c++config: Add in revised namespace associations.
[gcc.git] / libstdc++-v3 / include / bits / stl_list.h
1 // List implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
54 */
55
56 /** @file stl_list.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
59 */
60
61 #ifndef _LIST_H
62 #define _LIST_H 1
63
64 #include <bits/concept_check.h>
65
66 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
67
68 // Supporting structures are split into common and templated types; the
69 // latter publicly inherits from the former in an effort to reduce code
70 // duplication. This results in some "needless" static_cast'ing later on,
71 // but it's all safe downcasting.
72
73 /// @if maint Common part of a node in the %list. @endif
74 struct _List_node_base
75 {
76 _List_node_base* _M_next; ///< Self-explanatory
77 _List_node_base* _M_prev; ///< Self-explanatory
78
79 static void
80 swap(_List_node_base& __x, _List_node_base& __y);
81
82 void
83 transfer(_List_node_base * const __first,
84 _List_node_base * const __last);
85
86 void
87 reverse();
88
89 void
90 hook(_List_node_base * const __position);
91
92 void
93 unhook();
94 };
95
96 /// @if maint An actual node in the %list. @endif
97 template<typename _Tp>
98 struct _List_node : public _List_node_base
99 {
100 _Tp _M_data; ///< User's data.
101 };
102
103 /**
104 * @brief A list::iterator.
105 *
106 * @if maint
107 * All the functions are op overloads.
108 * @endif
109 */
110 template<typename _Tp>
111 struct _List_iterator
112 {
113 typedef _List_iterator<_Tp> _Self;
114 typedef _List_node<_Tp> _Node;
115
116 typedef ptrdiff_t difference_type;
117 typedef std::bidirectional_iterator_tag iterator_category;
118 typedef _Tp value_type;
119 typedef _Tp* pointer;
120 typedef _Tp& reference;
121
122 _List_iterator()
123 : _M_node() { }
124
125 explicit
126 _List_iterator(_List_node_base* __x)
127 : _M_node(__x) { }
128
129 // Must downcast from List_node_base to _List_node to get to _M_data.
130 reference
131 operator*() const
132 { return static_cast<_Node*>(_M_node)->_M_data; }
133
134 pointer
135 operator->() const
136 { return &static_cast<_Node*>(_M_node)->_M_data; }
137
138 _Self&
139 operator++()
140 {
141 _M_node = _M_node->_M_next;
142 return *this;
143 }
144
145 _Self
146 operator++(int)
147 {
148 _Self __tmp = *this;
149 _M_node = _M_node->_M_next;
150 return __tmp;
151 }
152
153 _Self&
154 operator--()
155 {
156 _M_node = _M_node->_M_prev;
157 return *this;
158 }
159
160 _Self
161 operator--(int)
162 {
163 _Self __tmp = *this;
164 _M_node = _M_node->_M_prev;
165 return __tmp;
166 }
167
168 bool
169 operator==(const _Self& __x) const
170 { return _M_node == __x._M_node; }
171
172 bool
173 operator!=(const _Self& __x) const
174 { return _M_node != __x._M_node; }
175
176 // The only member points to the %list element.
177 _List_node_base* _M_node;
178 };
179
180 /**
181 * @brief A list::const_iterator.
182 *
183 * @if maint
184 * All the functions are op overloads.
185 * @endif
186 */
187 template<typename _Tp>
188 struct _List_const_iterator
189 {
190 typedef _List_const_iterator<_Tp> _Self;
191 typedef const _List_node<_Tp> _Node;
192 typedef _List_iterator<_Tp> iterator;
193
194 typedef ptrdiff_t difference_type;
195 typedef std::bidirectional_iterator_tag iterator_category;
196 typedef _Tp value_type;
197 typedef const _Tp* pointer;
198 typedef const _Tp& reference;
199
200 _List_const_iterator()
201 : _M_node() { }
202
203 explicit
204 _List_const_iterator(const _List_node_base* __x)
205 : _M_node(__x) { }
206
207 _List_const_iterator(const iterator& __x)
208 : _M_node(__x._M_node) { }
209
210 // Must downcast from List_node_base to _List_node to get to
211 // _M_data.
212 reference
213 operator*() const
214 { return static_cast<_Node*>(_M_node)->_M_data; }
215
216 pointer
217 operator->() const
218 { return &static_cast<_Node*>(_M_node)->_M_data; }
219
220 _Self&
221 operator++()
222 {
223 _M_node = _M_node->_M_next;
224 return *this;
225 }
226
227 _Self
228 operator++(int)
229 {
230 _Self __tmp = *this;
231 _M_node = _M_node->_M_next;
232 return __tmp;
233 }
234
235 _Self&
236 operator--()
237 {
238 _M_node = _M_node->_M_prev;
239 return *this;
240 }
241
242 _Self
243 operator--(int)
244 {
245 _Self __tmp = *this;
246 _M_node = _M_node->_M_prev;
247 return __tmp;
248 }
249
250 bool
251 operator==(const _Self& __x) const
252 { return _M_node == __x._M_node; }
253
254 bool
255 operator!=(const _Self& __x) const
256 { return _M_node != __x._M_node; }
257
258 // The only member points to the %list element.
259 const _List_node_base* _M_node;
260 };
261
262 template<typename _Val>
263 inline bool
264 operator==(const _List_iterator<_Val>& __x,
265 const _List_const_iterator<_Val>& __y)
266 { return __x._M_node == __y._M_node; }
267
268 template<typename _Val>
269 inline bool
270 operator!=(const _List_iterator<_Val>& __x,
271 const _List_const_iterator<_Val>& __y)
272 { return __x._M_node != __y._M_node; }
273
274
275 /**
276 * @if maint
277 * See bits/stl_deque.h's _Deque_base for an explanation.
278 * @endif
279 */
280 template<typename _Tp, typename _Alloc>
281 class _List_base
282 {
283 protected:
284 // NOTA BENE
285 // The stored instance is not actually of "allocator_type"'s
286 // type. Instead we rebind the type to
287 // Allocator<List_node<Tp>>, which according to [20.1.5]/4
288 // should probably be the same. List_node<Tp> is not the same
289 // size as Tp (it's two pointers larger), and specializations on
290 // Tp may go unused because List_node<Tp> is being bound
291 // instead.
292 //
293 // We put this to the test in the constructors and in
294 // get_allocator, where we use conversions between
295 // allocator_type and _Node_alloc_type. The conversion is
296 // required by table 32 in [20.1.5].
297 typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
298 _Node_alloc_type;
299
300 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
301
302 struct _List_impl
303 : public _Node_alloc_type
304 {
305 _List_node_base _M_node;
306
307 _List_impl(const _Node_alloc_type& __a)
308 : _Node_alloc_type(__a), _M_node()
309 { }
310 };
311
312 _List_impl _M_impl;
313
314 _List_node<_Tp>*
315 _M_get_node()
316 { return _M_impl._Node_alloc_type::allocate(1); }
317
318 void
319 _M_put_node(_List_node<_Tp>* __p)
320 { _M_impl._Node_alloc_type::deallocate(__p, 1); }
321
322 public:
323 typedef _Alloc allocator_type;
324
325 _Tp_alloc_type
326 _M_get_Tp_allocator() const
327 { return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
328
329 allocator_type
330 get_allocator() const
331 { return _M_get_Tp_allocator(); }
332
333 _List_base(const allocator_type& __a)
334 : _M_impl(__a)
335 { _M_init(); }
336
337 // This is what actually destroys the list.
338 ~_List_base()
339 { _M_clear(); }
340
341 void
342 _M_clear();
343
344 void
345 _M_init()
346 {
347 this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
348 this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
349 }
350 };
351
352 /**
353 * @brief A standard container with linear time access to elements,
354 * and fixed time insertion/deletion at any point in the sequence.
355 *
356 * @ingroup Containers
357 * @ingroup Sequences
358 *
359 * Meets the requirements of a <a href="tables.html#65">container</a>, a
360 * <a href="tables.html#66">reversible container</a>, and a
361 * <a href="tables.html#67">sequence</a>, including the
362 * <a href="tables.html#68">optional sequence requirements</a> with the
363 * %exception of @c at and @c operator[].
364 *
365 * This is a @e doubly @e linked %list. Traversal up and down the
366 * %list requires linear time, but adding and removing elements (or
367 * @e nodes) is done in constant time, regardless of where the
368 * change takes place. Unlike std::vector and std::deque,
369 * random-access iterators are not provided, so subscripting ( @c
370 * [] ) access is not allowed. For algorithms which only need
371 * sequential access, this lack makes no difference.
372 *
373 * Also unlike the other standard containers, std::list provides
374 * specialized algorithms %unique to linked lists, such as
375 * splicing, sorting, and in-place reversal.
376 *
377 * @if maint
378 * A couple points on memory allocation for list<Tp>:
379 *
380 * First, we never actually allocate a Tp, we allocate
381 * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
382 * that after elements from %list<X,Alloc1> are spliced into
383 * %list<X,Alloc2>, destroying the memory of the second %list is a
384 * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
385 *
386 * Second, a %list conceptually represented as
387 * @code
388 * A <---> B <---> C <---> D
389 * @endcode
390 * is actually circular; a link exists between A and D. The %list
391 * class holds (as its only data member) a private list::iterator
392 * pointing to @e D, not to @e A! To get to the head of the %list,
393 * we start at the tail and move forward by one. When this member
394 * iterator's next/previous pointers refer to itself, the %list is
395 * %empty. @endif
396 */
397 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
398 class list : protected _List_base<_Tp, _Alloc>
399 {
400 // concept requirements
401 typedef typename _Alloc::value_type _Alloc_value_type;
402 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
403 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
404
405 typedef _List_base<_Tp, _Alloc> _Base;
406 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
407
408 public:
409 typedef _Tp value_type;
410 typedef typename _Tp_alloc_type::pointer pointer;
411 typedef typename _Tp_alloc_type::const_pointer const_pointer;
412 typedef typename _Tp_alloc_type::reference reference;
413 typedef typename _Tp_alloc_type::const_reference const_reference;
414 typedef _List_iterator<_Tp> iterator;
415 typedef _List_const_iterator<_Tp> const_iterator;
416 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
417 typedef std::reverse_iterator<iterator> reverse_iterator;
418 typedef size_t size_type;
419 typedef ptrdiff_t difference_type;
420 typedef _Alloc allocator_type;
421
422 protected:
423 // Note that pointers-to-_Node's can be ctor-converted to
424 // iterator types.
425 typedef _List_node<_Tp> _Node;
426
427 /** @if maint
428 * One data member plus two memory-handling functions. If the
429 * _Alloc type requires separate instances, then one of those
430 * will also be included, accumulated from the topmost parent.
431 * @endif
432 */
433 using _Base::_M_impl;
434 using _Base::_M_put_node;
435 using _Base::_M_get_node;
436 using _Base::_M_get_Tp_allocator;
437
438 /**
439 * @if maint
440 * @param x An instance of user data.
441 *
442 * Allocates space for a new node and constructs a copy of @a x in it.
443 * @endif
444 */
445 _Node*
446 _M_create_node(const value_type& __x)
447 {
448 _Node* __p = this->_M_get_node();
449 try
450 {
451 _M_get_Tp_allocator().construct(&__p->_M_data, __x);
452 }
453 catch(...)
454 {
455 _M_put_node(__p);
456 __throw_exception_again;
457 }
458 return __p;
459 }
460
461 public:
462 // [23.2.2.1] construct/copy/destroy
463 // (assign() and get_allocator() are also listed in this section)
464 /**
465 * @brief Default constructor creates no elements.
466 */
467 explicit
468 list(const allocator_type& __a = allocator_type())
469 : _Base(__a) { }
470
471 /**
472 * @brief Create a %list with copies of an exemplar element.
473 * @param n The number of elements to initially create.
474 * @param value An element to copy.
475 *
476 * This constructor fills the %list with @a n copies of @a value.
477 */
478 explicit
479 list(size_type __n, const value_type& __value = value_type(),
480 const allocator_type& __a = allocator_type())
481 : _Base(__a)
482 { _M_fill_initialize(__n, __value); }
483
484 /**
485 * @brief %List copy constructor.
486 * @param x A %list of identical element and allocator types.
487 *
488 * The newly-created %list uses a copy of the allocation object used
489 * by @a x.
490 */
491 list(const list& __x)
492 : _Base(__x.get_allocator())
493 { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
494
495 /**
496 * @brief Builds a %list from a range.
497 * @param first An input iterator.
498 * @param last An input iterator.
499 *
500 * Create a %list consisting of copies of the elements from
501 * [@a first,@a last). This is linear in N (where N is
502 * distance(@a first,@a last)).
503 */
504 template<typename _InputIterator>
505 list(_InputIterator __first, _InputIterator __last,
506 const allocator_type& __a = allocator_type())
507 : _Base(__a)
508 {
509 // Check whether it's an integral type. If so, it's not an iterator.
510 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
511 _M_initialize_dispatch(__first, __last, _Integral());
512 }
513
514 /**
515 * No explicit dtor needed as the _Base dtor takes care of
516 * things. The _Base dtor only erases the elements, and note
517 * that if the elements themselves are pointers, the pointed-to
518 * memory is not touched in any way. Managing the pointer is
519 * the user's responsibilty.
520 */
521
522 /**
523 * @brief %List assignment operator.
524 * @param x A %list of identical element and allocator types.
525 *
526 * All the elements of @a x are copied, but unlike the copy
527 * constructor, the allocator object is not copied.
528 */
529 list&
530 operator=(const list& __x);
531
532 /**
533 * @brief Assigns a given value to a %list.
534 * @param n Number of elements to be assigned.
535 * @param val Value to be assigned.
536 *
537 * This function fills a %list with @a n copies of the given
538 * value. Note that the assignment completely changes the %list
539 * and that the resulting %list's size is the same as the number
540 * of elements assigned. Old data may be lost.
541 */
542 void
543 assign(size_type __n, const value_type& __val)
544 { _M_fill_assign(__n, __val); }
545
546 /**
547 * @brief Assigns a range to a %list.
548 * @param first An input iterator.
549 * @param last An input iterator.
550 *
551 * This function fills a %list with copies of the elements in the
552 * range [@a first,@a last).
553 *
554 * Note that the assignment completely changes the %list and
555 * that the resulting %list's size is the same as the number of
556 * elements assigned. Old data may be lost.
557 */
558 template<typename _InputIterator>
559 void
560 assign(_InputIterator __first, _InputIterator __last)
561 {
562 // Check whether it's an integral type. If so, it's not an iterator.
563 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
564 _M_assign_dispatch(__first, __last, _Integral());
565 }
566
567 /// Get a copy of the memory allocation object.
568 allocator_type
569 get_allocator() const
570 { return _Base::get_allocator(); }
571
572 // iterators
573 /**
574 * Returns a read/write iterator that points to the first element in the
575 * %list. Iteration is done in ordinary element order.
576 */
577 iterator
578 begin()
579 { return iterator(this->_M_impl._M_node._M_next); }
580
581 /**
582 * Returns a read-only (constant) iterator that points to the
583 * first element in the %list. Iteration is done in ordinary
584 * element order.
585 */
586 const_iterator
587 begin() const
588 { return const_iterator(this->_M_impl._M_node._M_next); }
589
590 /**
591 * Returns a read/write iterator that points one past the last
592 * element in the %list. Iteration is done in ordinary element
593 * order.
594 */
595 iterator
596 end()
597 { return iterator(&this->_M_impl._M_node); }
598
599 /**
600 * Returns a read-only (constant) iterator that points one past
601 * the last element in the %list. Iteration is done in ordinary
602 * element order.
603 */
604 const_iterator
605 end() const
606 { return const_iterator(&this->_M_impl._M_node); }
607
608 /**
609 * Returns a read/write reverse iterator that points to the last
610 * element in the %list. Iteration is done in reverse element
611 * order.
612 */
613 reverse_iterator
614 rbegin()
615 { return reverse_iterator(end()); }
616
617 /**
618 * Returns a read-only (constant) reverse iterator that points to
619 * the last element in the %list. Iteration is done in reverse
620 * element order.
621 */
622 const_reverse_iterator
623 rbegin() const
624 { return const_reverse_iterator(end()); }
625
626 /**
627 * Returns a read/write reverse iterator that points to one
628 * before the first element in the %list. Iteration is done in
629 * reverse element order.
630 */
631 reverse_iterator
632 rend()
633 { return reverse_iterator(begin()); }
634
635 /**
636 * Returns a read-only (constant) reverse iterator that points to one
637 * before the first element in the %list. Iteration is done in reverse
638 * element order.
639 */
640 const_reverse_iterator
641 rend() const
642 { return const_reverse_iterator(begin()); }
643
644 // [23.2.2.2] capacity
645 /**
646 * Returns true if the %list is empty. (Thus begin() would equal
647 * end().)
648 */
649 bool
650 empty() const
651 { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
652
653 /** Returns the number of elements in the %list. */
654 size_type
655 size() const
656 { return std::distance(begin(), end()); }
657
658 /** Returns the size() of the largest possible %list. */
659 size_type
660 max_size() const
661 { return size_type(-1); }
662
663 /**
664 * @brief Resizes the %list to the specified number of elements.
665 * @param new_size Number of elements the %list should contain.
666 * @param x Data with which new elements should be populated.
667 *
668 * This function will %resize the %list to the specified number
669 * of elements. If the number is smaller than the %list's
670 * current size the %list is truncated, otherwise the %list is
671 * extended and new elements are populated with given data.
672 */
673 void
674 resize(size_type __new_size, value_type __x = value_type());
675
676 // element access
677 /**
678 * Returns a read/write reference to the data at the first
679 * element of the %list.
680 */
681 reference
682 front()
683 { return *begin(); }
684
685 /**
686 * Returns a read-only (constant) reference to the data at the first
687 * element of the %list.
688 */
689 const_reference
690 front() const
691 { return *begin(); }
692
693 /**
694 * Returns a read/write reference to the data at the last element
695 * of the %list.
696 */
697 reference
698 back()
699 {
700 iterator __tmp = end();
701 --__tmp;
702 return *__tmp;
703 }
704
705 /**
706 * Returns a read-only (constant) reference to the data at the last
707 * element of the %list.
708 */
709 const_reference
710 back() const
711 {
712 const_iterator __tmp = end();
713 --__tmp;
714 return *__tmp;
715 }
716
717 // [23.2.2.3] modifiers
718 /**
719 * @brief Add data to the front of the %list.
720 * @param x Data to be added.
721 *
722 * This is a typical stack operation. The function creates an
723 * element at the front of the %list and assigns the given data
724 * to it. Due to the nature of a %list this operation can be
725 * done in constant time, and does not invalidate iterators and
726 * references.
727 */
728 void
729 push_front(const value_type& __x)
730 { this->_M_insert(begin(), __x); }
731
732 /**
733 * @brief Removes first element.
734 *
735 * This is a typical stack operation. It shrinks the %list by
736 * one. Due to the nature of a %list this operation can be done
737 * in constant time, and only invalidates iterators/references to
738 * the element being removed.
739 *
740 * Note that no data is returned, and if the first element's data
741 * is needed, it should be retrieved before pop_front() is
742 * called.
743 */
744 void
745 pop_front()
746 { this->_M_erase(begin()); }
747
748 /**
749 * @brief Add data to the end of the %list.
750 * @param x Data to be added.
751 *
752 * This is a typical stack operation. The function creates an
753 * element at the end of the %list and assigns the given data to
754 * it. Due to the nature of a %list this operation can be done
755 * in constant time, and does not invalidate iterators and
756 * references.
757 */
758 void
759 push_back(const value_type& __x)
760 { this->_M_insert(end(), __x); }
761
762 /**
763 * @brief Removes last element.
764 *
765 * This is a typical stack operation. It shrinks the %list by
766 * one. Due to the nature of a %list this operation can be done
767 * in constant time, and only invalidates iterators/references to
768 * the element being removed.
769 *
770 * Note that no data is returned, and if the last element's data
771 * is needed, it should be retrieved before pop_back() is called.
772 */
773 void
774 pop_back()
775 { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
776
777 /**
778 * @brief Inserts given value into %list before specified iterator.
779 * @param position An iterator into the %list.
780 * @param x Data to be inserted.
781 * @return An iterator that points to the inserted data.
782 *
783 * This function will insert a copy of the given value before
784 * the specified location. Due to the nature of a %list this
785 * operation can be done in constant time, and does not
786 * invalidate iterators and references.
787 */
788 iterator
789 insert(iterator __position, const value_type& __x);
790
791 /**
792 * @brief Inserts a number of copies of given data into the %list.
793 * @param position An iterator into the %list.
794 * @param n Number of elements to be inserted.
795 * @param x Data to be inserted.
796 *
797 * This function will insert a specified number of copies of the
798 * given data before the location specified by @a position.
799 *
800 * This operation is linear in the number of elements inserted and
801 * does not invalidate iterators and references.
802 */
803 void
804 insert(iterator __position, size_type __n, const value_type& __x)
805 {
806 list __tmp(__n, __x, get_allocator());
807 splice(__position, __tmp);
808 }
809
810 /**
811 * @brief Inserts a range into the %list.
812 * @param position An iterator into the %list.
813 * @param first An input iterator.
814 * @param last An input iterator.
815 *
816 * This function will insert copies of the data in the range [@a
817 * first,@a last) into the %list before the location specified by
818 * @a position.
819 *
820 * This operation is linear in the number of elements inserted and
821 * does not invalidate iterators and references.
822 */
823 template<typename _InputIterator>
824 void
825 insert(iterator __position, _InputIterator __first,
826 _InputIterator __last)
827 {
828 list __tmp(__first, __last, get_allocator());
829 splice(__position, __tmp);
830 }
831
832 /**
833 * @brief Remove element at given position.
834 * @param position Iterator pointing to element to be erased.
835 * @return An iterator pointing to the next element (or end()).
836 *
837 * This function will erase the element at the given position and thus
838 * shorten the %list by one.
839 *
840 * Due to the nature of a %list this operation can be done in
841 * constant time, and only invalidates iterators/references to
842 * the element being removed. The user is also cautioned that
843 * this function only erases the element, and that if the element
844 * is itself a pointer, the pointed-to memory is not touched in
845 * any way. Managing the pointer is the user's responsibilty.
846 */
847 iterator
848 erase(iterator __position);
849
850 /**
851 * @brief Remove a range of elements.
852 * @param first Iterator pointing to the first element to be erased.
853 * @param last Iterator pointing to one past the last element to be
854 * erased.
855 * @return An iterator pointing to the element pointed to by @a last
856 * prior to erasing (or end()).
857 *
858 * This function will erase the elements in the range @a
859 * [first,last) and shorten the %list accordingly.
860 *
861 * This operation is linear time in the size of the range and only
862 * invalidates iterators/references to the element being removed.
863 * The user is also cautioned that this function only erases the
864 * elements, and that if the elements themselves are pointers, the
865 * pointed-to memory is not touched in any way. Managing the pointer
866 * is the user's responsibilty.
867 */
868 iterator
869 erase(iterator __first, iterator __last)
870 {
871 while (__first != __last)
872 __first = erase(__first);
873 return __last;
874 }
875
876 /**
877 * @brief Swaps data with another %list.
878 * @param x A %list of the same element and allocator types.
879 *
880 * This exchanges the elements between two lists in constant
881 * time. Note that the global std::swap() function is
882 * specialized such that std::swap(l1,l2) will feed to this
883 * function.
884 */
885 void
886 swap(list& __x)
887 { _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node); }
888
889 /**
890 * Erases all the elements. Note that this function only erases
891 * the elements, and that if the elements themselves are
892 * pointers, the pointed-to memory is not touched in any way.
893 * Managing the pointer is the user's responsibilty.
894 */
895 void
896 clear()
897 {
898 _Base::_M_clear();
899 _Base::_M_init();
900 }
901
902 // [23.2.2.4] list operations
903 /**
904 * @brief Insert contents of another %list.
905 * @param position Iterator referencing the element to insert before.
906 * @param x Source list.
907 *
908 * The elements of @a x are inserted in constant time in front of
909 * the element referenced by @a position. @a x becomes an empty
910 * list.
911 */
912 void
913 splice(iterator __position, list& __x)
914 {
915 if (!__x.empty())
916 this->_M_transfer(__position, __x.begin(), __x.end());
917 }
918
919 /**
920 * @brief Insert element from another %list.
921 * @param position Iterator referencing the element to insert before.
922 * @param x Source list.
923 * @param i Iterator referencing the element to move.
924 *
925 * Removes the element in list @a x referenced by @a i and
926 * inserts it into the current list before @a position.
927 */
928 void
929 splice(iterator __position, list&, iterator __i)
930 {
931 iterator __j = __i;
932 ++__j;
933 if (__position == __i || __position == __j)
934 return;
935 this->_M_transfer(__position, __i, __j);
936 }
937
938 /**
939 * @brief Insert range from another %list.
940 * @param position Iterator referencing the element to insert before.
941 * @param x Source list.
942 * @param first Iterator referencing the start of range in x.
943 * @param last Iterator referencing the end of range in x.
944 *
945 * Removes elements in the range [first,last) and inserts them
946 * before @a position in constant time.
947 *
948 * Undefined if @a position is in [first,last).
949 */
950 void
951 splice(iterator __position, list&, iterator __first, iterator __last)
952 {
953 if (__first != __last)
954 this->_M_transfer(__position, __first, __last);
955 }
956
957 /**
958 * @brief Remove all elements equal to value.
959 * @param value The value to remove.
960 *
961 * Removes every element in the list equal to @a value.
962 * Remaining elements stay in list order. Note that this
963 * function only erases the elements, and that if the elements
964 * themselves are pointers, the pointed-to memory is not
965 * touched in any way. Managing the pointer is the user's
966 * responsibilty.
967 */
968 void
969 remove(const _Tp& __value);
970
971 /**
972 * @brief Remove all elements satisfying a predicate.
973 * @param Predicate Unary predicate function or object.
974 *
975 * Removes every element in the list for which the predicate
976 * returns true. Remaining elements stay in list order. Note
977 * that this function only erases the elements, and that if the
978 * elements themselves are pointers, the pointed-to memory is
979 * not touched in any way. Managing the pointer is the user's
980 * responsibilty.
981 */
982 template<typename _Predicate>
983 void
984 remove_if(_Predicate);
985
986 /**
987 * @brief Remove consecutive duplicate elements.
988 *
989 * For each consecutive set of elements with the same value,
990 * remove all but the first one. Remaining elements stay in
991 * list order. Note that this function only erases the
992 * elements, and that if the elements themselves are pointers,
993 * the pointed-to memory is not touched in any way. Managing
994 * the pointer is the user's responsibilty.
995 */
996 void
997 unique();
998
999 /**
1000 * @brief Remove consecutive elements satisfying a predicate.
1001 * @param BinaryPredicate Binary predicate function or object.
1002 *
1003 * For each consecutive set of elements [first,last) that
1004 * satisfy predicate(first,i) where i is an iterator in
1005 * [first,last), remove all but the first one. Remaining
1006 * elements stay in list order. Note that this function only
1007 * erases the elements, and that if the elements themselves are
1008 * pointers, the pointed-to memory is not touched in any way.
1009 * Managing the pointer is the user's responsibilty.
1010 */
1011 template<typename _BinaryPredicate>
1012 void
1013 unique(_BinaryPredicate);
1014
1015 /**
1016 * @brief Merge sorted lists.
1017 * @param x Sorted list to merge.
1018 *
1019 * Assumes that both @a x and this list are sorted according to
1020 * operator<(). Merges elements of @a x into this list in
1021 * sorted order, leaving @a x empty when complete. Elements in
1022 * this list precede elements in @a x that are equal.
1023 */
1024 void
1025 merge(list& __x);
1026
1027 /**
1028 * @brief Merge sorted lists according to comparison function.
1029 * @param x Sorted list to merge.
1030 * @param StrictWeakOrdering Comparison function definining
1031 * sort order.
1032 *
1033 * Assumes that both @a x and this list are sorted according to
1034 * StrictWeakOrdering. Merges elements of @a x into this list
1035 * in sorted order, leaving @a x empty when complete. Elements
1036 * in this list precede elements in @a x that are equivalent
1037 * according to StrictWeakOrdering().
1038 */
1039 template<typename _StrictWeakOrdering>
1040 void
1041 merge(list&, _StrictWeakOrdering);
1042
1043 /**
1044 * @brief Reverse the elements in list.
1045 *
1046 * Reverse the order of elements in the list in linear time.
1047 */
1048 void
1049 reverse()
1050 { this->_M_impl._M_node.reverse(); }
1051
1052 /**
1053 * @brief Sort the elements.
1054 *
1055 * Sorts the elements of this list in NlogN time. Equivalent
1056 * elements remain in list order.
1057 */
1058 void
1059 sort();
1060
1061 /**
1062 * @brief Sort the elements according to comparison function.
1063 *
1064 * Sorts the elements of this list in NlogN time. Equivalent
1065 * elements remain in list order.
1066 */
1067 template<typename _StrictWeakOrdering>
1068 void
1069 sort(_StrictWeakOrdering);
1070
1071 protected:
1072 // Internal constructor functions follow.
1073
1074 // Called by the range constructor to implement [23.1.1]/9
1075 template<typename _Integer>
1076 void
1077 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1078 {
1079 _M_fill_initialize(static_cast<size_type>(__n),
1080 static_cast<value_type>(__x));
1081 }
1082
1083 // Called by the range constructor to implement [23.1.1]/9
1084 template<typename _InputIterator>
1085 void
1086 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1087 __false_type)
1088 {
1089 for (; __first != __last; ++__first)
1090 push_back(*__first);
1091 }
1092
1093 // Called by list(n,v,a), and the range constructor when it turns out
1094 // to be the same thing.
1095 void
1096 _M_fill_initialize(size_type __n, const value_type& __x)
1097 {
1098 for (; __n > 0; --__n)
1099 push_back(__x);
1100 }
1101
1102
1103 // Internal assign functions follow.
1104
1105 // Called by the range assign to implement [23.1.1]/9
1106 template<typename _Integer>
1107 void
1108 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1109 {
1110 _M_fill_assign(static_cast<size_type>(__n),
1111 static_cast<value_type>(__val));
1112 }
1113
1114 // Called by the range assign to implement [23.1.1]/9
1115 template<typename _InputIterator>
1116 void
1117 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1118 __false_type);
1119
1120 // Called by assign(n,t), and the range assign when it turns out
1121 // to be the same thing.
1122 void
1123 _M_fill_assign(size_type __n, const value_type& __val);
1124
1125
1126 // Moves the elements from [first,last) before position.
1127 void
1128 _M_transfer(iterator __position, iterator __first, iterator __last)
1129 { __position._M_node->transfer(__first._M_node, __last._M_node); }
1130
1131 // Inserts new element at position given and with value given.
1132 void
1133 _M_insert(iterator __position, const value_type& __x)
1134 {
1135 _Node* __tmp = _M_create_node(__x);
1136 __tmp->hook(__position._M_node);
1137 }
1138
1139 // Erases element at position given.
1140 void
1141 _M_erase(iterator __position)
1142 {
1143 __position._M_node->unhook();
1144 _Node* __n = static_cast<_Node*>(__position._M_node);
1145 _M_get_Tp_allocator().destroy(&__n->_M_data);
1146 _M_put_node(__n);
1147 }
1148 };
1149
1150 /**
1151 * @brief List equality comparison.
1152 * @param x A %list.
1153 * @param y A %list of the same type as @a x.
1154 * @return True iff the size and elements of the lists are equal.
1155 *
1156 * This is an equivalence relation. It is linear in the size of
1157 * the lists. Lists are considered equivalent if their sizes are
1158 * equal, and if corresponding elements compare equal.
1159 */
1160 template<typename _Tp, typename _Alloc>
1161 inline bool
1162 operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1163 {
1164 typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
1165 const_iterator __end1 = __x.end();
1166 const_iterator __end2 = __y.end();
1167
1168 const_iterator __i1 = __x.begin();
1169 const_iterator __i2 = __y.begin();
1170 while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1171 {
1172 ++__i1;
1173 ++__i2;
1174 }
1175 return __i1 == __end1 && __i2 == __end2;
1176 }
1177
1178 /**
1179 * @brief List ordering relation.
1180 * @param x A %list.
1181 * @param y A %list of the same type as @a x.
1182 * @return True iff @a x is lexicographically less than @a y.
1183 *
1184 * This is a total ordering relation. It is linear in the size of the
1185 * lists. The elements must be comparable with @c <.
1186 *
1187 * See std::lexicographical_compare() for how the determination is made.
1188 */
1189 template<typename _Tp, typename _Alloc>
1190 inline bool
1191 operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1192 { return std::lexicographical_compare(__x.begin(), __x.end(),
1193 __y.begin(), __y.end()); }
1194
1195 /// Based on operator==
1196 template<typename _Tp, typename _Alloc>
1197 inline bool
1198 operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1199 { return !(__x == __y); }
1200
1201 /// Based on operator<
1202 template<typename _Tp, typename _Alloc>
1203 inline bool
1204 operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1205 { return __y < __x; }
1206
1207 /// Based on operator<
1208 template<typename _Tp, typename _Alloc>
1209 inline bool
1210 operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1211 { return !(__y < __x); }
1212
1213 /// Based on operator<
1214 template<typename _Tp, typename _Alloc>
1215 inline bool
1216 operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1217 { return !(__x < __y); }
1218
1219 /// See std::list::swap().
1220 template<typename _Tp, typename _Alloc>
1221 inline void
1222 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1223 { __x.swap(__y); }
1224
1225 _GLIBCXX_END_NESTED_NAMESPACE
1226
1227 #endif /* _LIST_H */
1228