re PR libstdc++/23781 (Implicit conversion from NULL to list<T>::iterator)
[gcc.git] / libstdc++-v3 / include / bits / stl_list.h
1 // List implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
54 */
55
56 /** @file stl_list.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
59 */
60
61 #ifndef _LIST_H
62 #define _LIST_H 1
63
64 #include <bits/concept_check.h>
65
66 namespace _GLIBCXX_STD
67 {
68 // Supporting structures are split into common and templated types; the
69 // latter publicly inherits from the former in an effort to reduce code
70 // duplication. This results in some "needless" static_cast'ing later on,
71 // but it's all safe downcasting.
72
73 /// @if maint Common part of a node in the %list. @endif
74 struct _List_node_base
75 {
76 _List_node_base* _M_next; ///< Self-explanatory
77 _List_node_base* _M_prev; ///< Self-explanatory
78
79 static void
80 swap(_List_node_base& __x, _List_node_base& __y);
81
82 void
83 transfer(_List_node_base * const __first,
84 _List_node_base * const __last);
85
86 void
87 reverse();
88
89 void
90 hook(_List_node_base * const __position);
91
92 void
93 unhook();
94 };
95
96 /// @if maint An actual node in the %list. @endif
97 template<typename _Tp>
98 struct _List_node : public _List_node_base
99 {
100 _Tp _M_data; ///< User's data.
101 };
102
103 /**
104 * @brief A list::iterator.
105 *
106 * @if maint
107 * All the functions are op overloads.
108 * @endif
109 */
110 template<typename _Tp>
111 struct _List_iterator
112 {
113 typedef _List_iterator<_Tp> _Self;
114 typedef _List_node<_Tp> _Node;
115
116 typedef ptrdiff_t difference_type;
117 typedef std::bidirectional_iterator_tag iterator_category;
118 typedef _Tp value_type;
119 typedef _Tp* pointer;
120 typedef _Tp& reference;
121
122 _List_iterator()
123 : _M_node() { }
124
125 explicit
126 _List_iterator(_List_node_base* __x)
127 : _M_node(__x) { }
128
129 // Must downcast from List_node_base to _List_node to get to _M_data.
130 reference
131 operator*() const
132 { return static_cast<_Node*>(_M_node)->_M_data; }
133
134 pointer
135 operator->() const
136 { return &static_cast<_Node*>(_M_node)->_M_data; }
137
138 _Self&
139 operator++()
140 {
141 _M_node = _M_node->_M_next;
142 return *this;
143 }
144
145 _Self
146 operator++(int)
147 {
148 _Self __tmp = *this;
149 _M_node = _M_node->_M_next;
150 return __tmp;
151 }
152
153 _Self&
154 operator--()
155 {
156 _M_node = _M_node->_M_prev;
157 return *this;
158 }
159
160 _Self
161 operator--(int)
162 {
163 _Self __tmp = *this;
164 _M_node = _M_node->_M_prev;
165 return __tmp;
166 }
167
168 bool
169 operator==(const _Self& __x) const
170 { return _M_node == __x._M_node; }
171
172 bool
173 operator!=(const _Self& __x) const
174 { return _M_node != __x._M_node; }
175
176 // The only member points to the %list element.
177 _List_node_base* _M_node;
178 };
179
180 /**
181 * @brief A list::const_iterator.
182 *
183 * @if maint
184 * All the functions are op overloads.
185 * @endif
186 */
187 template<typename _Tp>
188 struct _List_const_iterator
189 {
190 typedef _List_const_iterator<_Tp> _Self;
191 typedef const _List_node<_Tp> _Node;
192 typedef _List_iterator<_Tp> iterator;
193
194 typedef ptrdiff_t difference_type;
195 typedef std::bidirectional_iterator_tag iterator_category;
196 typedef _Tp value_type;
197 typedef const _Tp* pointer;
198 typedef const _Tp& reference;
199
200 _List_const_iterator()
201 : _M_node() { }
202
203 explicit
204 _List_const_iterator(const _List_node_base* __x)
205 : _M_node(__x) { }
206
207 _List_const_iterator(const iterator& __x)
208 : _M_node(__x._M_node) { }
209
210 // Must downcast from List_node_base to _List_node to get to
211 // _M_data.
212 reference
213 operator*() const
214 { return static_cast<_Node*>(_M_node)->_M_data; }
215
216 pointer
217 operator->() const
218 { return &static_cast<_Node*>(_M_node)->_M_data; }
219
220 _Self&
221 operator++()
222 {
223 _M_node = _M_node->_M_next;
224 return *this;
225 }
226
227 _Self
228 operator++(int)
229 {
230 _Self __tmp = *this;
231 _M_node = _M_node->_M_next;
232 return __tmp;
233 }
234
235 _Self&
236 operator--()
237 {
238 _M_node = _M_node->_M_prev;
239 return *this;
240 }
241
242 _Self
243 operator--(int)
244 {
245 _Self __tmp = *this;
246 _M_node = _M_node->_M_prev;
247 return __tmp;
248 }
249
250 bool
251 operator==(const _Self& __x) const
252 { return _M_node == __x._M_node; }
253
254 bool
255 operator!=(const _Self& __x) const
256 { return _M_node != __x._M_node; }
257
258 // The only member points to the %list element.
259 const _List_node_base* _M_node;
260 };
261
262 template<typename _Val>
263 inline bool
264 operator==(const _List_iterator<_Val>& __x,
265 const _List_const_iterator<_Val>& __y)
266 { return __x._M_node == __y._M_node; }
267
268 template<typename _Val>
269 inline bool
270 operator!=(const _List_iterator<_Val>& __x,
271 const _List_const_iterator<_Val>& __y)
272 { return __x._M_node != __y._M_node; }
273
274
275 /**
276 * @if maint
277 * See bits/stl_deque.h's _Deque_base for an explanation.
278 * @endif
279 */
280 template<typename _Tp, typename _Alloc>
281 class _List_base
282 {
283 protected:
284 // NOTA BENE
285 // The stored instance is not actually of "allocator_type"'s
286 // type. Instead we rebind the type to
287 // Allocator<List_node<Tp>>, which according to [20.1.5]/4
288 // should probably be the same. List_node<Tp> is not the same
289 // size as Tp (it's two pointers larger), and specializations on
290 // Tp may go unused because List_node<Tp> is being bound
291 // instead.
292 //
293 // We put this to the test in the constructors and in
294 // get_allocator, where we use conversions between
295 // allocator_type and _Node_alloc_type. The conversion is
296 // required by table 32 in [20.1.5].
297 typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
298 _Node_alloc_type;
299
300 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
301
302 struct _List_impl
303 : public _Node_alloc_type
304 {
305 _List_node_base _M_node;
306 _List_impl(const _Node_alloc_type& __a)
307 : _Node_alloc_type(__a)
308 { }
309 };
310
311 _List_impl _M_impl;
312
313 _List_node<_Tp>*
314 _M_get_node()
315 { return _M_impl._Node_alloc_type::allocate(1); }
316
317 void
318 _M_put_node(_List_node<_Tp>* __p)
319 { _M_impl._Node_alloc_type::deallocate(__p, 1); }
320
321 public:
322 typedef _Alloc allocator_type;
323
324 _Tp_alloc_type
325 _M_get_Tp_allocator() const
326 { return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
327
328 allocator_type
329 get_allocator() const
330 { return _M_get_Tp_allocator(); }
331
332 _List_base(const allocator_type& __a)
333 : _M_impl(__a)
334 { _M_init(); }
335
336 // This is what actually destroys the list.
337 ~_List_base()
338 { _M_clear(); }
339
340 void
341 _M_clear();
342
343 void
344 _M_init()
345 {
346 this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
347 this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
348 }
349 };
350
351 /**
352 * @brief A standard container with linear time access to elements,
353 * and fixed time insertion/deletion at any point in the sequence.
354 *
355 * @ingroup Containers
356 * @ingroup Sequences
357 *
358 * Meets the requirements of a <a href="tables.html#65">container</a>, a
359 * <a href="tables.html#66">reversible container</a>, and a
360 * <a href="tables.html#67">sequence</a>, including the
361 * <a href="tables.html#68">optional sequence requirements</a> with the
362 * %exception of @c at and @c operator[].
363 *
364 * This is a @e doubly @e linked %list. Traversal up and down the
365 * %list requires linear time, but adding and removing elements (or
366 * @e nodes) is done in constant time, regardless of where the
367 * change takes place. Unlike std::vector and std::deque,
368 * random-access iterators are not provided, so subscripting ( @c
369 * [] ) access is not allowed. For algorithms which only need
370 * sequential access, this lack makes no difference.
371 *
372 * Also unlike the other standard containers, std::list provides
373 * specialized algorithms %unique to linked lists, such as
374 * splicing, sorting, and in-place reversal.
375 *
376 * @if maint
377 * A couple points on memory allocation for list<Tp>:
378 *
379 * First, we never actually allocate a Tp, we allocate
380 * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
381 * that after elements from %list<X,Alloc1> are spliced into
382 * %list<X,Alloc2>, destroying the memory of the second %list is a
383 * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
384 *
385 * Second, a %list conceptually represented as
386 * @code
387 * A <---> B <---> C <---> D
388 * @endcode
389 * is actually circular; a link exists between A and D. The %list
390 * class holds (as its only data member) a private list::iterator
391 * pointing to @e D, not to @e A! To get to the head of the %list,
392 * we start at the tail and move forward by one. When this member
393 * iterator's next/previous pointers refer to itself, the %list is
394 * %empty. @endif
395 */
396 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
397 class list : protected _List_base<_Tp, _Alloc>
398 {
399 // concept requirements
400 typedef typename _Alloc::value_type _Alloc_value_type;
401 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
402 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
403
404 typedef _List_base<_Tp, _Alloc> _Base;
405 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
406
407 public:
408 typedef _Tp value_type;
409 typedef typename _Tp_alloc_type::pointer pointer;
410 typedef typename _Tp_alloc_type::const_pointer const_pointer;
411 typedef typename _Tp_alloc_type::reference reference;
412 typedef typename _Tp_alloc_type::const_reference const_reference;
413 typedef _List_iterator<_Tp> iterator;
414 typedef _List_const_iterator<_Tp> const_iterator;
415 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
416 typedef std::reverse_iterator<iterator> reverse_iterator;
417 typedef size_t size_type;
418 typedef ptrdiff_t difference_type;
419 typedef _Alloc allocator_type;
420
421 protected:
422 // Note that pointers-to-_Node's can be ctor-converted to
423 // iterator types.
424 typedef _List_node<_Tp> _Node;
425
426 /** @if maint
427 * One data member plus two memory-handling functions. If the
428 * _Alloc type requires separate instances, then one of those
429 * will also be included, accumulated from the topmost parent.
430 * @endif
431 */
432 using _Base::_M_impl;
433 using _Base::_M_put_node;
434 using _Base::_M_get_node;
435 using _Base::_M_get_Tp_allocator;
436
437 /**
438 * @if maint
439 * @param x An instance of user data.
440 *
441 * Allocates space for a new node and constructs a copy of @a x in it.
442 * @endif
443 */
444 _Node*
445 _M_create_node(const value_type& __x)
446 {
447 _Node* __p = this->_M_get_node();
448 try
449 {
450 _M_get_Tp_allocator().construct(&__p->_M_data, __x);
451 }
452 catch(...)
453 {
454 _M_put_node(__p);
455 __throw_exception_again;
456 }
457 return __p;
458 }
459
460 public:
461 // [23.2.2.1] construct/copy/destroy
462 // (assign() and get_allocator() are also listed in this section)
463 /**
464 * @brief Default constructor creates no elements.
465 */
466 explicit
467 list(const allocator_type& __a = allocator_type())
468 : _Base(__a) { }
469
470 /**
471 * @brief Create a %list with copies of an exemplar element.
472 * @param n The number of elements to initially create.
473 * @param value An element to copy.
474 *
475 * This constructor fills the %list with @a n copies of @a value.
476 */
477 explicit
478 list(size_type __n, const value_type& __value = value_type(),
479 const allocator_type& __a = allocator_type())
480 : _Base(__a)
481 { this->insert(begin(), __n, __value); }
482
483 /**
484 * @brief %List copy constructor.
485 * @param x A %list of identical element and allocator types.
486 *
487 * The newly-created %list uses a copy of the allocation object used
488 * by @a x.
489 */
490 list(const list& __x)
491 : _Base(__x.get_allocator())
492 { this->insert(begin(), __x.begin(), __x.end()); }
493
494 /**
495 * @brief Builds a %list from a range.
496 * @param first An input iterator.
497 * @param last An input iterator.
498 *
499 * Create a %list consisting of copies of the elements from
500 * [@a first,@a last). This is linear in N (where N is
501 * distance(@a first,@a last)).
502 *
503 * @if maint
504 * We don't need any dispatching tricks here, because insert does all of
505 * that anyway.
506 * @endif
507 */
508 template<typename _InputIterator>
509 list(_InputIterator __first, _InputIterator __last,
510 const allocator_type& __a = allocator_type())
511 : _Base(__a)
512 { this->insert(begin(), __first, __last); }
513
514 /**
515 * No explicit dtor needed as the _Base dtor takes care of
516 * things. The _Base dtor only erases the elements, and note
517 * that if the elements themselves are pointers, the pointed-to
518 * memory is not touched in any way. Managing the pointer is
519 * the user's responsibilty.
520 */
521
522 /**
523 * @brief %List assignment operator.
524 * @param x A %list of identical element and allocator types.
525 *
526 * All the elements of @a x are copied, but unlike the copy
527 * constructor, the allocator object is not copied.
528 */
529 list&
530 operator=(const list& __x);
531
532 /**
533 * @brief Assigns a given value to a %list.
534 * @param n Number of elements to be assigned.
535 * @param val Value to be assigned.
536 *
537 * This function fills a %list with @a n copies of the given
538 * value. Note that the assignment completely changes the %list
539 * and that the resulting %list's size is the same as the number
540 * of elements assigned. Old data may be lost.
541 */
542 void
543 assign(size_type __n, const value_type& __val)
544 { _M_fill_assign(__n, __val); }
545
546 /**
547 * @brief Assigns a range to a %list.
548 * @param first An input iterator.
549 * @param last An input iterator.
550 *
551 * This function fills a %list with copies of the elements in the
552 * range [@a first,@a last).
553 *
554 * Note that the assignment completely changes the %list and
555 * that the resulting %list's size is the same as the number of
556 * elements assigned. Old data may be lost.
557 */
558 template<typename _InputIterator>
559 void
560 assign(_InputIterator __first, _InputIterator __last)
561 {
562 // Check whether it's an integral type. If so, it's not an iterator.
563 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
564 _M_assign_dispatch(__first, __last, _Integral());
565 }
566
567 /// Get a copy of the memory allocation object.
568 allocator_type
569 get_allocator() const
570 { return _Base::get_allocator(); }
571
572 // iterators
573 /**
574 * Returns a read/write iterator that points to the first element in the
575 * %list. Iteration is done in ordinary element order.
576 */
577 iterator
578 begin()
579 { return iterator(this->_M_impl._M_node._M_next); }
580
581 /**
582 * Returns a read-only (constant) iterator that points to the
583 * first element in the %list. Iteration is done in ordinary
584 * element order.
585 */
586 const_iterator
587 begin() const
588 { return const_iterator(this->_M_impl._M_node._M_next); }
589
590 /**
591 * Returns a read/write iterator that points one past the last
592 * element in the %list. Iteration is done in ordinary element
593 * order.
594 */
595 iterator
596 end()
597 { return iterator(&this->_M_impl._M_node); }
598
599 /**
600 * Returns a read-only (constant) iterator that points one past
601 * the last element in the %list. Iteration is done in ordinary
602 * element order.
603 */
604 const_iterator
605 end() const
606 { return const_iterator(&this->_M_impl._M_node); }
607
608 /**
609 * Returns a read/write reverse iterator that points to the last
610 * element in the %list. Iteration is done in reverse element
611 * order.
612 */
613 reverse_iterator
614 rbegin()
615 { return reverse_iterator(end()); }
616
617 /**
618 * Returns a read-only (constant) reverse iterator that points to
619 * the last element in the %list. Iteration is done in reverse
620 * element order.
621 */
622 const_reverse_iterator
623 rbegin() const
624 { return const_reverse_iterator(end()); }
625
626 /**
627 * Returns a read/write reverse iterator that points to one
628 * before the first element in the %list. Iteration is done in
629 * reverse element order.
630 */
631 reverse_iterator
632 rend()
633 { return reverse_iterator(begin()); }
634
635 /**
636 * Returns a read-only (constant) reverse iterator that points to one
637 * before the first element in the %list. Iteration is done in reverse
638 * element order.
639 */
640 const_reverse_iterator
641 rend() const
642 { return const_reverse_iterator(begin()); }
643
644 // [23.2.2.2] capacity
645 /**
646 * Returns true if the %list is empty. (Thus begin() would equal
647 * end().)
648 */
649 bool
650 empty() const
651 { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
652
653 /** Returns the number of elements in the %list. */
654 size_type
655 size() const
656 { return std::distance(begin(), end()); }
657
658 /** Returns the size() of the largest possible %list. */
659 size_type
660 max_size() const
661 { return size_type(-1); }
662
663 /**
664 * @brief Resizes the %list to the specified number of elements.
665 * @param new_size Number of elements the %list should contain.
666 * @param x Data with which new elements should be populated.
667 *
668 * This function will %resize the %list to the specified number
669 * of elements. If the number is smaller than the %list's
670 * current size the %list is truncated, otherwise the %list is
671 * extended and new elements are populated with given data.
672 */
673 void
674 resize(size_type __new_size, value_type __x = value_type());
675
676 // element access
677 /**
678 * Returns a read/write reference to the data at the first
679 * element of the %list.
680 */
681 reference
682 front()
683 { return *begin(); }
684
685 /**
686 * Returns a read-only (constant) reference to the data at the first
687 * element of the %list.
688 */
689 const_reference
690 front() const
691 { return *begin(); }
692
693 /**
694 * Returns a read/write reference to the data at the last element
695 * of the %list.
696 */
697 reference
698 back()
699 {
700 iterator __tmp = end();
701 --__tmp;
702 return *__tmp;
703 }
704
705 /**
706 * Returns a read-only (constant) reference to the data at the last
707 * element of the %list.
708 */
709 const_reference
710 back() const
711 {
712 const_iterator __tmp = end();
713 --__tmp;
714 return *__tmp;
715 }
716
717 // [23.2.2.3] modifiers
718 /**
719 * @brief Add data to the front of the %list.
720 * @param x Data to be added.
721 *
722 * This is a typical stack operation. The function creates an
723 * element at the front of the %list and assigns the given data
724 * to it. Due to the nature of a %list this operation can be
725 * done in constant time, and does not invalidate iterators and
726 * references.
727 */
728 void
729 push_front(const value_type& __x)
730 { this->_M_insert(begin(), __x); }
731
732 /**
733 * @brief Removes first element.
734 *
735 * This is a typical stack operation. It shrinks the %list by
736 * one. Due to the nature of a %list this operation can be done
737 * in constant time, and only invalidates iterators/references to
738 * the element being removed.
739 *
740 * Note that no data is returned, and if the first element's data
741 * is needed, it should be retrieved before pop_front() is
742 * called.
743 */
744 void
745 pop_front()
746 { this->_M_erase(begin()); }
747
748 /**
749 * @brief Add data to the end of the %list.
750 * @param x Data to be added.
751 *
752 * This is a typical stack operation. The function creates an
753 * element at the end of the %list and assigns the given data to
754 * it. Due to the nature of a %list this operation can be done
755 * in constant time, and does not invalidate iterators and
756 * references.
757 */
758 void
759 push_back(const value_type& __x)
760 { this->_M_insert(end(), __x); }
761
762 /**
763 * @brief Removes last element.
764 *
765 * This is a typical stack operation. It shrinks the %list by
766 * one. Due to the nature of a %list this operation can be done
767 * in constant time, and only invalidates iterators/references to
768 * the element being removed.
769 *
770 * Note that no data is returned, and if the last element's data
771 * is needed, it should be retrieved before pop_back() is called.
772 */
773 void
774 pop_back()
775 { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
776
777 /**
778 * @brief Inserts given value into %list before specified iterator.
779 * @param position An iterator into the %list.
780 * @param x Data to be inserted.
781 * @return An iterator that points to the inserted data.
782 *
783 * This function will insert a copy of the given value before
784 * the specified location. Due to the nature of a %list this
785 * operation can be done in constant time, and does not
786 * invalidate iterators and references.
787 */
788 iterator
789 insert(iterator __position, const value_type& __x);
790
791 /**
792 * @brief Inserts a number of copies of given data into the %list.
793 * @param position An iterator into the %list.
794 * @param n Number of elements to be inserted.
795 * @param x Data to be inserted.
796 *
797 * This function will insert a specified number of copies of the
798 * given data before the location specified by @a position.
799 *
800 * Due to the nature of a %list this operation can be done in
801 * constant time, and does not invalidate iterators and
802 * references.
803 */
804 void
805 insert(iterator __position, size_type __n, const value_type& __x)
806 { _M_fill_insert(__position, __n, __x); }
807
808 /**
809 * @brief Inserts a range into the %list.
810 * @param position An iterator into the %list.
811 * @param first An input iterator.
812 * @param last An input iterator.
813 *
814 * This function will insert copies of the data in the range [@a
815 * first,@a last) into the %list before the location specified by
816 * @a position.
817 *
818 * Due to the nature of a %list this operation can be done in
819 * constant time, and does not invalidate iterators and
820 * references.
821 */
822 template<typename _InputIterator>
823 void
824 insert(iterator __position, _InputIterator __first,
825 _InputIterator __last)
826 {
827 // Check whether it's an integral type. If so, it's not an iterator.
828 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
829 _M_insert_dispatch(__position, __first, __last, _Integral());
830 }
831
832 /**
833 * @brief Remove element at given position.
834 * @param position Iterator pointing to element to be erased.
835 * @return An iterator pointing to the next element (or end()).
836 *
837 * This function will erase the element at the given position and thus
838 * shorten the %list by one.
839 *
840 * Due to the nature of a %list this operation can be done in
841 * constant time, and only invalidates iterators/references to
842 * the element being removed. The user is also cautioned that
843 * this function only erases the element, and that if the element
844 * is itself a pointer, the pointed-to memory is not touched in
845 * any way. Managing the pointer is the user's responsibilty.
846 */
847 iterator
848 erase(iterator __position);
849
850 /**
851 * @brief Remove a range of elements.
852 * @param first Iterator pointing to the first element to be erased.
853 * @param last Iterator pointing to one past the last element to be
854 * erased.
855 * @return An iterator pointing to the element pointed to by @a last
856 * prior to erasing (or end()).
857 *
858 * This function will erase the elements in the range @a
859 * [first,last) and shorten the %list accordingly.
860 *
861 * Due to the nature of a %list this operation can be done in
862 * constant time, and only invalidates iterators/references to
863 * the element being removed. The user is also cautioned that
864 * this function only erases the elements, and that if the
865 * elements themselves are pointers, the pointed-to memory is not
866 * touched in any way. Managing the pointer is the user's
867 * responsibilty.
868 */
869 iterator
870 erase(iterator __first, iterator __last)
871 {
872 while (__first != __last)
873 __first = erase(__first);
874 return __last;
875 }
876
877 /**
878 * @brief Swaps data with another %list.
879 * @param x A %list of the same element and allocator types.
880 *
881 * This exchanges the elements between two lists in constant
882 * time. Note that the global std::swap() function is
883 * specialized such that std::swap(l1,l2) will feed to this
884 * function.
885 */
886 void
887 swap(list& __x)
888 { _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node); }
889
890 /**
891 * Erases all the elements. Note that this function only erases
892 * the elements, and that if the elements themselves are
893 * pointers, the pointed-to memory is not touched in any way.
894 * Managing the pointer is the user's responsibilty.
895 */
896 void
897 clear()
898 {
899 _Base::_M_clear();
900 _Base::_M_init();
901 }
902
903 // [23.2.2.4] list operations
904 /**
905 * @brief Insert contents of another %list.
906 * @param position Iterator referencing the element to insert before.
907 * @param x Source list.
908 *
909 * The elements of @a x are inserted in constant time in front of
910 * the element referenced by @a position. @a x becomes an empty
911 * list.
912 */
913 void
914 splice(iterator __position, list& __x)
915 {
916 if (!__x.empty())
917 this->_M_transfer(__position, __x.begin(), __x.end());
918 }
919
920 /**
921 * @brief Insert element from another %list.
922 * @param position Iterator referencing the element to insert before.
923 * @param x Source list.
924 * @param i Iterator referencing the element to move.
925 *
926 * Removes the element in list @a x referenced by @a i and
927 * inserts it into the current list before @a position.
928 */
929 void
930 splice(iterator __position, list&, iterator __i)
931 {
932 iterator __j = __i;
933 ++__j;
934 if (__position == __i || __position == __j)
935 return;
936 this->_M_transfer(__position, __i, __j);
937 }
938
939 /**
940 * @brief Insert range from another %list.
941 * @param position Iterator referencing the element to insert before.
942 * @param x Source list.
943 * @param first Iterator referencing the start of range in x.
944 * @param last Iterator referencing the end of range in x.
945 *
946 * Removes elements in the range [first,last) and inserts them
947 * before @a position in constant time.
948 *
949 * Undefined if @a position is in [first,last).
950 */
951 void
952 splice(iterator __position, list&, iterator __first, iterator __last)
953 {
954 if (__first != __last)
955 this->_M_transfer(__position, __first, __last);
956 }
957
958 /**
959 * @brief Remove all elements equal to value.
960 * @param value The value to remove.
961 *
962 * Removes every element in the list equal to @a value.
963 * Remaining elements stay in list order. Note that this
964 * function only erases the elements, and that if the elements
965 * themselves are pointers, the pointed-to memory is not
966 * touched in any way. Managing the pointer is the user's
967 * responsibilty.
968 */
969 void
970 remove(const _Tp& __value);
971
972 /**
973 * @brief Remove all elements satisfying a predicate.
974 * @param Predicate Unary predicate function or object.
975 *
976 * Removes every element in the list for which the predicate
977 * returns true. Remaining elements stay in list order. Note
978 * that this function only erases the elements, and that if the
979 * elements themselves are pointers, the pointed-to memory is
980 * not touched in any way. Managing the pointer is the user's
981 * responsibilty.
982 */
983 template<typename _Predicate>
984 void
985 remove_if(_Predicate);
986
987 /**
988 * @brief Remove consecutive duplicate elements.
989 *
990 * For each consecutive set of elements with the same value,
991 * remove all but the first one. Remaining elements stay in
992 * list order. Note that this function only erases the
993 * elements, and that if the elements themselves are pointers,
994 * the pointed-to memory is not touched in any way. Managing
995 * the pointer is the user's responsibilty.
996 */
997 void
998 unique();
999
1000 /**
1001 * @brief Remove consecutive elements satisfying a predicate.
1002 * @param BinaryPredicate Binary predicate function or object.
1003 *
1004 * For each consecutive set of elements [first,last) that
1005 * satisfy predicate(first,i) where i is an iterator in
1006 * [first,last), remove all but the first one. Remaining
1007 * elements stay in list order. Note that this function only
1008 * erases the elements, and that if the elements themselves are
1009 * pointers, the pointed-to memory is not touched in any way.
1010 * Managing the pointer is the user's responsibilty.
1011 */
1012 template<typename _BinaryPredicate>
1013 void
1014 unique(_BinaryPredicate);
1015
1016 /**
1017 * @brief Merge sorted lists.
1018 * @param x Sorted list to merge.
1019 *
1020 * Assumes that both @a x and this list are sorted according to
1021 * operator<(). Merges elements of @a x into this list in
1022 * sorted order, leaving @a x empty when complete. Elements in
1023 * this list precede elements in @a x that are equal.
1024 */
1025 void
1026 merge(list& __x);
1027
1028 /**
1029 * @brief Merge sorted lists according to comparison function.
1030 * @param x Sorted list to merge.
1031 * @param StrictWeakOrdering Comparison function definining
1032 * sort order.
1033 *
1034 * Assumes that both @a x and this list are sorted according to
1035 * StrictWeakOrdering. Merges elements of @a x into this list
1036 * in sorted order, leaving @a x empty when complete. Elements
1037 * in this list precede elements in @a x that are equivalent
1038 * according to StrictWeakOrdering().
1039 */
1040 template<typename _StrictWeakOrdering>
1041 void
1042 merge(list&, _StrictWeakOrdering);
1043
1044 /**
1045 * @brief Reverse the elements in list.
1046 *
1047 * Reverse the order of elements in the list in linear time.
1048 */
1049 void
1050 reverse()
1051 { this->_M_impl._M_node.reverse(); }
1052
1053 /**
1054 * @brief Sort the elements.
1055 *
1056 * Sorts the elements of this list in NlogN time. Equivalent
1057 * elements remain in list order.
1058 */
1059 void
1060 sort();
1061
1062 /**
1063 * @brief Sort the elements according to comparison function.
1064 *
1065 * Sorts the elements of this list in NlogN time. Equivalent
1066 * elements remain in list order.
1067 */
1068 template<typename _StrictWeakOrdering>
1069 void
1070 sort(_StrictWeakOrdering);
1071
1072 protected:
1073 // Internal assign functions follow.
1074
1075 // Called by the range assign to implement [23.1.1]/9
1076 template<typename _Integer>
1077 void
1078 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1079 {
1080 _M_fill_assign(static_cast<size_type>(__n),
1081 static_cast<value_type>(__val));
1082 }
1083
1084 // Called by the range assign to implement [23.1.1]/9
1085 template<typename _InputIterator>
1086 void
1087 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1088 __false_type);
1089
1090 // Called by assign(n,t), and the range assign when it turns out
1091 // to be the same thing.
1092 void
1093 _M_fill_assign(size_type __n, const value_type& __val);
1094
1095
1096 // Internal insert functions follow.
1097
1098 // Called by the range insert to implement [23.1.1]/9
1099 template<typename _Integer>
1100 void
1101 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
1102 __true_type)
1103 {
1104 _M_fill_insert(__pos, static_cast<size_type>(__n),
1105 static_cast<value_type>(__x));
1106 }
1107
1108 // Called by the range insert to implement [23.1.1]/9
1109 template<typename _InputIterator>
1110 void
1111 _M_insert_dispatch(iterator __pos,
1112 _InputIterator __first, _InputIterator __last,
1113 __false_type)
1114 {
1115 for (; __first != __last; ++__first)
1116 _M_insert(__pos, *__first);
1117 }
1118
1119 // Called by insert(p,n,x), and the range insert when it turns out
1120 // to be the same thing.
1121 void
1122 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x)
1123 {
1124 for (; __n > 0; --__n)
1125 _M_insert(__pos, __x);
1126 }
1127
1128
1129 // Moves the elements from [first,last) before position.
1130 void
1131 _M_transfer(iterator __position, iterator __first, iterator __last)
1132 { __position._M_node->transfer(__first._M_node, __last._M_node); }
1133
1134 // Inserts new element at position given and with value given.
1135 void
1136 _M_insert(iterator __position, const value_type& __x)
1137 {
1138 _Node* __tmp = _M_create_node(__x);
1139 __tmp->hook(__position._M_node);
1140 }
1141
1142 // Erases element at position given.
1143 void
1144 _M_erase(iterator __position)
1145 {
1146 __position._M_node->unhook();
1147 _Node* __n = static_cast<_Node*>(__position._M_node);
1148 _M_get_Tp_allocator().destroy(&__n->_M_data);
1149 _M_put_node(__n);
1150 }
1151 };
1152
1153 /**
1154 * @brief List equality comparison.
1155 * @param x A %list.
1156 * @param y A %list of the same type as @a x.
1157 * @return True iff the size and elements of the lists are equal.
1158 *
1159 * This is an equivalence relation. It is linear in the size of
1160 * the lists. Lists are considered equivalent if their sizes are
1161 * equal, and if corresponding elements compare equal.
1162 */
1163 template<typename _Tp, typename _Alloc>
1164 inline bool
1165 operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1166 {
1167 typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
1168 const_iterator __end1 = __x.end();
1169 const_iterator __end2 = __y.end();
1170
1171 const_iterator __i1 = __x.begin();
1172 const_iterator __i2 = __y.begin();
1173 while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1174 {
1175 ++__i1;
1176 ++__i2;
1177 }
1178 return __i1 == __end1 && __i2 == __end2;
1179 }
1180
1181 /**
1182 * @brief List ordering relation.
1183 * @param x A %list.
1184 * @param y A %list of the same type as @a x.
1185 * @return True iff @a x is lexicographically less than @a y.
1186 *
1187 * This is a total ordering relation. It is linear in the size of the
1188 * lists. The elements must be comparable with @c <.
1189 *
1190 * See std::lexicographical_compare() for how the determination is made.
1191 */
1192 template<typename _Tp, typename _Alloc>
1193 inline bool
1194 operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1195 { return std::lexicographical_compare(__x.begin(), __x.end(),
1196 __y.begin(), __y.end()); }
1197
1198 /// Based on operator==
1199 template<typename _Tp, typename _Alloc>
1200 inline bool
1201 operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1202 { return !(__x == __y); }
1203
1204 /// Based on operator<
1205 template<typename _Tp, typename _Alloc>
1206 inline bool
1207 operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1208 { return __y < __x; }
1209
1210 /// Based on operator<
1211 template<typename _Tp, typename _Alloc>
1212 inline bool
1213 operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1214 { return !(__y < __x); }
1215
1216 /// Based on operator<
1217 template<typename _Tp, typename _Alloc>
1218 inline bool
1219 operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1220 { return !(__x < __y); }
1221
1222 /// See std::list::swap().
1223 template<typename _Tp, typename _Alloc>
1224 inline void
1225 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1226 { __x.swap(__y); }
1227 } // namespace std
1228
1229 #endif /* _LIST_H */
1230