[multiple changes]
[gcc.git] / libstdc++-v3 / include / bits / stl_vector.h
1 // Vector implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
54 */
55
56 /** @file stl_vector.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
59 */
60
61 #ifndef _VECTOR_H
62 #define _VECTOR_H 1
63
64 #include <bits/stl_iterator_base_funcs.h>
65 #include <bits/functexcept.h>
66 #include <bits/concept_check.h>
67
68 namespace _GLIBCXX_STD
69 {
70 /**
71 * @if maint
72 * See bits/stl_deque.h's _Deque_base for an explanation.
73 * @endif
74 */
75 template<typename _Tp, typename _Alloc>
76 struct _Vector_base
77 {
78 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
79
80 struct _Vector_impl
81 : public _Tp_alloc_type
82 {
83 _Tp* _M_start;
84 _Tp* _M_finish;
85 _Tp* _M_end_of_storage;
86 _Vector_impl(_Tp_alloc_type const& __a)
87 : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
88 { }
89 };
90
91 public:
92 typedef _Alloc allocator_type;
93
94 _Tp_alloc_type
95 _M_get_Tp_allocator() const
96 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
97
98 allocator_type
99 get_allocator() const
100 { return _M_get_Tp_allocator(); }
101
102 _Vector_base(const allocator_type& __a)
103 : _M_impl(__a)
104 { }
105
106 _Vector_base(size_t __n, const allocator_type& __a)
107 : _M_impl(__a)
108 {
109 this->_M_impl._M_start = this->_M_allocate(__n);
110 this->_M_impl._M_finish = this->_M_impl._M_start;
111 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
112 }
113
114 ~_Vector_base()
115 { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
116 - this->_M_impl._M_start); }
117
118 public:
119 _Vector_impl _M_impl;
120
121 _Tp*
122 _M_allocate(size_t __n)
123 { return _M_impl.allocate(__n); }
124
125 void
126 _M_deallocate(_Tp* __p, size_t __n)
127 {
128 if (__p)
129 _M_impl.deallocate(__p, __n);
130 }
131 };
132
133
134 /**
135 * @brief A standard container which offers fixed time access to
136 * individual elements in any order.
137 *
138 * @ingroup Containers
139 * @ingroup Sequences
140 *
141 * Meets the requirements of a <a href="tables.html#65">container</a>, a
142 * <a href="tables.html#66">reversible container</a>, and a
143 * <a href="tables.html#67">sequence</a>, including the
144 * <a href="tables.html#68">optional sequence requirements</a> with the
145 * %exception of @c push_front and @c pop_front.
146 *
147 * In some terminology a %vector can be described as a dynamic
148 * C-style array, it offers fast and efficient access to individual
149 * elements in any order and saves the user from worrying about
150 * memory and size allocation. Subscripting ( @c [] ) access is
151 * also provided as with C-style arrays.
152 */
153 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
154 class vector : protected _Vector_base<_Tp, _Alloc>
155 {
156 // Concept requirements.
157 typedef typename _Alloc::value_type _Alloc_value_type;
158 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
159 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
160
161 typedef _Vector_base<_Tp, _Alloc> _Base;
162 typedef vector<_Tp, _Alloc> vector_type;
163 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
164
165 public:
166 typedef _Tp value_type;
167 typedef typename _Tp_alloc_type::pointer pointer;
168 typedef typename _Tp_alloc_type::const_pointer const_pointer;
169 typedef typename _Tp_alloc_type::reference reference;
170 typedef typename _Tp_alloc_type::const_reference const_reference;
171 typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
172 typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
173 const_iterator;
174 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
175 typedef std::reverse_iterator<iterator> reverse_iterator;
176 typedef size_t size_type;
177 typedef ptrdiff_t difference_type;
178 typedef _Alloc allocator_type;
179
180 protected:
181 /** @if maint
182 * These two functions and three data members are all from the
183 * base class. They should be pretty self-explanatory, as
184 * %vector uses a simple contiguous allocation scheme. @endif
185 */
186 using _Base::_M_allocate;
187 using _Base::_M_deallocate;
188 using _Base::_M_impl;
189 using _Base::_M_get_Tp_allocator;
190
191 public:
192 // [23.2.4.1] construct/copy/destroy
193 // (assign() and get_allocator() are also listed in this section)
194 /**
195 * @brief Default constructor creates no elements.
196 */
197 explicit
198 vector(const allocator_type& __a = allocator_type())
199 : _Base(__a)
200 { }
201
202 /**
203 * @brief Create a %vector with copies of an exemplar element.
204 * @param n The number of elements to initially create.
205 * @param value An element to copy.
206 *
207 * This constructor fills the %vector with @a n copies of @a value.
208 */
209 explicit
210 vector(size_type __n, const value_type& __value = value_type(),
211 const allocator_type& __a = allocator_type())
212 : _Base(__n, __a)
213 {
214 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
215 _M_get_Tp_allocator());
216 this->_M_impl._M_finish = this->_M_impl._M_start + __n;
217 }
218
219 /**
220 * @brief %Vector copy constructor.
221 * @param x A %vector of identical element and allocator types.
222 *
223 * The newly-created %vector uses a copy of the allocation
224 * object used by @a x. All the elements of @a x are copied,
225 * but any extra memory in
226 * @a x (for fast expansion) will not be copied.
227 */
228 vector(const vector& __x)
229 : _Base(__x.size(), __x.get_allocator())
230 { this->_M_impl._M_finish =
231 std::__uninitialized_copy_a(__x.begin(), __x.end(),
232 this->_M_impl._M_start,
233 _M_get_Tp_allocator());
234 }
235
236 /**
237 * @brief Builds a %vector from a range.
238 * @param first An input iterator.
239 * @param last An input iterator.
240 *
241 * Create a %vector consisting of copies of the elements from
242 * [first,last).
243 *
244 * If the iterators are forward, bidirectional, or
245 * random-access, then this will call the elements' copy
246 * constructor N times (where N is distance(first,last)) and do
247 * no memory reallocation. But if only input iterators are
248 * used, then this will do at most 2N calls to the copy
249 * constructor, and logN memory reallocations.
250 */
251 template<typename _InputIterator>
252 vector(_InputIterator __first, _InputIterator __last,
253 const allocator_type& __a = allocator_type())
254 : _Base(__a)
255 {
256 // Check whether it's an integral type. If so, it's not an iterator.
257 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
258 _M_initialize_dispatch(__first, __last, _Integral());
259 }
260
261 /**
262 * The dtor only erases the elements, and note that if the
263 * elements themselves are pointers, the pointed-to memory is
264 * not touched in any way. Managing the pointer is the user's
265 * responsibilty.
266 */
267 ~vector()
268 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
269 _M_get_Tp_allocator());
270 }
271
272 /**
273 * @brief %Vector assignment operator.
274 * @param x A %vector of identical element and allocator types.
275 *
276 * All the elements of @a x are copied, but any extra memory in
277 * @a x (for fast expansion) will not be copied. Unlike the
278 * copy constructor, the allocator object is not copied.
279 */
280 vector&
281 operator=(const vector& __x);
282
283 /**
284 * @brief Assigns a given value to a %vector.
285 * @param n Number of elements to be assigned.
286 * @param val Value to be assigned.
287 *
288 * This function fills a %vector with @a n copies of the given
289 * value. Note that the assignment completely changes the
290 * %vector and that the resulting %vector's size is the same as
291 * the number of elements assigned. Old data may be lost.
292 */
293 void
294 assign(size_type __n, const value_type& __val)
295 { _M_fill_assign(__n, __val); }
296
297 /**
298 * @brief Assigns a range to a %vector.
299 * @param first An input iterator.
300 * @param last An input iterator.
301 *
302 * This function fills a %vector with copies of the elements in the
303 * range [first,last).
304 *
305 * Note that the assignment completely changes the %vector and
306 * that the resulting %vector's size is the same as the number
307 * of elements assigned. Old data may be lost.
308 */
309 template<typename _InputIterator>
310 void
311 assign(_InputIterator __first, _InputIterator __last)
312 {
313 // Check whether it's an integral type. If so, it's not an iterator.
314 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
315 _M_assign_dispatch(__first, __last, _Integral());
316 }
317
318 /// Get a copy of the memory allocation object.
319 using _Base::get_allocator;
320
321 // iterators
322 /**
323 * Returns a read/write iterator that points to the first
324 * element in the %vector. Iteration is done in ordinary
325 * element order.
326 */
327 iterator
328 begin()
329 { return iterator (this->_M_impl._M_start); }
330
331 /**
332 * Returns a read-only (constant) iterator that points to the
333 * first element in the %vector. Iteration is done in ordinary
334 * element order.
335 */
336 const_iterator
337 begin() const
338 { return const_iterator (this->_M_impl._M_start); }
339
340 /**
341 * Returns a read/write iterator that points one past the last
342 * element in the %vector. Iteration is done in ordinary
343 * element order.
344 */
345 iterator
346 end()
347 { return iterator (this->_M_impl._M_finish); }
348
349 /**
350 * Returns a read-only (constant) iterator that points one past
351 * the last element in the %vector. Iteration is done in
352 * ordinary element order.
353 */
354 const_iterator
355 end() const
356 { return const_iterator (this->_M_impl._M_finish); }
357
358 /**
359 * Returns a read/write reverse iterator that points to the
360 * last element in the %vector. Iteration is done in reverse
361 * element order.
362 */
363 reverse_iterator
364 rbegin()
365 { return reverse_iterator(end()); }
366
367 /**
368 * Returns a read-only (constant) reverse iterator that points
369 * to the last element in the %vector. Iteration is done in
370 * reverse element order.
371 */
372 const_reverse_iterator
373 rbegin() const
374 { return const_reverse_iterator(end()); }
375
376 /**
377 * Returns a read/write reverse iterator that points to one
378 * before the first element in the %vector. Iteration is done
379 * in reverse element order.
380 */
381 reverse_iterator
382 rend()
383 { return reverse_iterator(begin()); }
384
385 /**
386 * Returns a read-only (constant) reverse iterator that points
387 * to one before the first element in the %vector. Iteration
388 * is done in reverse element order.
389 */
390 const_reverse_iterator
391 rend() const
392 { return const_reverse_iterator(begin()); }
393
394 // [23.2.4.2] capacity
395 /** Returns the number of elements in the %vector. */
396 size_type
397 size() const
398 { return size_type(end() - begin()); }
399
400 /** Returns the size() of the largest possible %vector. */
401 size_type
402 max_size() const
403 { return size_type(-1) / sizeof(value_type); }
404
405 /**
406 * @brief Resizes the %vector to the specified number of elements.
407 * @param new_size Number of elements the %vector should contain.
408 * @param x Data with which new elements should be populated.
409 *
410 * This function will %resize the %vector to the specified
411 * number of elements. If the number is smaller than the
412 * %vector's current size the %vector is truncated, otherwise
413 * the %vector is extended and new elements are populated with
414 * given data.
415 */
416 void
417 resize(size_type __new_size, value_type __x = value_type())
418 {
419 if (__new_size < size())
420 erase(begin() + __new_size, end());
421 else
422 insert(end(), __new_size - size(), __x);
423 }
424
425 /**
426 * Returns the total number of elements that the %vector can
427 * hold before needing to allocate more memory.
428 */
429 size_type
430 capacity() const
431 { return size_type(const_iterator(this->_M_impl._M_end_of_storage)
432 - begin()); }
433
434 /**
435 * Returns true if the %vector is empty. (Thus begin() would
436 * equal end().)
437 */
438 bool
439 empty() const
440 { return begin() == end(); }
441
442 /**
443 * @brief Attempt to preallocate enough memory for specified number of
444 * elements.
445 * @param n Number of elements required.
446 * @throw std::length_error If @a n exceeds @c max_size().
447 *
448 * This function attempts to reserve enough memory for the
449 * %vector to hold the specified number of elements. If the
450 * number requested is more than max_size(), length_error is
451 * thrown.
452 *
453 * The advantage of this function is that if optimal code is a
454 * necessity and the user can determine the number of elements
455 * that will be required, the user can reserve the memory in
456 * %advance, and thus prevent a possible reallocation of memory
457 * and copying of %vector data.
458 */
459 void
460 reserve(size_type __n);
461
462 // element access
463 /**
464 * @brief Subscript access to the data contained in the %vector.
465 * @param n The index of the element for which data should be
466 * accessed.
467 * @return Read/write reference to data.
468 *
469 * This operator allows for easy, array-style, data access.
470 * Note that data access with this operator is unchecked and
471 * out_of_range lookups are not defined. (For checked lookups
472 * see at().)
473 */
474 reference
475 operator[](size_type __n)
476 { return *(begin() + __n); }
477
478 /**
479 * @brief Subscript access to the data contained in the %vector.
480 * @param n The index of the element for which data should be
481 * accessed.
482 * @return Read-only (constant) reference to data.
483 *
484 * This operator allows for easy, array-style, data access.
485 * Note that data access with this operator is unchecked and
486 * out_of_range lookups are not defined. (For checked lookups
487 * see at().)
488 */
489 const_reference
490 operator[](size_type __n) const
491 { return *(begin() + __n); }
492
493 protected:
494 /// @if maint Safety check used only from at(). @endif
495 void
496 _M_range_check(size_type __n) const
497 {
498 if (__n >= this->size())
499 __throw_out_of_range(__N("vector::_M_range_check"));
500 }
501
502 public:
503 /**
504 * @brief Provides access to the data contained in the %vector.
505 * @param n The index of the element for which data should be
506 * accessed.
507 * @return Read/write reference to data.
508 * @throw std::out_of_range If @a n is an invalid index.
509 *
510 * This function provides for safer data access. The parameter
511 * is first checked that it is in the range of the vector. The
512 * function throws out_of_range if the check fails.
513 */
514 reference
515 at(size_type __n)
516 {
517 _M_range_check(__n);
518 return (*this)[__n];
519 }
520
521 /**
522 * @brief Provides access to the data contained in the %vector.
523 * @param n The index of the element for which data should be
524 * accessed.
525 * @return Read-only (constant) reference to data.
526 * @throw std::out_of_range If @a n is an invalid index.
527 *
528 * This function provides for safer data access. The parameter
529 * is first checked that it is in the range of the vector. The
530 * function throws out_of_range if the check fails.
531 */
532 const_reference
533 at(size_type __n) const
534 {
535 _M_range_check(__n);
536 return (*this)[__n];
537 }
538
539 /**
540 * Returns a read/write reference to the data at the first
541 * element of the %vector.
542 */
543 reference
544 front()
545 { return *begin(); }
546
547 /**
548 * Returns a read-only (constant) reference to the data at the first
549 * element of the %vector.
550 */
551 const_reference
552 front() const
553 { return *begin(); }
554
555 /**
556 * Returns a read/write reference to the data at the last
557 * element of the %vector.
558 */
559 reference
560 back()
561 { return *(end() - 1); }
562
563 /**
564 * Returns a read-only (constant) reference to the data at the
565 * last element of the %vector.
566 */
567 const_reference
568 back() const
569 { return *(end() - 1); }
570
571 // _GLIBCXX_RESOLVE_LIB_DEFECTS
572 // DR 464. Suggestion for new member functions in standard containers.
573 // data access
574 /**
575 * Returns a pointer such that [data(), data() + size()) is a valid
576 * range. For a non-empty %vector, data() == &front().
577 */
578 pointer
579 data()
580 { return pointer(this->_M_impl._M_start); }
581
582 const_pointer
583 data() const
584 { return const_pointer(this->_M_impl._M_start); }
585
586 // [23.2.4.3] modifiers
587 /**
588 * @brief Add data to the end of the %vector.
589 * @param x Data to be added.
590 *
591 * This is a typical stack operation. The function creates an
592 * element at the end of the %vector and assigns the given data
593 * to it. Due to the nature of a %vector this operation can be
594 * done in constant time if the %vector has preallocated space
595 * available.
596 */
597 void
598 push_back(const value_type& __x)
599 {
600 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
601 {
602 this->_M_impl.construct(this->_M_impl._M_finish, __x);
603 ++this->_M_impl._M_finish;
604 }
605 else
606 _M_insert_aux(end(), __x);
607 }
608
609 /**
610 * @brief Removes last element.
611 *
612 * This is a typical stack operation. It shrinks the %vector by one.
613 *
614 * Note that no data is returned, and if the last element's
615 * data is needed, it should be retrieved before pop_back() is
616 * called.
617 */
618 void
619 pop_back()
620 {
621 --this->_M_impl._M_finish;
622 this->_M_impl.destroy(this->_M_impl._M_finish);
623 }
624
625 /**
626 * @brief Inserts given value into %vector before specified iterator.
627 * @param position An iterator into the %vector.
628 * @param x Data to be inserted.
629 * @return An iterator that points to the inserted data.
630 *
631 * This function will insert a copy of the given value before
632 * the specified location. Note that this kind of operation
633 * could be expensive for a %vector and if it is frequently
634 * used the user should consider using std::list.
635 */
636 iterator
637 insert(iterator __position, const value_type& __x);
638
639 /**
640 * @brief Inserts a number of copies of given data into the %vector.
641 * @param position An iterator into the %vector.
642 * @param n Number of elements to be inserted.
643 * @param x Data to be inserted.
644 *
645 * This function will insert a specified number of copies of
646 * the given data before the location specified by @a position.
647 *
648 * Note that this kind of operation could be expensive for a
649 * %vector and if it is frequently used the user should
650 * consider using std::list.
651 */
652 void
653 insert(iterator __position, size_type __n, const value_type& __x)
654 { _M_fill_insert(__position, __n, __x); }
655
656 /**
657 * @brief Inserts a range into the %vector.
658 * @param position An iterator into the %vector.
659 * @param first An input iterator.
660 * @param last An input iterator.
661 *
662 * This function will insert copies of the data in the range
663 * [first,last) into the %vector before the location specified
664 * by @a pos.
665 *
666 * Note that this kind of operation could be expensive for a
667 * %vector and if it is frequently used the user should
668 * consider using std::list.
669 */
670 template<typename _InputIterator>
671 void
672 insert(iterator __position, _InputIterator __first,
673 _InputIterator __last)
674 {
675 // Check whether it's an integral type. If so, it's not an iterator.
676 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
677 _M_insert_dispatch(__position, __first, __last, _Integral());
678 }
679
680 /**
681 * @brief Remove element at given position.
682 * @param position Iterator pointing to element to be erased.
683 * @return An iterator pointing to the next element (or end()).
684 *
685 * This function will erase the element at the given position and thus
686 * shorten the %vector by one.
687 *
688 * Note This operation could be expensive and if it is
689 * frequently used the user should consider using std::list.
690 * The user is also cautioned that this function only erases
691 * the element, and that if the element is itself a pointer,
692 * the pointed-to memory is not touched in any way. Managing
693 * the pointer is the user's responsibilty.
694 */
695 iterator
696 erase(iterator __position);
697
698 /**
699 * @brief Remove a range of elements.
700 * @param first Iterator pointing to the first element to be erased.
701 * @param last Iterator pointing to one past the last element to be
702 * erased.
703 * @return An iterator pointing to the element pointed to by @a last
704 * prior to erasing (or end()).
705 *
706 * This function will erase the elements in the range [first,last) and
707 * shorten the %vector accordingly.
708 *
709 * Note This operation could be expensive and if it is
710 * frequently used the user should consider using std::list.
711 * The user is also cautioned that this function only erases
712 * the elements, and that if the elements themselves are
713 * pointers, the pointed-to memory is not touched in any way.
714 * Managing the pointer is the user's responsibilty.
715 */
716 iterator
717 erase(iterator __first, iterator __last);
718
719 /**
720 * @brief Swaps data with another %vector.
721 * @param x A %vector of the same element and allocator types.
722 *
723 * This exchanges the elements between two vectors in constant time.
724 * (Three pointers, so it should be quite fast.)
725 * Note that the global std::swap() function is specialized such that
726 * std::swap(v1,v2) will feed to this function.
727 */
728 void
729 swap(vector& __x)
730 {
731 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
732 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
733 std::swap(this->_M_impl._M_end_of_storage,
734 __x._M_impl._M_end_of_storage);
735 }
736
737 /**
738 * Erases all the elements. Note that this function only erases the
739 * elements, and that if the elements themselves are pointers, the
740 * pointed-to memory is not touched in any way. Managing the pointer is
741 * the user's responsibilty.
742 */
743 void
744 clear()
745 {
746 std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
747 _M_get_Tp_allocator());
748 this->_M_impl._M_finish = this->_M_impl._M_start;
749 }
750
751 protected:
752 /**
753 * @if maint
754 * Memory expansion handler. Uses the member allocation function to
755 * obtain @a n bytes of memory, and then copies [first,last) into it.
756 * @endif
757 */
758 template<typename _ForwardIterator>
759 pointer
760 _M_allocate_and_copy(size_type __n,
761 _ForwardIterator __first, _ForwardIterator __last)
762 {
763 pointer __result = this->_M_allocate(__n);
764 try
765 {
766 std::__uninitialized_copy_a(__first, __last, __result,
767 _M_get_Tp_allocator());
768 return __result;
769 }
770 catch(...)
771 {
772 _M_deallocate(__result, __n);
773 __throw_exception_again;
774 }
775 }
776
777
778 // Internal constructor functions follow.
779
780 // Called by the range constructor to implement [23.1.1]/9
781 template<typename _Integer>
782 void
783 _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
784 {
785 this->_M_impl._M_start = _M_allocate(__n);
786 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
787 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
788 _M_get_Tp_allocator());
789 this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
790 }
791
792 // Called by the range constructor to implement [23.1.1]/9
793 template<typename _InputIterator>
794 void
795 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
796 __false_type)
797 {
798 typedef typename std::iterator_traits<_InputIterator>::
799 iterator_category _IterCategory;
800 _M_range_initialize(__first, __last, _IterCategory());
801 }
802
803 // Called by the second initialize_dispatch above
804 template<typename _InputIterator>
805 void
806 _M_range_initialize(_InputIterator __first,
807 _InputIterator __last, std::input_iterator_tag)
808 {
809 for (; __first != __last; ++__first)
810 push_back(*__first);
811 }
812
813 // Called by the second initialize_dispatch above
814 template<typename _ForwardIterator>
815 void
816 _M_range_initialize(_ForwardIterator __first,
817 _ForwardIterator __last, std::forward_iterator_tag)
818 {
819 const size_type __n = std::distance(__first, __last);
820 this->_M_impl._M_start = this->_M_allocate(__n);
821 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
822 this->_M_impl._M_finish =
823 std::__uninitialized_copy_a(__first, __last,
824 this->_M_impl._M_start,
825 _M_get_Tp_allocator());
826 }
827
828
829 // Internal assign functions follow. The *_aux functions do the actual
830 // assignment work for the range versions.
831
832 // Called by the range assign to implement [23.1.1]/9
833 template<typename _Integer>
834 void
835 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
836 {
837 _M_fill_assign(static_cast<size_type>(__n),
838 static_cast<value_type>(__val));
839 }
840
841 // Called by the range assign to implement [23.1.1]/9
842 template<typename _InputIterator>
843 void
844 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
845 __false_type)
846 {
847 typedef typename std::iterator_traits<_InputIterator>::
848 iterator_category _IterCategory;
849 _M_assign_aux(__first, __last, _IterCategory());
850 }
851
852 // Called by the second assign_dispatch above
853 template<typename _InputIterator>
854 void
855 _M_assign_aux(_InputIterator __first, _InputIterator __last,
856 std::input_iterator_tag);
857
858 // Called by the second assign_dispatch above
859 template<typename _ForwardIterator>
860 void
861 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
862 std::forward_iterator_tag);
863
864 // Called by assign(n,t), and the range assign when it turns out
865 // to be the same thing.
866 void
867 _M_fill_assign(size_type __n, const value_type& __val);
868
869
870 // Internal insert functions follow.
871
872 // Called by the range insert to implement [23.1.1]/9
873 template<typename _Integer>
874 void
875 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
876 __true_type)
877 {
878 _M_fill_insert(__pos, static_cast<size_type>(__n),
879 static_cast<value_type>(__val));
880 }
881
882 // Called by the range insert to implement [23.1.1]/9
883 template<typename _InputIterator>
884 void
885 _M_insert_dispatch(iterator __pos, _InputIterator __first,
886 _InputIterator __last, __false_type)
887 {
888 typedef typename std::iterator_traits<_InputIterator>::
889 iterator_category _IterCategory;
890 _M_range_insert(__pos, __first, __last, _IterCategory());
891 }
892
893 // Called by the second insert_dispatch above
894 template<typename _InputIterator>
895 void
896 _M_range_insert(iterator __pos, _InputIterator __first,
897 _InputIterator __last, std::input_iterator_tag);
898
899 // Called by the second insert_dispatch above
900 template<typename _ForwardIterator>
901 void
902 _M_range_insert(iterator __pos, _ForwardIterator __first,
903 _ForwardIterator __last, std::forward_iterator_tag);
904
905 // Called by insert(p,n,x), and the range insert when it turns out to be
906 // the same thing.
907 void
908 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
909
910 // Called by insert(p,x)
911 void
912 _M_insert_aux(iterator __position, const value_type& __x);
913 };
914
915
916 /**
917 * @brief Vector equality comparison.
918 * @param x A %vector.
919 * @param y A %vector of the same type as @a x.
920 * @return True iff the size and elements of the vectors are equal.
921 *
922 * This is an equivalence relation. It is linear in the size of the
923 * vectors. Vectors are considered equivalent if their sizes are equal,
924 * and if corresponding elements compare equal.
925 */
926 template<typename _Tp, typename _Alloc>
927 inline bool
928 operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
929 { return (__x.size() == __y.size()
930 && std::equal(__x.begin(), __x.end(), __y.begin())); }
931
932 /**
933 * @brief Vector ordering relation.
934 * @param x A %vector.
935 * @param y A %vector of the same type as @a x.
936 * @return True iff @a x is lexicographically less than @a y.
937 *
938 * This is a total ordering relation. It is linear in the size of the
939 * vectors. The elements must be comparable with @c <.
940 *
941 * See std::lexicographical_compare() for how the determination is made.
942 */
943 template<typename _Tp, typename _Alloc>
944 inline bool
945 operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
946 { return std::lexicographical_compare(__x.begin(), __x.end(),
947 __y.begin(), __y.end()); }
948
949 /// Based on operator==
950 template<typename _Tp, typename _Alloc>
951 inline bool
952 operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
953 { return !(__x == __y); }
954
955 /// Based on operator<
956 template<typename _Tp, typename _Alloc>
957 inline bool
958 operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
959 { return __y < __x; }
960
961 /// Based on operator<
962 template<typename _Tp, typename _Alloc>
963 inline bool
964 operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
965 { return !(__y < __x); }
966
967 /// Based on operator<
968 template<typename _Tp, typename _Alloc>
969 inline bool
970 operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
971 { return !(__x < __y); }
972
973 /// See std::vector::swap().
974 template<typename _Tp, typename _Alloc>
975 inline void
976 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
977 { __x.swap(__y); }
978 } // namespace std
979
980 #endif /* _VECTOR_H */