[multiple changes]
[gcc.git] / libstdc++-v3 / include / bits / stl_list.h
1 // List implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 // USA.
21
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
30
31 /*
32 *
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
35 *
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation. Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose. It is provided "as is" without express or implied warranty.
43 *
44 *
45 * Copyright (c) 1996,1997
46 * Silicon Graphics Computer Systems, Inc.
47 *
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation. Silicon Graphics makes no
53 * representations about the suitability of this software for any
54 * purpose. It is provided "as is" without express or implied warranty.
55 */
56
57 /** @file stl_list.h
58 * This is an internal header file, included by other library headers.
59 * You should not attempt to use it directly.
60 */
61
62 #ifndef _STL_LIST_H
63 #define _STL_LIST_H 1
64
65 #include <bits/concept_check.h>
66
67 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
68
69 // Supporting structures are split into common and templated types; the
70 // latter publicly inherits from the former in an effort to reduce code
71 // duplication. This results in some "needless" static_cast'ing later on,
72 // but it's all safe downcasting.
73
74 /// Common part of a node in the %list.
75 struct _List_node_base
76 {
77 _List_node_base* _M_next;
78 _List_node_base* _M_prev;
79
80 static void
81 swap(_List_node_base& __x, _List_node_base& __y);
82
83 void
84 transfer(_List_node_base * const __first,
85 _List_node_base * const __last);
86
87 void
88 reverse();
89
90 void
91 hook(_List_node_base * const __position);
92
93 void
94 unhook();
95 };
96
97 /// An actual node in the %list.
98 template<typename _Tp>
99 struct _List_node : public _List_node_base
100 {
101 ///< User's data.
102 _Tp _M_data;
103 };
104
105 /**
106 * @brief A list::iterator.
107 *
108 * All the functions are op overloads.
109 */
110 template<typename _Tp>
111 struct _List_iterator
112 {
113 typedef _List_iterator<_Tp> _Self;
114 typedef _List_node<_Tp> _Node;
115
116 typedef ptrdiff_t difference_type;
117 typedef std::bidirectional_iterator_tag iterator_category;
118 typedef _Tp value_type;
119 typedef _Tp* pointer;
120 typedef _Tp& reference;
121
122 _List_iterator()
123 : _M_node() { }
124
125 explicit
126 _List_iterator(_List_node_base* __x)
127 : _M_node(__x) { }
128
129 // Must downcast from List_node_base to _List_node to get to _M_data.
130 reference
131 operator*() const
132 { return static_cast<_Node*>(_M_node)->_M_data; }
133
134 pointer
135 operator->() const
136 { return &static_cast<_Node*>(_M_node)->_M_data; }
137
138 _Self&
139 operator++()
140 {
141 _M_node = _M_node->_M_next;
142 return *this;
143 }
144
145 _Self
146 operator++(int)
147 {
148 _Self __tmp = *this;
149 _M_node = _M_node->_M_next;
150 return __tmp;
151 }
152
153 _Self&
154 operator--()
155 {
156 _M_node = _M_node->_M_prev;
157 return *this;
158 }
159
160 _Self
161 operator--(int)
162 {
163 _Self __tmp = *this;
164 _M_node = _M_node->_M_prev;
165 return __tmp;
166 }
167
168 bool
169 operator==(const _Self& __x) const
170 { return _M_node == __x._M_node; }
171
172 bool
173 operator!=(const _Self& __x) const
174 { return _M_node != __x._M_node; }
175
176 // The only member points to the %list element.
177 _List_node_base* _M_node;
178 };
179
180 /**
181 * @brief A list::const_iterator.
182 *
183 * All the functions are op overloads.
184 */
185 template<typename _Tp>
186 struct _List_const_iterator
187 {
188 typedef _List_const_iterator<_Tp> _Self;
189 typedef const _List_node<_Tp> _Node;
190 typedef _List_iterator<_Tp> iterator;
191
192 typedef ptrdiff_t difference_type;
193 typedef std::bidirectional_iterator_tag iterator_category;
194 typedef _Tp value_type;
195 typedef const _Tp* pointer;
196 typedef const _Tp& reference;
197
198 _List_const_iterator()
199 : _M_node() { }
200
201 explicit
202 _List_const_iterator(const _List_node_base* __x)
203 : _M_node(__x) { }
204
205 _List_const_iterator(const iterator& __x)
206 : _M_node(__x._M_node) { }
207
208 // Must downcast from List_node_base to _List_node to get to
209 // _M_data.
210 reference
211 operator*() const
212 { return static_cast<_Node*>(_M_node)->_M_data; }
213
214 pointer
215 operator->() const
216 { return &static_cast<_Node*>(_M_node)->_M_data; }
217
218 _Self&
219 operator++()
220 {
221 _M_node = _M_node->_M_next;
222 return *this;
223 }
224
225 _Self
226 operator++(int)
227 {
228 _Self __tmp = *this;
229 _M_node = _M_node->_M_next;
230 return __tmp;
231 }
232
233 _Self&
234 operator--()
235 {
236 _M_node = _M_node->_M_prev;
237 return *this;
238 }
239
240 _Self
241 operator--(int)
242 {
243 _Self __tmp = *this;
244 _M_node = _M_node->_M_prev;
245 return __tmp;
246 }
247
248 bool
249 operator==(const _Self& __x) const
250 { return _M_node == __x._M_node; }
251
252 bool
253 operator!=(const _Self& __x) const
254 { return _M_node != __x._M_node; }
255
256 // The only member points to the %list element.
257 const _List_node_base* _M_node;
258 };
259
260 template<typename _Val>
261 inline bool
262 operator==(const _List_iterator<_Val>& __x,
263 const _List_const_iterator<_Val>& __y)
264 { return __x._M_node == __y._M_node; }
265
266 template<typename _Val>
267 inline bool
268 operator!=(const _List_iterator<_Val>& __x,
269 const _List_const_iterator<_Val>& __y)
270 { return __x._M_node != __y._M_node; }
271
272
273 /// See bits/stl_deque.h's _Deque_base for an explanation.
274 template<typename _Tp, typename _Alloc>
275 class _List_base
276 {
277 protected:
278 // NOTA BENE
279 // The stored instance is not actually of "allocator_type"'s
280 // type. Instead we rebind the type to
281 // Allocator<List_node<Tp>>, which according to [20.1.5]/4
282 // should probably be the same. List_node<Tp> is not the same
283 // size as Tp (it's two pointers larger), and specializations on
284 // Tp may go unused because List_node<Tp> is being bound
285 // instead.
286 //
287 // We put this to the test in the constructors and in
288 // get_allocator, where we use conversions between
289 // allocator_type and _Node_alloc_type. The conversion is
290 // required by table 32 in [20.1.5].
291 typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
292 _Node_alloc_type;
293
294 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
295
296 struct _List_impl
297 : public _Node_alloc_type
298 {
299 _List_node_base _M_node;
300
301 _List_impl()
302 : _Node_alloc_type(), _M_node()
303 { }
304
305 _List_impl(const _Node_alloc_type& __a)
306 : _Node_alloc_type(__a), _M_node()
307 { }
308 };
309
310 _List_impl _M_impl;
311
312 _List_node<_Tp>*
313 _M_get_node()
314 { return _M_impl._Node_alloc_type::allocate(1); }
315
316 void
317 _M_put_node(_List_node<_Tp>* __p)
318 { _M_impl._Node_alloc_type::deallocate(__p, 1); }
319
320 public:
321 typedef _Alloc allocator_type;
322
323 _Node_alloc_type&
324 _M_get_Node_allocator()
325 { return *static_cast<_Node_alloc_type*>(&this->_M_impl); }
326
327 const _Node_alloc_type&
328 _M_get_Node_allocator() const
329 { return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
330
331 _Tp_alloc_type
332 _M_get_Tp_allocator() const
333 { return _Tp_alloc_type(_M_get_Node_allocator()); }
334
335 allocator_type
336 get_allocator() const
337 { return allocator_type(_M_get_Node_allocator()); }
338
339 _List_base()
340 : _M_impl()
341 { _M_init(); }
342
343 _List_base(const allocator_type& __a)
344 : _M_impl(__a)
345 { _M_init(); }
346
347 #ifdef __GXX_EXPERIMENTAL_CXX0X__
348 _List_base(_List_base&& __x)
349 : _M_impl(__x._M_get_Node_allocator())
350 {
351 _M_init();
352 _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node);
353 }
354 #endif
355
356 // This is what actually destroys the list.
357 ~_List_base()
358 { _M_clear(); }
359
360 void
361 _M_clear();
362
363 void
364 _M_init()
365 {
366 this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
367 this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
368 }
369 };
370
371 /**
372 * @brief A standard container with linear time access to elements,
373 * and fixed time insertion/deletion at any point in the sequence.
374 *
375 * @ingroup Containers
376 * @ingroup Sequences
377 *
378 * Meets the requirements of a <a href="tables.html#65">container</a>, a
379 * <a href="tables.html#66">reversible container</a>, and a
380 * <a href="tables.html#67">sequence</a>, including the
381 * <a href="tables.html#68">optional sequence requirements</a> with the
382 * %exception of @c at and @c operator[].
383 *
384 * This is a @e doubly @e linked %list. Traversal up and down the
385 * %list requires linear time, but adding and removing elements (or
386 * @e nodes) is done in constant time, regardless of where the
387 * change takes place. Unlike std::vector and std::deque,
388 * random-access iterators are not provided, so subscripting ( @c
389 * [] ) access is not allowed. For algorithms which only need
390 * sequential access, this lack makes no difference.
391 *
392 * Also unlike the other standard containers, std::list provides
393 * specialized algorithms %unique to linked lists, such as
394 * splicing, sorting, and in-place reversal.
395 *
396 * A couple points on memory allocation for list<Tp>:
397 *
398 * First, we never actually allocate a Tp, we allocate
399 * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
400 * that after elements from %list<X,Alloc1> are spliced into
401 * %list<X,Alloc2>, destroying the memory of the second %list is a
402 * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
403 *
404 * Second, a %list conceptually represented as
405 * @code
406 * A <---> B <---> C <---> D
407 * @endcode
408 * is actually circular; a link exists between A and D. The %list
409 * class holds (as its only data member) a private list::iterator
410 * pointing to @e D, not to @e A! To get to the head of the %list,
411 * we start at the tail and move forward by one. When this member
412 * iterator's next/previous pointers refer to itself, the %list is
413 * %empty.
414 */
415 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
416 class list : protected _List_base<_Tp, _Alloc>
417 {
418 // concept requirements
419 typedef typename _Alloc::value_type _Alloc_value_type;
420 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
421 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
422
423 typedef _List_base<_Tp, _Alloc> _Base;
424 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
425
426 public:
427 typedef _Tp value_type;
428 typedef typename _Tp_alloc_type::pointer pointer;
429 typedef typename _Tp_alloc_type::const_pointer const_pointer;
430 typedef typename _Tp_alloc_type::reference reference;
431 typedef typename _Tp_alloc_type::const_reference const_reference;
432 typedef _List_iterator<_Tp> iterator;
433 typedef _List_const_iterator<_Tp> const_iterator;
434 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
435 typedef std::reverse_iterator<iterator> reverse_iterator;
436 typedef size_t size_type;
437 typedef ptrdiff_t difference_type;
438 typedef _Alloc allocator_type;
439
440 protected:
441 // Note that pointers-to-_Node's can be ctor-converted to
442 // iterator types.
443 typedef _List_node<_Tp> _Node;
444
445 using _Base::_M_impl;
446 using _Base::_M_put_node;
447 using _Base::_M_get_node;
448 using _Base::_M_get_Tp_allocator;
449 using _Base::_M_get_Node_allocator;
450
451 /**
452 * @param x An instance of user data.
453 *
454 * Allocates space for a new node and constructs a copy of @a x in it.
455 */
456 #ifndef __GXX_EXPERIMENTAL_CXX0X__
457 _Node*
458 _M_create_node(const value_type& __x)
459 {
460 _Node* __p = this->_M_get_node();
461 try
462 {
463 _M_get_Tp_allocator().construct(&__p->_M_data, __x);
464 }
465 catch(...)
466 {
467 _M_put_node(__p);
468 __throw_exception_again;
469 }
470 return __p;
471 }
472 #else
473 template<typename... _Args>
474 _Node*
475 _M_create_node(_Args&&... __args)
476 {
477 _Node* __p = this->_M_get_node();
478 try
479 {
480 _M_get_Tp_allocator().construct(&__p->_M_data,
481 std::forward<_Args>(__args)...);
482 }
483 catch(...)
484 {
485 _M_put_node(__p);
486 __throw_exception_again;
487 }
488 return __p;
489 }
490 #endif
491
492 public:
493 // [23.2.2.1] construct/copy/destroy
494 // (assign() and get_allocator() are also listed in this section)
495 /**
496 * @brief Default constructor creates no elements.
497 */
498 list()
499 : _Base() { }
500
501 /**
502 * @brief Creates a %list with no elements.
503 * @param a An allocator object.
504 */
505 explicit
506 list(const allocator_type& __a)
507 : _Base(__a) { }
508
509 /**
510 * @brief Creates a %list with copies of an exemplar element.
511 * @param n The number of elements to initially create.
512 * @param value An element to copy.
513 * @param a An allocator object.
514 *
515 * This constructor fills the %list with @a n copies of @a value.
516 */
517 explicit
518 list(size_type __n, const value_type& __value = value_type(),
519 const allocator_type& __a = allocator_type())
520 : _Base(__a)
521 { _M_fill_initialize(__n, __value); }
522
523 /**
524 * @brief %List copy constructor.
525 * @param x A %list of identical element and allocator types.
526 *
527 * The newly-created %list uses a copy of the allocation object used
528 * by @a x.
529 */
530 list(const list& __x)
531 : _Base(__x._M_get_Node_allocator())
532 { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
533
534 #ifdef __GXX_EXPERIMENTAL_CXX0X__
535 /**
536 * @brief %List move constructor.
537 * @param x A %list of identical element and allocator types.
538 *
539 * The newly-created %list contains the exact contents of @a x.
540 * The contents of @a x are a valid, but unspecified %list.
541 */
542 list(list&& __x)
543 : _Base(std::forward<_Base>(__x)) { }
544 #endif
545
546 /**
547 * @brief Builds a %list from a range.
548 * @param first An input iterator.
549 * @param last An input iterator.
550 * @param a An allocator object.
551 *
552 * Create a %list consisting of copies of the elements from
553 * [@a first,@a last). This is linear in N (where N is
554 * distance(@a first,@a last)).
555 */
556 template<typename _InputIterator>
557 list(_InputIterator __first, _InputIterator __last,
558 const allocator_type& __a = allocator_type())
559 : _Base(__a)
560 {
561 // Check whether it's an integral type. If so, it's not an iterator.
562 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
563 _M_initialize_dispatch(__first, __last, _Integral());
564 }
565
566 /**
567 * No explicit dtor needed as the _Base dtor takes care of
568 * things. The _Base dtor only erases the elements, and note
569 * that if the elements themselves are pointers, the pointed-to
570 * memory is not touched in any way. Managing the pointer is
571 * the user's responsibilty.
572 */
573
574 /**
575 * @brief %List assignment operator.
576 * @param x A %list of identical element and allocator types.
577 *
578 * All the elements of @a x are copied, but unlike the copy
579 * constructor, the allocator object is not copied.
580 */
581 list&
582 operator=(const list& __x);
583
584 #ifdef __GXX_EXPERIMENTAL_CXX0X__
585 /**
586 * @brief %List move assignment operator.
587 * @param x A %list of identical element and allocator types.
588 *
589 * The contents of @a x are moved into this %list (without copying).
590 * @a x is a valid, but unspecified %list
591 */
592 list&
593 operator=(list&& __x)
594 {
595 // NB: DR 675.
596 this->clear();
597 this->swap(__x);
598 return *this;
599 }
600 #endif
601
602 /**
603 * @brief Assigns a given value to a %list.
604 * @param n Number of elements to be assigned.
605 * @param val Value to be assigned.
606 *
607 * This function fills a %list with @a n copies of the given
608 * value. Note that the assignment completely changes the %list
609 * and that the resulting %list's size is the same as the number
610 * of elements assigned. Old data may be lost.
611 */
612 void
613 assign(size_type __n, const value_type& __val)
614 { _M_fill_assign(__n, __val); }
615
616 /**
617 * @brief Assigns a range to a %list.
618 * @param first An input iterator.
619 * @param last An input iterator.
620 *
621 * This function fills a %list with copies of the elements in the
622 * range [@a first,@a last).
623 *
624 * Note that the assignment completely changes the %list and
625 * that the resulting %list's size is the same as the number of
626 * elements assigned. Old data may be lost.
627 */
628 template<typename _InputIterator>
629 void
630 assign(_InputIterator __first, _InputIterator __last)
631 {
632 // Check whether it's an integral type. If so, it's not an iterator.
633 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
634 _M_assign_dispatch(__first, __last, _Integral());
635 }
636
637 /// Get a copy of the memory allocation object.
638 allocator_type
639 get_allocator() const
640 { return _Base::get_allocator(); }
641
642 // iterators
643 /**
644 * Returns a read/write iterator that points to the first element in the
645 * %list. Iteration is done in ordinary element order.
646 */
647 iterator
648 begin()
649 { return iterator(this->_M_impl._M_node._M_next); }
650
651 /**
652 * Returns a read-only (constant) iterator that points to the
653 * first element in the %list. Iteration is done in ordinary
654 * element order.
655 */
656 const_iterator
657 begin() const
658 { return const_iterator(this->_M_impl._M_node._M_next); }
659
660 /**
661 * Returns a read/write iterator that points one past the last
662 * element in the %list. Iteration is done in ordinary element
663 * order.
664 */
665 iterator
666 end()
667 { return iterator(&this->_M_impl._M_node); }
668
669 /**
670 * Returns a read-only (constant) iterator that points one past
671 * the last element in the %list. Iteration is done in ordinary
672 * element order.
673 */
674 const_iterator
675 end() const
676 { return const_iterator(&this->_M_impl._M_node); }
677
678 /**
679 * Returns a read/write reverse iterator that points to the last
680 * element in the %list. Iteration is done in reverse element
681 * order.
682 */
683 reverse_iterator
684 rbegin()
685 { return reverse_iterator(end()); }
686
687 /**
688 * Returns a read-only (constant) reverse iterator that points to
689 * the last element in the %list. Iteration is done in reverse
690 * element order.
691 */
692 const_reverse_iterator
693 rbegin() const
694 { return const_reverse_iterator(end()); }
695
696 /**
697 * Returns a read/write reverse iterator that points to one
698 * before the first element in the %list. Iteration is done in
699 * reverse element order.
700 */
701 reverse_iterator
702 rend()
703 { return reverse_iterator(begin()); }
704
705 /**
706 * Returns a read-only (constant) reverse iterator that points to one
707 * before the first element in the %list. Iteration is done in reverse
708 * element order.
709 */
710 const_reverse_iterator
711 rend() const
712 { return const_reverse_iterator(begin()); }
713
714 #ifdef __GXX_EXPERIMENTAL_CXX0X__
715 /**
716 * Returns a read-only (constant) iterator that points to the
717 * first element in the %list. Iteration is done in ordinary
718 * element order.
719 */
720 const_iterator
721 cbegin() const
722 { return const_iterator(this->_M_impl._M_node._M_next); }
723
724 /**
725 * Returns a read-only (constant) iterator that points one past
726 * the last element in the %list. Iteration is done in ordinary
727 * element order.
728 */
729 const_iterator
730 cend() const
731 { return const_iterator(&this->_M_impl._M_node); }
732
733 /**
734 * Returns a read-only (constant) reverse iterator that points to
735 * the last element in the %list. Iteration is done in reverse
736 * element order.
737 */
738 const_reverse_iterator
739 crbegin() const
740 { return const_reverse_iterator(end()); }
741
742 /**
743 * Returns a read-only (constant) reverse iterator that points to one
744 * before the first element in the %list. Iteration is done in reverse
745 * element order.
746 */
747 const_reverse_iterator
748 crend() const
749 { return const_reverse_iterator(begin()); }
750 #endif
751
752 // [23.2.2.2] capacity
753 /**
754 * Returns true if the %list is empty. (Thus begin() would equal
755 * end().)
756 */
757 bool
758 empty() const
759 { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
760
761 /** Returns the number of elements in the %list. */
762 size_type
763 size() const
764 { return std::distance(begin(), end()); }
765
766 /** Returns the size() of the largest possible %list. */
767 size_type
768 max_size() const
769 { return _M_get_Tp_allocator().max_size(); }
770
771 /**
772 * @brief Resizes the %list to the specified number of elements.
773 * @param new_size Number of elements the %list should contain.
774 * @param x Data with which new elements should be populated.
775 *
776 * This function will %resize the %list to the specified number
777 * of elements. If the number is smaller than the %list's
778 * current size the %list is truncated, otherwise the %list is
779 * extended and new elements are populated with given data.
780 */
781 void
782 resize(size_type __new_size, value_type __x = value_type());
783
784 // element access
785 /**
786 * Returns a read/write reference to the data at the first
787 * element of the %list.
788 */
789 reference
790 front()
791 { return *begin(); }
792
793 /**
794 * Returns a read-only (constant) reference to the data at the first
795 * element of the %list.
796 */
797 const_reference
798 front() const
799 { return *begin(); }
800
801 /**
802 * Returns a read/write reference to the data at the last element
803 * of the %list.
804 */
805 reference
806 back()
807 {
808 iterator __tmp = end();
809 --__tmp;
810 return *__tmp;
811 }
812
813 /**
814 * Returns a read-only (constant) reference to the data at the last
815 * element of the %list.
816 */
817 const_reference
818 back() const
819 {
820 const_iterator __tmp = end();
821 --__tmp;
822 return *__tmp;
823 }
824
825 // [23.2.2.3] modifiers
826 /**
827 * @brief Add data to the front of the %list.
828 * @param x Data to be added.
829 *
830 * This is a typical stack operation. The function creates an
831 * element at the front of the %list and assigns the given data
832 * to it. Due to the nature of a %list this operation can be
833 * done in constant time, and does not invalidate iterators and
834 * references.
835 */
836 #ifndef __GXX_EXPERIMENTAL_CXX0X__
837 void
838 push_front(const value_type& __x)
839 { this->_M_insert(begin(), __x); }
840 #else
841 template<typename... _Args>
842 void
843 push_front(_Args&&... __args)
844 { this->_M_insert(begin(), std::forward<_Args>(__args)...); }
845 #endif
846
847 /**
848 * @brief Removes first element.
849 *
850 * This is a typical stack operation. It shrinks the %list by
851 * one. Due to the nature of a %list this operation can be done
852 * in constant time, and only invalidates iterators/references to
853 * the element being removed.
854 *
855 * Note that no data is returned, and if the first element's data
856 * is needed, it should be retrieved before pop_front() is
857 * called.
858 */
859 void
860 pop_front()
861 { this->_M_erase(begin()); }
862
863 /**
864 * @brief Add data to the end of the %list.
865 * @param x Data to be added.
866 *
867 * This is a typical stack operation. The function creates an
868 * element at the end of the %list and assigns the given data to
869 * it. Due to the nature of a %list this operation can be done
870 * in constant time, and does not invalidate iterators and
871 * references.
872 */
873 #ifndef __GXX_EXPERIMENTAL_CXX0X__
874 void
875 push_back(const value_type& __x)
876 { this->_M_insert(end(), __x); }
877 #else
878 template<typename... _Args>
879 void
880 push_back(_Args&&... __args)
881 { this->_M_insert(end(), std::forward<_Args>(__args)...); }
882 #endif
883
884 /**
885 * @brief Removes last element.
886 *
887 * This is a typical stack operation. It shrinks the %list by
888 * one. Due to the nature of a %list this operation can be done
889 * in constant time, and only invalidates iterators/references to
890 * the element being removed.
891 *
892 * Note that no data is returned, and if the last element's data
893 * is needed, it should be retrieved before pop_back() is called.
894 */
895 void
896 pop_back()
897 { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
898
899 #ifdef __GXX_EXPERIMENTAL_CXX0X__
900 /**
901 * @brief Constructs object in %list before specified iterator.
902 * @param position A const_iterator into the %list.
903 * @param args Arguments.
904 * @return An iterator that points to the inserted data.
905 *
906 * This function will insert an object of type T constructed
907 * with T(std::forward<Args>(args)...) before the specified
908 * location. Due to the nature of a %list this operation can
909 * be done in constant time, and does not invalidate iterators
910 * and references.
911 */
912 template<typename... _Args>
913 iterator
914 emplace(iterator __position, _Args&&... __args);
915 #endif
916
917 /**
918 * @brief Inserts given value into %list before specified iterator.
919 * @param position An iterator into the %list.
920 * @param x Data to be inserted.
921 * @return An iterator that points to the inserted data.
922 *
923 * This function will insert a copy of the given value before
924 * the specified location. Due to the nature of a %list this
925 * operation can be done in constant time, and does not
926 * invalidate iterators and references.
927 */
928 iterator
929 insert(iterator __position, const value_type& __x);
930
931 #ifdef __GXX_EXPERIMENTAL_CXX0X__
932 /**
933 * @brief Inserts given rvalue into %list before specified iterator.
934 * @param position An iterator into the %list.
935 * @param x Data to be inserted.
936 * @return An iterator that points to the inserted data.
937 *
938 * This function will insert a copy of the given rvalue before
939 * the specified location. Due to the nature of a %list this
940 * operation can be done in constant time, and does not
941 * invalidate iterators and references.
942 */
943 iterator
944 insert(iterator __position, value_type&& __x)
945 { return emplace(__position, std::move(__x)); }
946 #endif
947
948 /**
949 * @brief Inserts a number of copies of given data into the %list.
950 * @param position An iterator into the %list.
951 * @param n Number of elements to be inserted.
952 * @param x Data to be inserted.
953 *
954 * This function will insert a specified number of copies of the
955 * given data before the location specified by @a position.
956 *
957 * This operation is linear in the number of elements inserted and
958 * does not invalidate iterators and references.
959 */
960 void
961 insert(iterator __position, size_type __n, const value_type& __x)
962 {
963 list __tmp(__n, __x, _M_get_Node_allocator());
964 splice(__position, __tmp);
965 }
966
967 /**
968 * @brief Inserts a range into the %list.
969 * @param position An iterator into the %list.
970 * @param first An input iterator.
971 * @param last An input iterator.
972 *
973 * This function will insert copies of the data in the range [@a
974 * first,@a last) into the %list before the location specified by
975 * @a position.
976 *
977 * This operation is linear in the number of elements inserted and
978 * does not invalidate iterators and references.
979 */
980 template<typename _InputIterator>
981 void
982 insert(iterator __position, _InputIterator __first,
983 _InputIterator __last)
984 {
985 list __tmp(__first, __last, _M_get_Node_allocator());
986 splice(__position, __tmp);
987 }
988
989 /**
990 * @brief Remove element at given position.
991 * @param position Iterator pointing to element to be erased.
992 * @return An iterator pointing to the next element (or end()).
993 *
994 * This function will erase the element at the given position and thus
995 * shorten the %list by one.
996 *
997 * Due to the nature of a %list this operation can be done in
998 * constant time, and only invalidates iterators/references to
999 * the element being removed. The user is also cautioned that
1000 * this function only erases the element, and that if the element
1001 * is itself a pointer, the pointed-to memory is not touched in
1002 * any way. Managing the pointer is the user's responsibilty.
1003 */
1004 iterator
1005 erase(iterator __position);
1006
1007 /**
1008 * @brief Remove a range of elements.
1009 * @param first Iterator pointing to the first element to be erased.
1010 * @param last Iterator pointing to one past the last element to be
1011 * erased.
1012 * @return An iterator pointing to the element pointed to by @a last
1013 * prior to erasing (or end()).
1014 *
1015 * This function will erase the elements in the range @a
1016 * [first,last) and shorten the %list accordingly.
1017 *
1018 * This operation is linear time in the size of the range and only
1019 * invalidates iterators/references to the element being removed.
1020 * The user is also cautioned that this function only erases the
1021 * elements, and that if the elements themselves are pointers, the
1022 * pointed-to memory is not touched in any way. Managing the pointer
1023 * is the user's responsibilty.
1024 */
1025 iterator
1026 erase(iterator __first, iterator __last)
1027 {
1028 while (__first != __last)
1029 __first = erase(__first);
1030 return __last;
1031 }
1032
1033 /**
1034 * @brief Swaps data with another %list.
1035 * @param x A %list of the same element and allocator types.
1036 *
1037 * This exchanges the elements between two lists in constant
1038 * time. Note that the global std::swap() function is
1039 * specialized such that std::swap(l1,l2) will feed to this
1040 * function.
1041 */
1042 void
1043 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1044 swap(list&& __x)
1045 #else
1046 swap(list& __x)
1047 #endif
1048 {
1049 _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node);
1050
1051 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1052 // 431. Swapping containers with unequal allocators.
1053 std::__alloc_swap<typename _Base::_Node_alloc_type>::
1054 _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator());
1055 }
1056
1057 /**
1058 * Erases all the elements. Note that this function only erases
1059 * the elements, and that if the elements themselves are
1060 * pointers, the pointed-to memory is not touched in any way.
1061 * Managing the pointer is the user's responsibilty.
1062 */
1063 void
1064 clear()
1065 {
1066 _Base::_M_clear();
1067 _Base::_M_init();
1068 }
1069
1070 // [23.2.2.4] list operations
1071 /**
1072 * @brief Insert contents of another %list.
1073 * @param position Iterator referencing the element to insert before.
1074 * @param x Source list.
1075 *
1076 * The elements of @a x are inserted in constant time in front of
1077 * the element referenced by @a position. @a x becomes an empty
1078 * list.
1079 *
1080 * Requires this != @a x.
1081 */
1082 void
1083 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1084 splice(iterator __position, list&& __x)
1085 #else
1086 splice(iterator __position, list& __x)
1087 #endif
1088 {
1089 if (!__x.empty())
1090 {
1091 _M_check_equal_allocators(__x);
1092
1093 this->_M_transfer(__position, __x.begin(), __x.end());
1094 }
1095 }
1096
1097 /**
1098 * @brief Insert element from another %list.
1099 * @param position Iterator referencing the element to insert before.
1100 * @param x Source list.
1101 * @param i Iterator referencing the element to move.
1102 *
1103 * Removes the element in list @a x referenced by @a i and
1104 * inserts it into the current list before @a position.
1105 */
1106 void
1107 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1108 splice(iterator __position, list&& __x, iterator __i)
1109 #else
1110 splice(iterator __position, list& __x, iterator __i)
1111 #endif
1112 {
1113 iterator __j = __i;
1114 ++__j;
1115 if (__position == __i || __position == __j)
1116 return;
1117
1118 if (this != &__x)
1119 _M_check_equal_allocators(__x);
1120
1121 this->_M_transfer(__position, __i, __j);
1122 }
1123
1124 /**
1125 * @brief Insert range from another %list.
1126 * @param position Iterator referencing the element to insert before.
1127 * @param x Source list.
1128 * @param first Iterator referencing the start of range in x.
1129 * @param last Iterator referencing the end of range in x.
1130 *
1131 * Removes elements in the range [first,last) and inserts them
1132 * before @a position in constant time.
1133 *
1134 * Undefined if @a position is in [first,last).
1135 */
1136 void
1137 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1138 splice(iterator __position, list&& __x, iterator __first,
1139 iterator __last)
1140 #else
1141 splice(iterator __position, list& __x, iterator __first,
1142 iterator __last)
1143 #endif
1144 {
1145 if (__first != __last)
1146 {
1147 if (this != &__x)
1148 _M_check_equal_allocators(__x);
1149
1150 this->_M_transfer(__position, __first, __last);
1151 }
1152 }
1153
1154 /**
1155 * @brief Remove all elements equal to value.
1156 * @param value The value to remove.
1157 *
1158 * Removes every element in the list equal to @a value.
1159 * Remaining elements stay in list order. Note that this
1160 * function only erases the elements, and that if the elements
1161 * themselves are pointers, the pointed-to memory is not
1162 * touched in any way. Managing the pointer is the user's
1163 * responsibilty.
1164 */
1165 void
1166 remove(const _Tp& __value);
1167
1168 /**
1169 * @brief Remove all elements satisfying a predicate.
1170 * @param Predicate Unary predicate function or object.
1171 *
1172 * Removes every element in the list for which the predicate
1173 * returns true. Remaining elements stay in list order. Note
1174 * that this function only erases the elements, and that if the
1175 * elements themselves are pointers, the pointed-to memory is
1176 * not touched in any way. Managing the pointer is the user's
1177 * responsibilty.
1178 */
1179 template<typename _Predicate>
1180 void
1181 remove_if(_Predicate);
1182
1183 /**
1184 * @brief Remove consecutive duplicate elements.
1185 *
1186 * For each consecutive set of elements with the same value,
1187 * remove all but the first one. Remaining elements stay in
1188 * list order. Note that this function only erases the
1189 * elements, and that if the elements themselves are pointers,
1190 * the pointed-to memory is not touched in any way. Managing
1191 * the pointer is the user's responsibilty.
1192 */
1193 void
1194 unique();
1195
1196 /**
1197 * @brief Remove consecutive elements satisfying a predicate.
1198 * @param BinaryPredicate Binary predicate function or object.
1199 *
1200 * For each consecutive set of elements [first,last) that
1201 * satisfy predicate(first,i) where i is an iterator in
1202 * [first,last), remove all but the first one. Remaining
1203 * elements stay in list order. Note that this function only
1204 * erases the elements, and that if the elements themselves are
1205 * pointers, the pointed-to memory is not touched in any way.
1206 * Managing the pointer is the user's responsibilty.
1207 */
1208 template<typename _BinaryPredicate>
1209 void
1210 unique(_BinaryPredicate);
1211
1212 /**
1213 * @brief Merge sorted lists.
1214 * @param x Sorted list to merge.
1215 *
1216 * Assumes that both @a x and this list are sorted according to
1217 * operator<(). Merges elements of @a x into this list in
1218 * sorted order, leaving @a x empty when complete. Elements in
1219 * this list precede elements in @a x that are equal.
1220 */
1221 void
1222 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1223 merge(list&& __x);
1224 #else
1225 merge(list& __x);
1226 #endif
1227
1228 /**
1229 * @brief Merge sorted lists according to comparison function.
1230 * @param x Sorted list to merge.
1231 * @param StrictWeakOrdering Comparison function definining
1232 * sort order.
1233 *
1234 * Assumes that both @a x and this list are sorted according to
1235 * StrictWeakOrdering. Merges elements of @a x into this list
1236 * in sorted order, leaving @a x empty when complete. Elements
1237 * in this list precede elements in @a x that are equivalent
1238 * according to StrictWeakOrdering().
1239 */
1240 template<typename _StrictWeakOrdering>
1241 void
1242 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1243 merge(list&&, _StrictWeakOrdering);
1244 #else
1245 merge(list&, _StrictWeakOrdering);
1246 #endif
1247
1248 /**
1249 * @brief Reverse the elements in list.
1250 *
1251 * Reverse the order of elements in the list in linear time.
1252 */
1253 void
1254 reverse()
1255 { this->_M_impl._M_node.reverse(); }
1256
1257 /**
1258 * @brief Sort the elements.
1259 *
1260 * Sorts the elements of this list in NlogN time. Equivalent
1261 * elements remain in list order.
1262 */
1263 void
1264 sort();
1265
1266 /**
1267 * @brief Sort the elements according to comparison function.
1268 *
1269 * Sorts the elements of this list in NlogN time. Equivalent
1270 * elements remain in list order.
1271 */
1272 template<typename _StrictWeakOrdering>
1273 void
1274 sort(_StrictWeakOrdering);
1275
1276 protected:
1277 // Internal constructor functions follow.
1278
1279 // Called by the range constructor to implement [23.1.1]/9
1280
1281 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1282 // 438. Ambiguity in the "do the right thing" clause
1283 template<typename _Integer>
1284 void
1285 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1286 { _M_fill_initialize(static_cast<size_type>(__n), __x); }
1287
1288 // Called by the range constructor to implement [23.1.1]/9
1289 template<typename _InputIterator>
1290 void
1291 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1292 __false_type)
1293 {
1294 for (; __first != __last; ++__first)
1295 push_back(*__first);
1296 }
1297
1298 // Called by list(n,v,a), and the range constructor when it turns out
1299 // to be the same thing.
1300 void
1301 _M_fill_initialize(size_type __n, const value_type& __x)
1302 {
1303 for (; __n > 0; --__n)
1304 push_back(__x);
1305 }
1306
1307
1308 // Internal assign functions follow.
1309
1310 // Called by the range assign to implement [23.1.1]/9
1311
1312 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1313 // 438. Ambiguity in the "do the right thing" clause
1314 template<typename _Integer>
1315 void
1316 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1317 { _M_fill_assign(__n, __val); }
1318
1319 // Called by the range assign to implement [23.1.1]/9
1320 template<typename _InputIterator>
1321 void
1322 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1323 __false_type);
1324
1325 // Called by assign(n,t), and the range assign when it turns out
1326 // to be the same thing.
1327 void
1328 _M_fill_assign(size_type __n, const value_type& __val);
1329
1330
1331 // Moves the elements from [first,last) before position.
1332 void
1333 _M_transfer(iterator __position, iterator __first, iterator __last)
1334 { __position._M_node->transfer(__first._M_node, __last._M_node); }
1335
1336 // Inserts new element at position given and with value given.
1337 #ifndef __GXX_EXPERIMENTAL_CXX0X__
1338 void
1339 _M_insert(iterator __position, const value_type& __x)
1340 {
1341 _Node* __tmp = _M_create_node(__x);
1342 __tmp->hook(__position._M_node);
1343 }
1344 #else
1345 template<typename... _Args>
1346 void
1347 _M_insert(iterator __position, _Args&&... __args)
1348 {
1349 _Node* __tmp = _M_create_node(std::forward<_Args>(__args)...);
1350 __tmp->hook(__position._M_node);
1351 }
1352 #endif
1353
1354 // Erases element at position given.
1355 void
1356 _M_erase(iterator __position)
1357 {
1358 __position._M_node->unhook();
1359 _Node* __n = static_cast<_Node*>(__position._M_node);
1360 _M_get_Tp_allocator().destroy(&__n->_M_data);
1361 _M_put_node(__n);
1362 }
1363
1364 // To implement the splice (and merge) bits of N1599.
1365 void
1366 _M_check_equal_allocators(list& __x)
1367 {
1368 if (std::__alloc_neq<typename _Base::_Node_alloc_type>::
1369 _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator()))
1370 __throw_runtime_error(__N("list::_M_check_equal_allocators"));
1371 }
1372 };
1373
1374 /**
1375 * @brief List equality comparison.
1376 * @param x A %list.
1377 * @param y A %list of the same type as @a x.
1378 * @return True iff the size and elements of the lists are equal.
1379 *
1380 * This is an equivalence relation. It is linear in the size of
1381 * the lists. Lists are considered equivalent if their sizes are
1382 * equal, and if corresponding elements compare equal.
1383 */
1384 template<typename _Tp, typename _Alloc>
1385 inline bool
1386 operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1387 {
1388 typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
1389 const_iterator __end1 = __x.end();
1390 const_iterator __end2 = __y.end();
1391
1392 const_iterator __i1 = __x.begin();
1393 const_iterator __i2 = __y.begin();
1394 while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1395 {
1396 ++__i1;
1397 ++__i2;
1398 }
1399 return __i1 == __end1 && __i2 == __end2;
1400 }
1401
1402 /**
1403 * @brief List ordering relation.
1404 * @param x A %list.
1405 * @param y A %list of the same type as @a x.
1406 * @return True iff @a x is lexicographically less than @a y.
1407 *
1408 * This is a total ordering relation. It is linear in the size of the
1409 * lists. The elements must be comparable with @c <.
1410 *
1411 * See std::lexicographical_compare() for how the determination is made.
1412 */
1413 template<typename _Tp, typename _Alloc>
1414 inline bool
1415 operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1416 { return std::lexicographical_compare(__x.begin(), __x.end(),
1417 __y.begin(), __y.end()); }
1418
1419 /// Based on operator==
1420 template<typename _Tp, typename _Alloc>
1421 inline bool
1422 operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1423 { return !(__x == __y); }
1424
1425 /// Based on operator<
1426 template<typename _Tp, typename _Alloc>
1427 inline bool
1428 operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1429 { return __y < __x; }
1430
1431 /// Based on operator<
1432 template<typename _Tp, typename _Alloc>
1433 inline bool
1434 operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1435 { return !(__y < __x); }
1436
1437 /// Based on operator<
1438 template<typename _Tp, typename _Alloc>
1439 inline bool
1440 operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1441 { return !(__x < __y); }
1442
1443 /// See std::list::swap().
1444 template<typename _Tp, typename _Alloc>
1445 inline void
1446 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1447 { __x.swap(__y); }
1448
1449 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1450 template<typename _Tp, typename _Alloc>
1451 inline void
1452 swap(list<_Tp, _Alloc>&& __x, list<_Tp, _Alloc>& __y)
1453 { __x.swap(__y); }
1454
1455 template<typename _Tp, typename _Alloc>
1456 inline void
1457 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>&& __y)
1458 { __x.swap(__y); }
1459 #endif
1460
1461 _GLIBCXX_END_NESTED_NAMESPACE
1462
1463 #endif /* _STL_LIST_H */