re PR libstdc++/15775 (Allocator::pointer consistently ignored)
[gcc.git] / libstdc++-v3 / include / bits / stl_vector.h
1 // Vector implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
54 */
55
56 /** @file stl_vector.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
59 */
60
61 #ifndef _VECTOR_H
62 #define _VECTOR_H 1
63
64 #include <bits/stl_iterator_base_funcs.h>
65 #include <bits/functexcept.h>
66 #include <bits/concept_check.h>
67
68 namespace _GLIBCXX_STD
69 {
70 /**
71 * @if maint
72 * See bits/stl_deque.h's _Deque_base for an explanation.
73 * @endif
74 */
75 template<typename _Tp, typename _Alloc>
76 struct _Vector_base
77 {
78 struct _Vector_impl
79 : public _Alloc
80 {
81 _Tp* _M_start;
82 _Tp* _M_finish;
83 _Tp* _M_end_of_storage;
84 _Vector_impl (_Alloc const& __a)
85 : _Alloc(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
86 { }
87 };
88
89 public:
90 typedef _Alloc allocator_type;
91
92 allocator_type
93 get_allocator() const
94 { return *static_cast<const _Alloc*>(&this->_M_impl); }
95
96 _Vector_base(const allocator_type& __a)
97 : _M_impl(__a)
98 { }
99
100 _Vector_base(size_t __n, const allocator_type& __a)
101 : _M_impl(__a)
102 {
103 this->_M_impl._M_start = this->_M_allocate(__n);
104 this->_M_impl._M_finish = this->_M_impl._M_start;
105 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
106 }
107
108 ~_Vector_base()
109 { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
110 - this->_M_impl._M_start); }
111
112 public:
113 _Vector_impl _M_impl;
114
115 _Tp*
116 _M_allocate(size_t __n)
117 { return _M_impl.allocate(__n); }
118
119 void
120 _M_deallocate(_Tp* __p, size_t __n)
121 { if (__p)
122 _M_impl.deallocate(__p, __n);
123 }
124 };
125
126
127 /**
128 * @brief A standard container which offers fixed time access to
129 * individual elements in any order.
130 *
131 * @ingroup Containers
132 * @ingroup Sequences
133 *
134 * Meets the requirements of a <a href="tables.html#65">container</a>, a
135 * <a href="tables.html#66">reversible container</a>, and a
136 * <a href="tables.html#67">sequence</a>, including the
137 * <a href="tables.html#68">optional sequence requirements</a> with the
138 * %exception of @c push_front and @c pop_front.
139 *
140 * In some terminology a %vector can be described as a dynamic
141 * C-style array, it offers fast and efficient access to individual
142 * elements in any order and saves the user from worrying about
143 * memory and size allocation. Subscripting ( @c [] ) access is
144 * also provided as with C-style arrays.
145 */
146 template<typename _Tp, typename _Alloc = allocator<_Tp> >
147 class vector : protected _Vector_base<_Tp, _Alloc>
148 {
149 // Concept requirements.
150 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
151
152 typedef _Vector_base<_Tp, _Alloc> _Base;
153 typedef vector<_Tp, _Alloc> vector_type;
154
155 public:
156 typedef _Tp value_type;
157 typedef typename _Alloc::pointer pointer;
158 typedef typename _Alloc::const_pointer const_pointer;
159 typedef typename _Alloc::reference reference;
160 typedef typename _Alloc::const_reference const_reference;
161 typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
162 typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
163 const_iterator;
164 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
165 typedef std::reverse_iterator<iterator> reverse_iterator;
166 typedef size_t size_type;
167 typedef ptrdiff_t difference_type;
168 typedef typename _Base::allocator_type allocator_type;
169
170 protected:
171 /** @if maint
172 * These two functions and three data members are all from the
173 * base class. They should be pretty self-explanatory, as
174 * %vector uses a simple contiguous allocation scheme. @endif
175 */
176 using _Base::_M_allocate;
177 using _Base::_M_deallocate;
178 using _Base::_M_impl;
179
180 public:
181 // [23.2.4.1] construct/copy/destroy
182 // (assign() and get_allocator() are also listed in this section)
183 /**
184 * @brief Default constructor creates no elements.
185 */
186 explicit
187 vector(const allocator_type& __a = allocator_type())
188 : _Base(__a)
189 { }
190
191 /**
192 * @brief Create a %vector with copies of an exemplar element.
193 * @param n The number of elements to initially create.
194 * @param value An element to copy.
195 *
196 * This constructor fills the %vector with @a n copies of @a value.
197 */
198 vector(size_type __n, const value_type& __value,
199 const allocator_type& __a = allocator_type())
200 : _Base(__n, __a)
201 { this->_M_impl._M_finish = std::uninitialized_fill_n(this->
202 _M_impl._M_start,
203 __n, __value); }
204
205 /**
206 * @brief Create a %vector with default elements.
207 * @param n The number of elements to initially create.
208 *
209 * This constructor fills the %vector with @a n copies of a
210 * default-constructed element.
211 */
212 explicit
213 vector(size_type __n)
214 : _Base(__n, allocator_type())
215 { this->_M_impl._M_finish = std::uninitialized_fill_n(this->
216 _M_impl._M_start,
217 __n,
218 value_type()); }
219
220 /**
221 * @brief %Vector copy constructor.
222 * @param x A %vector of identical element and allocator types.
223 *
224 * The newly-created %vector uses a copy of the allocation
225 * object used by @a x. All the elements of @a x are copied,
226 * but any extra memory in
227 * @a x (for fast expansion) will not be copied.
228 */
229 vector(const vector& __x)
230 : _Base(__x.size(), __x.get_allocator())
231 { this->_M_impl._M_finish = std::uninitialized_copy(__x.begin(),
232 __x.end(),
233 this->
234 _M_impl._M_start);
235 }
236
237 /**
238 * @brief Builds a %vector from a range.
239 * @param first An input iterator.
240 * @param last An input iterator.
241 *
242 * Create a %vector consisting of copies of the elements from
243 * [first,last).
244 *
245 * If the iterators are forward, bidirectional, or
246 * random-access, then this will call the elements' copy
247 * constructor N times (where N is distance(first,last)) and do
248 * no memory reallocation. But if only input iterators are
249 * used, then this will do at most 2N calls to the copy
250 * constructor, and logN memory reallocations.
251 */
252 template<typename _InputIterator>
253 vector(_InputIterator __first, _InputIterator __last,
254 const allocator_type& __a = allocator_type())
255 : _Base(__a)
256 {
257 // Check whether it's an integral type. If so, it's not an iterator.
258 typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
259 _M_initialize_dispatch(__first, __last, _Integral());
260 }
261
262 /**
263 * The dtor only erases the elements, and note that if the
264 * elements themselves are pointers, the pointed-to memory is
265 * not touched in any way. Managing the pointer is the user's
266 * responsibilty.
267 */
268 ~vector()
269 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish); }
270
271 /**
272 * @brief %Vector assignment operator.
273 * @param x A %vector of identical element and allocator types.
274 *
275 * All the elements of @a x are copied, but any extra memory in
276 * @a x (for fast expansion) will not be copied. Unlike the
277 * copy constructor, the allocator object is not copied.
278 */
279 vector&
280 operator=(const vector& __x);
281
282 /**
283 * @brief Assigns a given value to a %vector.
284 * @param n Number of elements to be assigned.
285 * @param val Value to be assigned.
286 *
287 * This function fills a %vector with @a n copies of the given
288 * value. Note that the assignment completely changes the
289 * %vector and that the resulting %vector's size is the same as
290 * the number of elements assigned. Old data may be lost.
291 */
292 void
293 assign(size_type __n, const value_type& __val)
294 { _M_fill_assign(__n, __val); }
295
296 /**
297 * @brief Assigns a range to a %vector.
298 * @param first An input iterator.
299 * @param last An input iterator.
300 *
301 * This function fills a %vector with copies of the elements in the
302 * range [first,last).
303 *
304 * Note that the assignment completely changes the %vector and
305 * that the resulting %vector's size is the same as the number
306 * of elements assigned. Old data may be lost.
307 */
308 template<typename _InputIterator>
309 void
310 assign(_InputIterator __first, _InputIterator __last)
311 {
312 // Check whether it's an integral type. If so, it's not an iterator.
313 typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
314 _M_assign_dispatch(__first, __last, _Integral());
315 }
316
317 /// Get a copy of the memory allocation object.
318 using _Base::get_allocator;
319
320 // iterators
321 /**
322 * Returns a read/write iterator that points to the first
323 * element in the %vector. Iteration is done in ordinary
324 * element order.
325 */
326 iterator
327 begin()
328 { return iterator (this->_M_impl._M_start); }
329
330 /**
331 * Returns a read-only (constant) iterator that points to the
332 * first element in the %vector. Iteration is done in ordinary
333 * element order.
334 */
335 const_iterator
336 begin() const
337 { return const_iterator (this->_M_impl._M_start); }
338
339 /**
340 * Returns a read/write iterator that points one past the last
341 * element in the %vector. Iteration is done in ordinary
342 * element order.
343 */
344 iterator
345 end()
346 { return iterator (this->_M_impl._M_finish); }
347
348 /**
349 * Returns a read-only (constant) iterator that points one past
350 * the last element in the %vector. Iteration is done in
351 * ordinary element order.
352 */
353 const_iterator
354 end() const
355 { return const_iterator (this->_M_impl._M_finish); }
356
357 /**
358 * Returns a read/write reverse iterator that points to the
359 * last element in the %vector. Iteration is done in reverse
360 * element order.
361 */
362 reverse_iterator
363 rbegin()
364 { return reverse_iterator(end()); }
365
366 /**
367 * Returns a read-only (constant) reverse iterator that points
368 * to the last element in the %vector. Iteration is done in
369 * reverse element order.
370 */
371 const_reverse_iterator
372 rbegin() const
373 { return const_reverse_iterator(end()); }
374
375 /**
376 * Returns a read/write reverse iterator that points to one
377 * before the first element in the %vector. Iteration is done
378 * in reverse element order.
379 */
380 reverse_iterator
381 rend()
382 { return reverse_iterator(begin()); }
383
384 /**
385 * Returns a read-only (constant) reverse iterator that points
386 * to one before the first element in the %vector. Iteration
387 * is done in reverse element order.
388 */
389 const_reverse_iterator
390 rend() const
391 { return const_reverse_iterator(begin()); }
392
393 // [23.2.4.2] capacity
394 /** Returns the number of elements in the %vector. */
395 size_type
396 size() const
397 { return size_type(end() - begin()); }
398
399 /** Returns the size() of the largest possible %vector. */
400 size_type
401 max_size() const
402 { return size_type(-1) / sizeof(value_type); }
403
404 /**
405 * @brief Resizes the %vector to the specified number of elements.
406 * @param new_size Number of elements the %vector should contain.
407 * @param x Data with which new elements should be populated.
408 *
409 * This function will %resize the %vector to the specified
410 * number of elements. If the number is smaller than the
411 * %vector's current size the %vector is truncated, otherwise
412 * the %vector is extended and new elements are populated with
413 * given data.
414 */
415 void
416 resize(size_type __new_size, const value_type& __x)
417 {
418 if (__new_size < size())
419 erase(begin() + __new_size, end());
420 else
421 insert(end(), __new_size - size(), __x);
422 }
423
424 /**
425 * @brief Resizes the %vector to the specified number of elements.
426 * @param new_size Number of elements the %vector should contain.
427 *
428 * This function will resize the %vector to the specified
429 * number of elements. If the number is smaller than the
430 * %vector's current size the %vector is truncated, otherwise
431 * the %vector is extended and new elements are
432 * default-constructed.
433 */
434 void
435 resize(size_type __new_size)
436 { resize(__new_size, value_type()); }
437
438 /**
439 * Returns the total number of elements that the %vector can
440 * hold before needing to allocate more memory.
441 */
442 size_type
443 capacity() const
444 { return size_type(const_iterator(this->_M_impl._M_end_of_storage)
445 - begin()); }
446
447 /**
448 * Returns true if the %vector is empty. (Thus begin() would
449 * equal end().)
450 */
451 bool
452 empty() const
453 { return begin() == end(); }
454
455 /**
456 * @brief Attempt to preallocate enough memory for specified number of
457 * elements.
458 * @param n Number of elements required.
459 * @throw std::length_error If @a n exceeds @c max_size().
460 *
461 * This function attempts to reserve enough memory for the
462 * %vector to hold the specified number of elements. If the
463 * number requested is more than max_size(), length_error is
464 * thrown.
465 *
466 * The advantage of this function is that if optimal code is a
467 * necessity and the user can determine the number of elements
468 * that will be required, the user can reserve the memory in
469 * %advance, and thus prevent a possible reallocation of memory
470 * and copying of %vector data.
471 */
472 void
473 reserve(size_type __n);
474
475 // element access
476 /**
477 * @brief Subscript access to the data contained in the %vector.
478 * @param n The index of the element for which data should be
479 * accessed.
480 * @return Read/write reference to data.
481 *
482 * This operator allows for easy, array-style, data access.
483 * Note that data access with this operator is unchecked and
484 * out_of_range lookups are not defined. (For checked lookups
485 * see at().)
486 */
487 reference
488 operator[](size_type __n)
489 { return *(begin() + __n); }
490
491 /**
492 * @brief Subscript access to the data contained in the %vector.
493 * @param n The index of the element for which data should be
494 * accessed.
495 * @return Read-only (constant) reference to data.
496 *
497 * This operator allows for easy, array-style, data access.
498 * Note that data access with this operator is unchecked and
499 * out_of_range lookups are not defined. (For checked lookups
500 * see at().)
501 */
502 const_reference
503 operator[](size_type __n) const
504 { return *(begin() + __n); }
505
506 protected:
507 /// @if maint Safety check used only from at(). @endif
508 void
509 _M_range_check(size_type __n) const
510 {
511 if (__n >= this->size())
512 __throw_out_of_range(__N("vector::_M_range_check"));
513 }
514
515 public:
516 /**
517 * @brief Provides access to the data contained in the %vector.
518 * @param n The index of the element for which data should be
519 * accessed.
520 * @return Read/write reference to data.
521 * @throw std::out_of_range If @a n is an invalid index.
522 *
523 * This function provides for safer data access. The parameter
524 * is first checked that it is in the range of the vector. The
525 * function throws out_of_range if the check fails.
526 */
527 reference
528 at(size_type __n)
529 {
530 _M_range_check(__n);
531 return (*this)[__n];
532 }
533
534 /**
535 * @brief Provides access to the data contained in the %vector.
536 * @param n The index of the element for which data should be
537 * accessed.
538 * @return Read-only (constant) reference to data.
539 * @throw std::out_of_range If @a n is an invalid index.
540 *
541 * This function provides for safer data access. The parameter
542 * is first checked that it is in the range of the vector. The
543 * function throws out_of_range if the check fails.
544 */
545 const_reference
546 at(size_type __n) const
547 {
548 _M_range_check(__n);
549 return (*this)[__n];
550 }
551
552 /**
553 * Returns a read/write reference to the data at the first
554 * element of the %vector.
555 */
556 reference
557 front()
558 { return *begin(); }
559
560 /**
561 * Returns a read-only (constant) reference to the data at the first
562 * element of the %vector.
563 */
564 const_reference
565 front() const
566 { return *begin(); }
567
568 /**
569 * Returns a read/write reference to the data at the last
570 * element of the %vector.
571 */
572 reference
573 back()
574 { return *(end() - 1); }
575
576 /**
577 * Returns a read-only (constant) reference to the data at the
578 * last element of the %vector.
579 */
580 const_reference
581 back() const
582 { return *(end() - 1); }
583
584 // [23.2.4.3] modifiers
585 /**
586 * @brief Add data to the end of the %vector.
587 * @param x Data to be added.
588 *
589 * This is a typical stack operation. The function creates an
590 * element at the end of the %vector and assigns the given data
591 * to it. Due to the nature of a %vector this operation can be
592 * done in constant time if the %vector has preallocated space
593 * available.
594 */
595 void
596 push_back(const value_type& __x)
597 {
598 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
599 {
600 std::_Construct(this->_M_impl._M_finish, __x);
601 ++this->_M_impl._M_finish;
602 }
603 else
604 _M_insert_aux(end(), __x);
605 }
606
607 /**
608 * @brief Removes last element.
609 *
610 * This is a typical stack operation. It shrinks the %vector by one.
611 *
612 * Note that no data is returned, and if the last element's
613 * data is needed, it should be retrieved before pop_back() is
614 * called.
615 */
616 void
617 pop_back()
618 {
619 --this->_M_impl._M_finish;
620 std::_Destroy(this->_M_impl._M_finish);
621 }
622
623 /**
624 * @brief Inserts given value into %vector before specified iterator.
625 * @param position An iterator into the %vector.
626 * @param x Data to be inserted.
627 * @return An iterator that points to the inserted data.
628 *
629 * This function will insert a copy of the given value before
630 * the specified location. Note that this kind of operation
631 * could be expensive for a %vector and if it is frequently
632 * used the user should consider using std::list.
633 */
634 iterator
635 insert(iterator __position, const value_type& __x);
636
637 /**
638 * @brief Inserts a number of copies of given data into the %vector.
639 * @param position An iterator into the %vector.
640 * @param n Number of elements to be inserted.
641 * @param x Data to be inserted.
642 *
643 * This function will insert a specified number of copies of
644 * the given data before the location specified by @a position.
645 *
646 * Note that this kind of operation could be expensive for a
647 * %vector and if it is frequently used the user should
648 * consider using std::list.
649 */
650 void
651 insert(iterator __position, size_type __n, const value_type& __x)
652 { _M_fill_insert(__position, __n, __x); }
653
654 /**
655 * @brief Inserts a range into the %vector.
656 * @param position An iterator into the %vector.
657 * @param first An input iterator.
658 * @param last An input iterator.
659 *
660 * This function will insert copies of the data in the range
661 * [first,last) into the %vector before the location specified
662 * by @a pos.
663 *
664 * Note that this kind of operation could be expensive for a
665 * %vector and if it is frequently used the user should
666 * consider using std::list.
667 */
668 template<typename _InputIterator>
669 void
670 insert(iterator __position, _InputIterator __first,
671 _InputIterator __last)
672 {
673 // Check whether it's an integral type. If so, it's not an iterator.
674 typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
675 _M_insert_dispatch(__position, __first, __last, _Integral());
676 }
677
678 /**
679 * @brief Remove element at given position.
680 * @param position Iterator pointing to element to be erased.
681 * @return An iterator pointing to the next element (or end()).
682 *
683 * This function will erase the element at the given position and thus
684 * shorten the %vector by one.
685 *
686 * Note This operation could be expensive and if it is
687 * frequently used the user should consider using std::list.
688 * The user is also cautioned that this function only erases
689 * the element, and that if the element is itself a pointer,
690 * the pointed-to memory is not touched in any way. Managing
691 * the pointer is the user's responsibilty.
692 */
693 iterator
694 erase(iterator __position);
695
696 /**
697 * @brief Remove a range of elements.
698 * @param first Iterator pointing to the first element to be erased.
699 * @param last Iterator pointing to one past the last element to be
700 * erased.
701 * @return An iterator pointing to the element pointed to by @a last
702 * prior to erasing (or end()).
703 *
704 * This function will erase the elements in the range [first,last) and
705 * shorten the %vector accordingly.
706 *
707 * Note This operation could be expensive and if it is
708 * frequently used the user should consider using std::list.
709 * The user is also cautioned that this function only erases
710 * the elements, and that if the elements themselves are
711 * pointers, the pointed-to memory is not touched in any way.
712 * Managing the pointer is the user's responsibilty.
713 */
714 iterator
715 erase(iterator __first, iterator __last);
716
717 /**
718 * @brief Swaps data with another %vector.
719 * @param x A %vector of the same element and allocator types.
720 *
721 * This exchanges the elements between two vectors in constant time.
722 * (Three pointers, so it should be quite fast.)
723 * Note that the global std::swap() function is specialized such that
724 * std::swap(v1,v2) will feed to this function.
725 */
726 void
727 swap(vector& __x)
728 {
729 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
730 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
731 std::swap(this->_M_impl._M_end_of_storage,
732 __x._M_impl._M_end_of_storage);
733 }
734
735 /**
736 * Erases all the elements. Note that this function only erases the
737 * elements, and that if the elements themselves are pointers, the
738 * pointed-to memory is not touched in any way. Managing the pointer is
739 * the user's responsibilty.
740 */
741 void
742 clear()
743 { erase(begin(), end()); }
744
745 protected:
746 /**
747 * @if maint
748 * Memory expansion handler. Uses the member allocation function to
749 * obtain @a n bytes of memory, and then copies [first,last) into it.
750 * @endif
751 */
752 template<typename _ForwardIterator>
753 pointer
754 _M_allocate_and_copy(size_type __n,
755 _ForwardIterator __first, _ForwardIterator __last)
756 {
757 pointer __result = this->_M_allocate(__n);
758 try
759 {
760 std::uninitialized_copy(__first, __last, __result);
761 return __result;
762 }
763 catch(...)
764 {
765 _M_deallocate(__result, __n);
766 __throw_exception_again;
767 }
768 }
769
770
771 // Internal constructor functions follow.
772
773 // Called by the range constructor to implement [23.1.1]/9
774 template<typename _Integer>
775 void
776 _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
777 {
778 this->_M_impl._M_start = _M_allocate(__n);
779 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
780 this->_M_impl._M_finish = std::uninitialized_fill_n(this->
781 _M_impl._M_start,
782 __n, __value);
783 }
784
785 // Called by the range constructor to implement [23.1.1]/9
786 template<typename _InputIterator>
787 void
788 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
789 __false_type)
790 {
791 typedef typename iterator_traits<_InputIterator>::iterator_category
792 _IterCategory;
793 _M_range_initialize(__first, __last, _IterCategory());
794 }
795
796 // Called by the second initialize_dispatch above
797 template<typename _InputIterator>
798 void
799 _M_range_initialize(_InputIterator __first,
800 _InputIterator __last, input_iterator_tag)
801 {
802 for ( ; __first != __last; ++__first)
803 push_back(*__first);
804 }
805
806 // Called by the second initialize_dispatch above
807 template<typename _ForwardIterator>
808 void
809 _M_range_initialize(_ForwardIterator __first,
810 _ForwardIterator __last, forward_iterator_tag)
811 {
812 size_type __n = std::distance(__first, __last);
813 this->_M_impl._M_start = this->_M_allocate(__n);
814 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
815 this->_M_impl._M_finish = std::uninitialized_copy(__first, __last,
816 this->
817 _M_impl._M_start);
818 }
819
820
821 // Internal assign functions follow. The *_aux functions do the actual
822 // assignment work for the range versions.
823
824 // Called by the range assign to implement [23.1.1]/9
825 template<typename _Integer>
826 void
827 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
828 {
829 _M_fill_assign(static_cast<size_type>(__n),
830 static_cast<value_type>(__val));
831 }
832
833 // Called by the range assign to implement [23.1.1]/9
834 template<typename _InputIterator>
835 void
836 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
837 __false_type)
838 {
839 typedef typename iterator_traits<_InputIterator>::iterator_category
840 _IterCategory;
841 _M_assign_aux(__first, __last, _IterCategory());
842 }
843
844 // Called by the second assign_dispatch above
845 template<typename _InputIterator>
846 void
847 _M_assign_aux(_InputIterator __first, _InputIterator __last,
848 input_iterator_tag);
849
850 // Called by the second assign_dispatch above
851 template<typename _ForwardIterator>
852 void
853 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
854 forward_iterator_tag);
855
856 // Called by assign(n,t), and the range assign when it turns out
857 // to be the same thing.
858 void
859 _M_fill_assign(size_type __n, const value_type& __val);
860
861
862 // Internal insert functions follow.
863
864 // Called by the range insert to implement [23.1.1]/9
865 template<typename _Integer>
866 void
867 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
868 __true_type)
869 {
870 _M_fill_insert(__pos, static_cast<size_type>(__n),
871 static_cast<value_type>(__val));
872 }
873
874 // Called by the range insert to implement [23.1.1]/9
875 template<typename _InputIterator>
876 void
877 _M_insert_dispatch(iterator __pos, _InputIterator __first,
878 _InputIterator __last, __false_type)
879 {
880 typedef typename iterator_traits<_InputIterator>::iterator_category
881 _IterCategory;
882 _M_range_insert(__pos, __first, __last, _IterCategory());
883 }
884
885 // Called by the second insert_dispatch above
886 template<typename _InputIterator>
887 void
888 _M_range_insert(iterator __pos, _InputIterator __first,
889 _InputIterator __last, input_iterator_tag);
890
891 // Called by the second insert_dispatch above
892 template<typename _ForwardIterator>
893 void
894 _M_range_insert(iterator __pos, _ForwardIterator __first,
895 _ForwardIterator __last, forward_iterator_tag);
896
897 // Called by insert(p,n,x), and the range insert when it turns out to be
898 // the same thing.
899 void
900 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
901
902 // Called by insert(p,x)
903 void
904 _M_insert_aux(iterator __position, const value_type& __x);
905 };
906
907
908 /**
909 * @brief Vector equality comparison.
910 * @param x A %vector.
911 * @param y A %vector of the same type as @a x.
912 * @return True iff the size and elements of the vectors are equal.
913 *
914 * This is an equivalence relation. It is linear in the size of the
915 * vectors. Vectors are considered equivalent if their sizes are equal,
916 * and if corresponding elements compare equal.
917 */
918 template<typename _Tp, typename _Alloc>
919 inline bool
920 operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
921 { return (__x.size() == __y.size()
922 && std::equal(__x.begin(), __x.end(), __y.begin())); }
923
924 /**
925 * @brief Vector ordering relation.
926 * @param x A %vector.
927 * @param y A %vector of the same type as @a x.
928 * @return True iff @a x is lexicographically less than @a y.
929 *
930 * This is a total ordering relation. It is linear in the size of the
931 * vectors. The elements must be comparable with @c <.
932 *
933 * See std::lexicographical_compare() for how the determination is made.
934 */
935 template<typename _Tp, typename _Alloc>
936 inline bool
937 operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
938 { return std::lexicographical_compare(__x.begin(), __x.end(),
939 __y.begin(), __y.end()); }
940
941 /// Based on operator==
942 template<typename _Tp, typename _Alloc>
943 inline bool
944 operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
945 { return !(__x == __y); }
946
947 /// Based on operator<
948 template<typename _Tp, typename _Alloc>
949 inline bool
950 operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
951 { return __y < __x; }
952
953 /// Based on operator<
954 template<typename _Tp, typename _Alloc>
955 inline bool
956 operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
957 { return !(__y < __x); }
958
959 /// Based on operator<
960 template<typename _Tp, typename _Alloc>
961 inline bool
962 operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
963 { return !(__x < __y); }
964
965 /// See std::vector::swap().
966 template<typename _Tp, typename _Alloc>
967 inline void
968 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
969 { __x.swap(__y); }
970 } // namespace std
971
972 #endif /* _VECTOR_H */