 */
926 const_reference
927 back() const
928 {
929 const_iterator __tmp = end();
930 --__tmp;
931 return *__tmp;
932 }
933
934 // [23.2.2.3] modifiers
935 /**
936 * @brief Add data to the front of the %list.
937 * @param x Data to be added.
938 *
939 * This is a typical stack operation. The function creates an
940 * element at the front of the %list and assigns the given data
941 * to it. Due to the nature of a %list this operation can be
942 * done in constant time, and does not invalidate iterators and
943 * references.
944 */
945 void
946 push_front(const value_type& __x)
947 { this->_M_insert(begin(), __x); }
948
949 #ifdef __GXX_EXPERIMENTAL_CXX0X__
950 void
951 push_front(value_type&& __x)
952 { this->_M_insert(begin(), std::move(__x)); }
953
954 template<typename... _Args>
955 void
956 emplace_front(_Args&&... __args)
957 { this->_M_insert(begin(), std::forward<_Args>(__args)...); }
958 #endif
959
960 /**
961 * @brief Removes first element.
962 *
963 * This is a typical stack operation. It shrinks the %list by
964 * one. Due to the nature of a %list this operation can be done
965 * in constant time, and only invalidates iterators/references to
966 * the element being removed.
967 *
968 * Note that no data is returned, and if the first element's data
969 * is needed, it should be retrieved before pop_front() is
970 * called.
971 */
972 void
973 pop_front()
974 { this->_M_erase(begin()); }
975
976 /**
977 * @brief Add data to the end of the %list.
978 * @param x Data to be added.
979 *
980 * This is a typical stack operation. The function creates an
981 * element at the end of the %list and assigns the given data to
982 * it. Due to the nature of a %list this operation can be done
983 * in constant time, and does not invalidate iterators and
984 * references.
985 */
986 void
987 push_back(const value_type& __x)
988 { this->_M_insert(end(), __x); }
989
990 #ifdef __GXX_EXPERIMENTAL_CXX0X__
991 void
992 push_back(value_type&& __x)
993 { this->_M_insert(end(), std::move(__x)); }
994
995 template<typename... _Args>
996 void
997 emplace_back(_Args&&... __args)
998 { this->_M_insert(end(), std::forward<_Args>(__args)...); }
999 #endif
1000
1001 /**
1002 * @brief Removes last element.
1003 *
1004 * This is a typical stack operation. It shrinks the %list by
1005 * one. Due to the nature of a %list this operation can be done
1006 * in constant time, and only invalidates iterators/references to
1007 * the element being removed.
1008 *
1009 * Note that no data is returned, and if the last element's data
1010 * is needed, it should be retrieved before pop_back() is called.
1011 */
1012 void
1013 pop_back()
1014 { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
1015
1016 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1017 /**
1018 * @brief Constructs object in %list before specified iterator.
1019 * @param position A const_iterator into the %list.
1020 * @param args Arguments.
1021 * @return An iterator that points to the inserted data.
1022 *
1023 * This function will insert an object of type T constructed
1024 * with T(std::forward<Args>(args)...) before the specified
1025 * location. Due to the nature of a %list this operation can
1026 * be done in constant time, and does not invalidate iterators
1027 * and references.
1028 */
1029 template<typename... _Args>
1030 iterator
1031 emplace(iterator __position, _Args&&... __args);
1032 #endif
1033
1034 /**
1035 * @brief Inserts given value into %list before specified iterator.
1036 * @param position An iterator into the %list.
1037 * @param x Data to be inserted.
1038 * @return An iterator that points to the inserted data.
1039 *
1040 * This function will insert a copy of the given value before
1041 * the specified location. Due to the nature of a %list this
1042 * operation can be done in constant time, and does not
1043 * invalidate iterators and references.
1044 */
1045 iterator
1046 insert(iterator __position, const value_type& __x);
1047
1048 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1049 /**
1050 * @brief Inserts given rvalue into %list before specified iterator.
1051 * @param position An iterator into the %list.
1052 * @param x Data to be inserted.
1053 * @return An iterator that points to the inserted data.
1054 *
1055 * This function will insert a copy of the given rvalue before
1056 * the specified location. Due to the nature of a %list this
1057 * operation can be done in constant time, and does not
1058 * invalidate iterators and references.
1059 */
1060 iterator
1061 insert(iterator __position, value_type&& __x)
1062 { return emplace(__position, std::move(__x)); }
1063
1064 /**
1065 * @brief Inserts the contents of an initializer_list into %list
1066 * before specified iterator.
1067 * @param p An iterator into the %list.
1068 * @param l An initializer_list of value_type.
1069 *
1070 * This function will insert copies of the data in the
1071 * initializer_list @a l into the %list before the location
1072 * specified by @a p.
1073 *
1074 * This operation is linear in the number of elements inserted and
1075 * does not invalidate iterators and references.
1076 */
1077 void
1078 insert(iterator __p, initializer_list<value_type> __l)
1079 { this->insert(__p, __l.begin(), __l.end()); }
1080 #endif
1081
1082 /**
1083 * @brief Inserts a number of copies of given data into the %list.
1084 * @param position An iterator into the %list.
1085 * @param n Number of elements to be inserted.
1086 * @param x Data to be inserted.
1087 *
1088 * This function will insert a specified number of copies of the
1089 * given data before the location specified by @a position.
1090 *
1091 * This operation is linear in the number of elements inserted and
1092 * does not invalidate iterators and references.
1093 */
1094 void
1095 insert(iterator __position, size_type __n, const value_type& __x)
1096 {
1097 list __tmp(__n, __x, _M_get_Node_allocator());
1098 splice(__position, __tmp);
1099 }
1100
1101 /**
1102 * @brief Inserts a range into the %list.
1103 * @param position An iterator into the %list.
1104 * @param first An input iterator.
1105 * @param last An input iterator.
1106 *
1107 * This function will insert copies of the data in the range [@a
1108 * first,@a last) into the %list before the location specified by
1109 * @a position.
1110 *
1111 * This operation is linear in the number of elements inserted and
1112 * does not invalidate iterators and references.
1113 */
1114 template<typename _InputIterator>
1115 void
1116 insert(iterator __position, _InputIterator __first,
1117 _InputIterator __last)
1118 {
1119 list __tmp(__first, __last, _M_get_Node_allocator());
1120 splice(__position, __tmp);
1121 }
1122
1123 /**
1124 * @brief Remove element at given position.
1125 * @param position Iterator pointing to element to be erased.
1126 * @return An iterator pointing to the next element (or end()).
1127 *
1128 * This function will erase the element at the given position and thus
1129 * shorten the %list by one.
1130 *
1131 * Due to the nature of a %list this operation can be done in
1132 * constant time, and only invalidates iterators/references to
1133 * the element being removed. The user is also cautioned that
1134 * this function only erases the element, and that if the element
1135 * is itself a pointer, the pointed-to memory is not touched in
1136 * any way. Managing the pointer is the user's responsibility.
1137 */
1138 iterator
1139 erase(iterator __position);
1140
1141 /**
1142 * @brief Remove a range of elements.
1143 * @param first Iterator pointing to the first element to be erased.
1144 * @param last Iterator pointing to one past the last element to be
1145 * erased.
1146 * @return An iterator pointing to the element pointed to by @a last
1147 * prior to erasing (or end()).
1148 *
1149 * This function will erase the elements in the range @a
1150 * [first,last) and shorten the %list accordingly.
1151 *
1152 * This operation is linear time in the size of the range and only
1153 * invalidates iterators/references to the element being removed.
1154 * The user is also cautioned that this function only erases the
1155 * elements, and that if the elements themselves are pointers, the
1156 * pointed-to memory is not touched in any way. Managing the pointer
1157 * is the user's responsibility.
1158 */
1159 iterator
1160 erase(iterator __first, iterator __last)
1161 {
1162 while (__first != __last)
1163 __first = erase(__first);
1164 return __last;
1165 }
1166
1167 /**
1168 * @brief Swaps data with another %list.
1169 * @param x A %list of the same element and allocator types.
1170 *
1171 * This exchanges the elements between two lists in constant
1172 * time. Note that the global std::swap() function is
1173 * specialized such that std::swap(l1,l2) will feed to this
1174 * function.
1175 */
1176 void
1177 swap(list& __x)
1178 {
1179 __detail::_List_node_base::swap(this->_M_impl._M_node,
1180 __x._M_impl._M_node);
1181
1182 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1183 // 431. Swapping containers with unequal allocators.
1184 std::__alloc_swap<typename _Base::_Node_alloc_type>::
1185 _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator());
1186 }
1187
1188 /**
1189 * Erases all the elements. Note that this function only erases
1190 * the elements, and that if the elements themselves are
1191 * pointers, the pointed-to memory is not touched in any way.
1192 * Managing the pointer is the user's responsibility.
1193 */
1194 void
1195 clear() _GLIBCXX_NOEXCEPT
1196 {
1197 _Base::_M_clear();
1198 _Base::_M_init();
1199 }
1200
1201 // [23.2.2.4] list operations
1202 /**
1203 * @brief Insert contents of another %list.
1204 * @param position Iterator referencing the element to insert before.
1205 * @param x Source list.
1206 *
1207 * The elements of @a x are inserted in constant time in front of
1208 * the element referenced by @a position. @a x becomes an empty
1209 * list.
1210 *
1211 * Requires this != @a x.
1212 */
1213 void
1214 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1215 splice(iterator __position, list&& __x)
1216 #else
1217 splice(iterator __position, list& __x)
1218 #endif
1219 {
1220 if (!__x.empty())
1221 {
1222 _M_check_equal_allocators(__x);
1223
1224 this->_M_transfer(__position, __x.begin(), __x.end());
1225 }
1226 }
1227
1228 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1229 void
1230 splice(iterator __position, list& __x)
1231 { splice(__position, std::move(__x)); }
1232 #endif
1233
1234 /**
1235 * @brief Insert element from another %list.
1236 * @param position Iterator referencing the element to insert before.
1237 * @param x Source list.
1238 * @param i Iterator referencing the element to move.
1239 *
1240 * Removes the element in list @a x referenced by @a i and
1241 * inserts it into the current list before @a position.
1242 */
1243 void
1244 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1245 splice(iterator __position, list&& __x, iterator __i)
1246 #else
1247 splice(iterator __position, list& __x, iterator __i)
1248 #endif
1249 {
1250 iterator __j = __i;
1251 ++__j;
1252 if (__position == __i || __position == __j)
1253 return;
1254
1255 if (this != &__x)
1256 _M_check_equal_allocators(__x);
1257
1258 this->_M_transfer(__position, __i, __j);
1259 }
1260
1261 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1262 void
1263 splice(iterator __position, list& __x, iterator __i)
1264 { splice(__position, std::move(__x), __i); }
1265 #endif
1266
1267 /**
1268 * @brief Insert range from another %list.
1269 * @param position Iterator referencing the element to insert before.
1270 * @param x Source list.
1271 * @param first Iterator referencing the start of range in x.
1272 * @param last Iterator referencing the end of range in x.
1273 *
1274 * Removes elements in the range [first,last) and inserts them
1275 * before @a position in constant time.
1276 *
1277 * Undefined if @a position is in [first,last).
1278 */
1279 void
1280 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1281 splice(iterator __position, list&& __x, iterator __first,
1282 iterator __last)
1283 #else
1284 splice(iterator __position, list& __x, iterator __first,
1285 iterator __last)
1286 #endif
1287 {
1288 if (__first != __last)
1289 {
1290 if (this != &__x)
1291 _M_check_equal_allocators(__x);
1292
1293 this->_M_transfer(__position, __first, __last);
1294 }
1295 }
1296
1297 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1298 void
1299 splice(iterator __position, list& __x, iterator __first, iterator __last)
1300 { splice(__position, std::move(__x), __first, __last); }
1301 #endif
1302
1303 /**
1304 * @brief Remove all elements equal to value.
1305 * @param value The value to remove.
1306 *
1307 * Removes every element in the list equal to @a value.
1308 * Remaining elements stay in list order. Note that this
1309 * function only erases the elements, and that if the elements
1310 * themselves are pointers, the pointed-to memory is not
1311 * touched in any way. Managing the pointer is the user's
1312 * responsibility.
1313 */
1314 void
1315 remove(const _Tp& __value);
1316
1317 /**
1318 * @brief Remove all elements satisfying a predicate.
1319 * @param Predicate Unary predicate function or object.
1320 *
1321 * Removes every element in the list for which the predicate
1322 * returns true. Remaining elements stay in list order. Note
1323 * that this function only erases the elements, and that if the
1324 * elements themselves are pointers, the pointed-to memory is
1325 * not touched in any way. Managing the pointer is the user's
1326 * responsibility.
1327 */
1328 template<typename _Predicate>
1329 void
1330 remove_if(_Predicate);
1331
1332 /**
1333 * @brief Remove consecutive duplicate elements.
1334 *
1335 * For each consecutive set of elements with the same value,
1336 * remove all but the first one. Remaining elements stay in
1337 * list order. Note that this function only erases the
1338 * elements, and that if the elements themselves are pointers,
1339 * the pointed-to memory is not touched in any way. Managing
1340 * the pointer is the user's responsibility.
1341 */
1342 void
1343 unique();
1344
1345 /**
1346 * @brief Remove consecutive elements satisfying a predicate.
1347 * @param BinaryPredicate Binary predicate function or object.
1348 *
1349 * For each consecutive set of elements [first,last) that
1350 * satisfy predicate(first,i) where i is an iterator in
1351 * [first,last), remove all but the first one. Remaining
1352 * elements stay in list order. Note that this function only
1353 * erases the elements, and that if the elements themselves are
1354 * pointers, the pointed-to memory is not touched in any way.
1355 * Managing the pointer is the user's responsibility.
1356 */
1357 template<typename _BinaryPredicate>
1358 void
1359 unique(_BinaryPredicate);
1360
1361 /**
1362 * @brief Merge sorted lists.
1363 * @param x Sorted list to merge.
1364 *
1365 * Assumes that both @a x and this list are sorted according to
1366 * operator<(). Merges elements of @a x into this list in
1367 * sorted order, leaving @a x empty when complete. Elements in
1368 * this list precede elements in @a x that are equal.
1369 */
1370 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1371 void
1372 merge(list&& __x);
1373
1374 void
1375 merge(list& __x)
1376 { merge(std::move(__x)); }
1377 #else
1378 void
1379 merge(list& __x);
1380 #endif
1381
1382 /**
1383 * @brief Merge sorted lists according to comparison function.
1384 * @param x Sorted list to merge.
1385 * @param StrictWeakOrdering Comparison function defining
1386 * sort order.
1387 *
1388 * Assumes that both @a x and this list are sorted according to
1389 * StrictWeakOrdering. Merges elements of @a x into this list
1390 * in sorted order, leaving @a x empty when complete. Elements
1391 * in this list precede elements in @a x that are equivalent
1392 * according to StrictWeakOrdering().
1393 */
1394 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1395 template<typename _StrictWeakOrdering>
1396 void
1397 merge(list&&, _StrictWeakOrdering);
1398
1399 template<typename _StrictWeakOrdering>
1400 void
1401 merge(list& __x, _StrictWeakOrdering __comp)
1402 { merge(std::move(__x), __comp); }
1403 #else
1404 template<typename _StrictWeakOrdering>
1405 void
1406 merge(list&, _StrictWeakOrdering);
1407 #endif
1408
1409 /**
1410 * @brief Reverse the elements in list.
1411 *
1412 * Reverse the order of elements in the list in linear time.
1413 */
1414 void
1415 reverse() _GLIBCXX_NOEXCEPT
1416 { this->_M_impl._M_node._M_reverse(); }
1417
1418 /**
1419 * @brief Sort the elements.
1420 *
1421 * Sorts the elements of this list in NlogN time. Equivalent
1422 * elements remain in list order.
1423 */
1424 void
1425 sort();
1426
1427 /**
1428 * @brief Sort the elements according to comparison function.
1429 *
1430 * Sorts the elements of this list in NlogN time. Equivalent
1431 * elements remain in list order.
1432 */
1433 template<typename _StrictWeakOrdering>
1434 void
1435 sort(_StrictWeakOrdering);
1436
1437 protected:
1438 // Internal constructor functions follow.
1439
1440 // Called by the range constructor to implement [23.1.1]/9
1441
1442 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1443 // 438. Ambiguity in the "do the right thing" clause
1444 template<typename _Integer>
1445 void
1446 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1447 { _M_fill_initialize(static_cast<size_type>(__n), __x); }
1448
1449 // Called by the range constructor to implement [23.1.1]/9
1450 template<typename _InputIterator>
1451 void
1452 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1453 __false_type)
1454 {
1455 for (; __first != __last; ++__first)
1456 push_back(*__first);
1457 }
1458
1459 // Called by list(n,v,a), and the range constructor when it turns out
1460 // to be the same thing.
1461 void
1462 _M_fill_initialize(size_type __n, const value_type& __x)
1463 {
1464 for (; __n; --__n)
1465 push_back(__x);
1466 }
1467
1468 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1469 // Called by list(n).
1470 void
1471 _M_default_initialize(size_type __n)
1472 {
1473 for (; __n; --__n)
1474 emplace_back();
1475 }
1476
1477 // Called by resize(sz).
1478 void
1479 _M_default_append(size_type __n);
1480 #endif
1481
1482 // Internal assign functions follow.
1483
1484 // Called by the range assign to implement [23.1.1]/9
1485
1486 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1487 // 438. Ambiguity in the "do the right thing" clause
1488 template<typename _Integer>
1489 void
1490 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1491 { _M_fill_assign(__n, __val); }
1492
1493 // Called by the range assign to implement [23.1.1]/9
1494 template<typename _InputIterator>
1495 void
1496 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1497 __false_type);
1498
1499 // Called by assign(n,t), and the range assign when it turns out
1500 // to be the same thing.
1501 void
1502 _M_fill_assign(size_type __n, const value_type& __val);
1503
1504
1505 // Moves the elements from [first,last) before position.
1506 void
1507 _M_transfer(iterator __position, iterator __first, iterator __last)
1508 { __position._M_node->_M_transfer(__first._M_node, __last._M_node); }
1509
1510 // Inserts new element at position given and with value given.
1511 #ifndef __GXX_EXPERIMENTAL_CXX0X__
1512 void
1513 _M_insert(iterator __position, const value_type& __x)
1514 {
1515 _Node* __tmp = _M_create_node(__x);
1516 __tmp->_M_hook(__position._M_node);
1517 }
1518 #else
1519 template<typename... _Args>
1520 void
1521 _M_insert(iterator __position, _Args&&... __args)
1522 {
1523 _Node* __tmp = _M_create_node(std::forward<_Args>(__args)...);
1524 __tmp->_M_hook(__position._M_node);
1525 }
1526 #endif
1527
1528 // Erases element at position given.
1529 void
1530 _M_erase(iterator __position)
1531 {
1532 __position._M_node->_M_unhook();
1533 _Node* __n = static_cast<_Node*>(__position._M_node);
1534 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1535 _M_get_Node_allocator().destroy(__n);
1536 #else
1537 _M_get_Tp_allocator().destroy(std::__addressof(__n->_M_data));
1538 #endif
1539 _M_put_node(__n);
1540 }
1541
1542 // To implement the splice (and merge) bits of N1599.
1543 void
1544 _M_check_equal_allocators(list& __x)
1545 {
1546 if (std::__alloc_neq<typename _Base::_Node_alloc_type>::
1547 _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator()))
1548 __throw_runtime_error(__N("list::_M_check_equal_allocators"));
1549 }
1550 };
1551
1552 /**
1553 * @brief List equality comparison.
1554 * @param x A %list.
1555 * @param y A %list of the same type as @a x.
1556 * @return True iff the size and elements of the lists are equal.
1557 *
1558 * This is an equivalence relation. It is linear in the size of
1559 * the lists. Lists are considered equivalent if their sizes are
1560 * equal, and if corresponding elements compare equal.
1561 */
1562 template<typename _Tp, typename _Alloc>
1563 inline bool
1564 operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1565 {
1566 typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
1567 const_iterator __end1 = __x.end();
1568 const_iterator __end2 = __y.end();
1569
1570 const_iterator __i1 = __x.begin();
1571 const_iterator __i2 = __y.begin();
1572 while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1573 {
1574 ++__i1;
1575 ++__i2;
1576 }
1577 return __i1 == __end1 && __i2 == __end2;
1578 }
1579
1580 /**
1581 * @brief List ordering relation.
1582 * @param x A %list.
1583 * @param y A %list of the same type as @a x.
1584 * @return True iff @a x is lexicographically less than @a y.
1585 *
1586 * This is a total ordering relation. It is linear in the size of the
1587 * lists. The elements must be comparable with @c <.
1588 *
1589 * See std::lexicographical_compare() for how the determination is made.
1590 */
1591 template<typename _Tp, typename _Alloc>
1592 inline bool
1593 operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1594 { return std::lexicographical_compare(__x.begin(), __x.end(),
1595 __y.begin(), __y.end()); }
1596
1597 /// Based on operator==
1598 template<typename _Tp, typename _Alloc>
1599 inline bool
1600 operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1601 { return !(__x == __y); }
1602
1603 /// Based on operator<
1604 template<typename _Tp, typename _Alloc>
1605 inline bool
1606 operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1607 { return __y < __x; }
1608
1609 /// Based on operator<
1610 template<typename _Tp, typename _Alloc>
1611 inline bool
1612 operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1613 { return !(__y < __x); }
1614
1615 /// Based on operator<
1616 template<typename _Tp, typename _Alloc>
1617 inline bool
1618 operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1619 { return !(__x < __y); }
1620
1621 /// See std::list::swap().
1622 template<typename _Tp, typename _Alloc>
1623 inline void
1624 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1625 { __x.swap(__y); }
1626
1627 _GLIBCXX_END_NAMESPACE_CONTAINER
1628 } // namespace std
1629
1630 #endif /* _STL_LIST_H */