Add parallel mode.
[gcc.git] / libstdc++-v3 / include / bits / stl_vector.h
1 // Vector implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 // USA.
21
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
30
31 /*
32 *
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
35 *
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation. Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose. It is provided "as is" without express or implied warranty.
43 *
44 *
45 * Copyright (c) 1996
46 * Silicon Graphics Computer Systems, Inc.
47 *
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation. Silicon Graphics makes no
53 * representations about the suitability of this software for any
54 * purpose. It is provided "as is" without express or implied warranty.
55 */
56
57 /** @file stl_vector.h
58 * This is an internal header file, included by other library headers.
59 * You should not attempt to use it directly.
60 */
61
62 #ifndef _STL_VECTOR_H
63 #define _STL_VECTOR_H 1
64
65 #include <bits/stl_iterator_base_funcs.h>
66 #include <bits/functexcept.h>
67 #include <bits/concept_check.h>
68
69 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
70
71 /**
72 * @if maint
73 * See bits/stl_deque.h's _Deque_base for an explanation.
74 * @endif
75 */
76 template<typename _Tp, typename _Alloc>
77 struct _Vector_base
78 {
79 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
80
81 struct _Vector_impl
82 : public _Tp_alloc_type
83 {
84 _Tp* _M_start;
85 _Tp* _M_finish;
86 _Tp* _M_end_of_storage;
87 _Vector_impl(_Tp_alloc_type const& __a)
88 : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
89 { }
90 };
91
92 public:
93 typedef _Alloc allocator_type;
94
95 _Tp_alloc_type&
96 _M_get_Tp_allocator()
97 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
98
99 const _Tp_alloc_type&
100 _M_get_Tp_allocator() const
101 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
102
103 allocator_type
104 get_allocator() const
105 { return allocator_type(_M_get_Tp_allocator()); }
106
107 _Vector_base(const allocator_type& __a)
108 : _M_impl(__a)
109 { }
110
111 _Vector_base(size_t __n, const allocator_type& __a)
112 : _M_impl(__a)
113 {
114 this->_M_impl._M_start = this->_M_allocate(__n);
115 this->_M_impl._M_finish = this->_M_impl._M_start;
116 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
117 }
118
119 ~_Vector_base()
120 { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
121 - this->_M_impl._M_start); }
122
123 public:
124 _Vector_impl _M_impl;
125
126 _Tp*
127 _M_allocate(size_t __n)
128 { return __n != 0 ? _M_impl.allocate(__n) : 0; }
129
130 void
131 _M_deallocate(_Tp* __p, size_t __n)
132 {
133 if (__p)
134 _M_impl.deallocate(__p, __n);
135 }
136 };
137
138
139 /**
140 * @brief A standard container which offers fixed time access to
141 * individual elements in any order.
142 *
143 * @ingroup Containers
144 * @ingroup Sequences
145 *
146 * Meets the requirements of a <a href="tables.html#65">container</a>, a
147 * <a href="tables.html#66">reversible container</a>, and a
148 * <a href="tables.html#67">sequence</a>, including the
149 * <a href="tables.html#68">optional sequence requirements</a> with the
150 * %exception of @c push_front and @c pop_front.
151 *
152 * In some terminology a %vector can be described as a dynamic
153 * C-style array, it offers fast and efficient access to individual
154 * elements in any order and saves the user from worrying about
155 * memory and size allocation. Subscripting ( @c [] ) access is
156 * also provided as with C-style arrays.
157 */
158 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
159 class vector : protected _Vector_base<_Tp, _Alloc>
160 {
161 // Concept requirements.
162 typedef typename _Alloc::value_type _Alloc_value_type;
163 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
164 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
165
166 typedef _Vector_base<_Tp, _Alloc> _Base;
167 typedef vector<_Tp, _Alloc> vector_type;
168 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
169
170 public:
171 typedef _Tp value_type;
172 typedef typename _Tp_alloc_type::pointer pointer;
173 typedef typename _Tp_alloc_type::const_pointer const_pointer;
174 typedef typename _Tp_alloc_type::reference reference;
175 typedef typename _Tp_alloc_type::const_reference const_reference;
176 typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
177 typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
178 const_iterator;
179 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
180 typedef std::reverse_iterator<iterator> reverse_iterator;
181 typedef size_t size_type;
182 typedef ptrdiff_t difference_type;
183 typedef _Alloc allocator_type;
184
185 protected:
186 using _Base::_M_allocate;
187 using _Base::_M_deallocate;
188 using _Base::_M_impl;
189 using _Base::_M_get_Tp_allocator;
190
191 public:
192 // [23.2.4.1] construct/copy/destroy
193 // (assign() and get_allocator() are also listed in this section)
194 /**
195 * @brief Default constructor creates no elements.
196 */
197 explicit
198 vector(const allocator_type& __a = allocator_type())
199 : _Base(__a)
200 { }
201
202 /**
203 * @brief Create a %vector with copies of an exemplar element.
204 * @param n The number of elements to initially create.
205 * @param value An element to copy.
206 *
207 * This constructor fills the %vector with @a n copies of @a value.
208 */
209 explicit
210 vector(size_type __n, const value_type& __value = value_type(),
211 const allocator_type& __a = allocator_type())
212 : _Base(__n, __a)
213 { _M_fill_initialize(__n, __value); }
214
215 /**
216 * @brief %Vector copy constructor.
217 * @param x A %vector of identical element and allocator types.
218 *
219 * The newly-created %vector uses a copy of the allocation
220 * object used by @a x. All the elements of @a x are copied,
221 * but any extra memory in
222 * @a x (for fast expansion) will not be copied.
223 */
224 vector(const vector& __x)
225 : _Base(__x.size(), __x._M_get_Tp_allocator())
226 { this->_M_impl._M_finish =
227 std::__uninitialized_copy_a(__x.begin(), __x.end(),
228 this->_M_impl._M_start,
229 _M_get_Tp_allocator());
230 }
231
232 /**
233 * @brief Builds a %vector from a range.
234 * @param first An input iterator.
235 * @param last An input iterator.
236 *
237 * Create a %vector consisting of copies of the elements from
238 * [first,last).
239 *
240 * If the iterators are forward, bidirectional, or
241 * random-access, then this will call the elements' copy
242 * constructor N times (where N is distance(first,last)) and do
243 * no memory reallocation. But if only input iterators are
244 * used, then this will do at most 2N calls to the copy
245 * constructor, and logN memory reallocations.
246 */
247 template<typename _InputIterator>
248 vector(_InputIterator __first, _InputIterator __last,
249 const allocator_type& __a = allocator_type())
250 : _Base(__a)
251 {
252 // Check whether it's an integral type. If so, it's not an iterator.
253 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
254 _M_initialize_dispatch(__first, __last, _Integral());
255 }
256
257 /**
258 * The dtor only erases the elements, and note that if the
259 * elements themselves are pointers, the pointed-to memory is
260 * not touched in any way. Managing the pointer is the user's
261 * responsibilty.
262 */
263 ~vector()
264 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
265 _M_get_Tp_allocator()); }
266
267 /**
268 * @brief %Vector assignment operator.
269 * @param x A %vector of identical element and allocator types.
270 *
271 * All the elements of @a x are copied, but any extra memory in
272 * @a x (for fast expansion) will not be copied. Unlike the
273 * copy constructor, the allocator object is not copied.
274 */
275 vector&
276 operator=(const vector& __x);
277
278 /**
279 * @brief Assigns a given value to a %vector.
280 * @param n Number of elements to be assigned.
281 * @param val Value to be assigned.
282 *
283 * This function fills a %vector with @a n copies of the given
284 * value. Note that the assignment completely changes the
285 * %vector and that the resulting %vector's size is the same as
286 * the number of elements assigned. Old data may be lost.
287 */
288 void
289 assign(size_type __n, const value_type& __val)
290 { _M_fill_assign(__n, __val); }
291
292 /**
293 * @brief Assigns a range to a %vector.
294 * @param first An input iterator.
295 * @param last An input iterator.
296 *
297 * This function fills a %vector with copies of the elements in the
298 * range [first,last).
299 *
300 * Note that the assignment completely changes the %vector and
301 * that the resulting %vector's size is the same as the number
302 * of elements assigned. Old data may be lost.
303 */
304 template<typename _InputIterator>
305 void
306 assign(_InputIterator __first, _InputIterator __last)
307 {
308 // Check whether it's an integral type. If so, it's not an iterator.
309 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
310 _M_assign_dispatch(__first, __last, _Integral());
311 }
312
313 /// Get a copy of the memory allocation object.
314 using _Base::get_allocator;
315
316 // iterators
317 /**
318 * Returns a read/write iterator that points to the first
319 * element in the %vector. Iteration is done in ordinary
320 * element order.
321 */
322 iterator
323 begin()
324 { return iterator(this->_M_impl._M_start); }
325
326 /**
327 * Returns a read-only (constant) iterator that points to the
328 * first element in the %vector. Iteration is done in ordinary
329 * element order.
330 */
331 const_iterator
332 begin() const
333 { return const_iterator(this->_M_impl._M_start); }
334
335 /**
336 * Returns a read/write iterator that points one past the last
337 * element in the %vector. Iteration is done in ordinary
338 * element order.
339 */
340 iterator
341 end()
342 { return iterator(this->_M_impl._M_finish); }
343
344 /**
345 * Returns a read-only (constant) iterator that points one past
346 * the last element in the %vector. Iteration is done in
347 * ordinary element order.
348 */
349 const_iterator
350 end() const
351 { return const_iterator(this->_M_impl._M_finish); }
352
353 /**
354 * Returns a read/write reverse iterator that points to the
355 * last element in the %vector. Iteration is done in reverse
356 * element order.
357 */
358 reverse_iterator
359 rbegin()
360 { return reverse_iterator(end()); }
361
362 /**
363 * Returns a read-only (constant) reverse iterator that points
364 * to the last element in the %vector. Iteration is done in
365 * reverse element order.
366 */
367 const_reverse_iterator
368 rbegin() const
369 { return const_reverse_iterator(end()); }
370
371 /**
372 * Returns a read/write reverse iterator that points to one
373 * before the first element in the %vector. Iteration is done
374 * in reverse element order.
375 */
376 reverse_iterator
377 rend()
378 { return reverse_iterator(begin()); }
379
380 /**
381 * Returns a read-only (constant) reverse iterator that points
382 * to one before the first element in the %vector. Iteration
383 * is done in reverse element order.
384 */
385 const_reverse_iterator
386 rend() const
387 { return const_reverse_iterator(begin()); }
388
389 // [23.2.4.2] capacity
390 /** Returns the number of elements in the %vector. */
391 size_type
392 size() const
393 { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
394
395 /** Returns the size() of the largest possible %vector. */
396 size_type
397 max_size() const
398 { return _M_get_Tp_allocator().max_size(); }
399
400 /**
401 * @brief Resizes the %vector to the specified number of elements.
402 * @param new_size Number of elements the %vector should contain.
403 * @param x Data with which new elements should be populated.
404 *
405 * This function will %resize the %vector to the specified
406 * number of elements. If the number is smaller than the
407 * %vector's current size the %vector is truncated, otherwise
408 * the %vector is extended and new elements are populated with
409 * given data.
410 */
411 void
412 resize(size_type __new_size, value_type __x = value_type())
413 {
414 if (__new_size < size())
415 _M_erase_at_end(this->_M_impl._M_start + __new_size);
416 else
417 insert(end(), __new_size - size(), __x);
418 }
419
420 /**
421 * Returns the total number of elements that the %vector can
422 * hold before needing to allocate more memory.
423 */
424 size_type
425 capacity() const
426 { return size_type(this->_M_impl._M_end_of_storage
427 - this->_M_impl._M_start); }
428
429 /**
430 * Returns true if the %vector is empty. (Thus begin() would
431 * equal end().)
432 */
433 bool
434 empty() const
435 { return begin() == end(); }
436
437 /**
438 * @brief Attempt to preallocate enough memory for specified number of
439 * elements.
440 * @param n Number of elements required.
441 * @throw std::length_error If @a n exceeds @c max_size().
442 *
443 * This function attempts to reserve enough memory for the
444 * %vector to hold the specified number of elements. If the
445 * number requested is more than max_size(), length_error is
446 * thrown.
447 *
448 * The advantage of this function is that if optimal code is a
449 * necessity and the user can determine the number of elements
450 * that will be required, the user can reserve the memory in
451 * %advance, and thus prevent a possible reallocation of memory
452 * and copying of %vector data.
453 */
454 void
455 reserve(size_type __n);
456
457 // element access
458 /**
459 * @brief Subscript access to the data contained in the %vector.
460 * @param n The index of the element for which data should be
461 * accessed.
462 * @return Read/write reference to data.
463 *
464 * This operator allows for easy, array-style, data access.
465 * Note that data access with this operator is unchecked and
466 * out_of_range lookups are not defined. (For checked lookups
467 * see at().)
468 */
469 reference
470 operator[](size_type __n)
471 { return *(this->_M_impl._M_start + __n); }
472
473 /**
474 * @brief Subscript access to the data contained in the %vector.
475 * @param n The index of the element for which data should be
476 * accessed.
477 * @return Read-only (constant) reference to data.
478 *
479 * This operator allows for easy, array-style, data access.
480 * Note that data access with this operator is unchecked and
481 * out_of_range lookups are not defined. (For checked lookups
482 * see at().)
483 */
484 const_reference
485 operator[](size_type __n) const
486 { return *(this->_M_impl._M_start + __n); }
487
488 protected:
489 /// @if maint Safety check used only from at(). @endif
490 void
491 _M_range_check(size_type __n) const
492 {
493 if (__n >= this->size())
494 __throw_out_of_range(__N("vector::_M_range_check"));
495 }
496
497 public:
498 /**
499 * @brief Provides access to the data contained in the %vector.
500 * @param n The index of the element for which data should be
501 * accessed.
502 * @return Read/write reference to data.
503 * @throw std::out_of_range If @a n is an invalid index.
504 *
505 * This function provides for safer data access. The parameter
506 * is first checked that it is in the range of the vector. The
507 * function throws out_of_range if the check fails.
508 */
509 reference
510 at(size_type __n)
511 {
512 _M_range_check(__n);
513 return (*this)[__n];
514 }
515
516 /**
517 * @brief Provides access to the data contained in the %vector.
518 * @param n The index of the element for which data should be
519 * accessed.
520 * @return Read-only (constant) reference to data.
521 * @throw std::out_of_range If @a n is an invalid index.
522 *
523 * This function provides for safer data access. The parameter
524 * is first checked that it is in the range of the vector. The
525 * function throws out_of_range if the check fails.
526 */
527 const_reference
528 at(size_type __n) const
529 {
530 _M_range_check(__n);
531 return (*this)[__n];
532 }
533
534 /**
535 * Returns a read/write reference to the data at the first
536 * element of the %vector.
537 */
538 reference
539 front()
540 { return *begin(); }
541
542 /**
543 * Returns a read-only (constant) reference to the data at the first
544 * element of the %vector.
545 */
546 const_reference
547 front() const
548 { return *begin(); }
549
550 /**
551 * Returns a read/write reference to the data at the last
552 * element of the %vector.
553 */
554 reference
555 back()
556 { return *(end() - 1); }
557
558 /**
559 * Returns a read-only (constant) reference to the data at the
560 * last element of the %vector.
561 */
562 const_reference
563 back() const
564 { return *(end() - 1); }
565
566 // _GLIBCXX_RESOLVE_LIB_DEFECTS
567 // DR 464. Suggestion for new member functions in standard containers.
568 // data access
569 /**
570 * Returns a pointer such that [data(), data() + size()) is a valid
571 * range. For a non-empty %vector, data() == &front().
572 */
573 pointer
574 data()
575 { return pointer(this->_M_impl._M_start); }
576
577 const_pointer
578 data() const
579 { return const_pointer(this->_M_impl._M_start); }
580
581 // [23.2.4.3] modifiers
582 /**
583 * @brief Add data to the end of the %vector.
584 * @param x Data to be added.
585 *
586 * This is a typical stack operation. The function creates an
587 * element at the end of the %vector and assigns the given data
588 * to it. Due to the nature of a %vector this operation can be
589 * done in constant time if the %vector has preallocated space
590 * available.
591 */
592 void
593 push_back(const value_type& __x)
594 {
595 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
596 {
597 this->_M_impl.construct(this->_M_impl._M_finish, __x);
598 ++this->_M_impl._M_finish;
599 }
600 else
601 _M_insert_aux(end(), __x);
602 }
603
604 /**
605 * @brief Removes last element.
606 *
607 * This is a typical stack operation. It shrinks the %vector by one.
608 *
609 * Note that no data is returned, and if the last element's
610 * data is needed, it should be retrieved before pop_back() is
611 * called.
612 */
613 void
614 pop_back()
615 {
616 --this->_M_impl._M_finish;
617 this->_M_impl.destroy(this->_M_impl._M_finish);
618 }
619
620 /**
621 * @brief Inserts given value into %vector before specified iterator.
622 * @param position An iterator into the %vector.
623 * @param x Data to be inserted.
624 * @return An iterator that points to the inserted data.
625 *
626 * This function will insert a copy of the given value before
627 * the specified location. Note that this kind of operation
628 * could be expensive for a %vector and if it is frequently
629 * used the user should consider using std::list.
630 */
631 iterator
632 insert(iterator __position, const value_type& __x);
633
634 /**
635 * @brief Inserts a number of copies of given data into the %vector.
636 * @param position An iterator into the %vector.
637 * @param n Number of elements to be inserted.
638 * @param x Data to be inserted.
639 *
640 * This function will insert a specified number of copies of
641 * the given data before the location specified by @a position.
642 *
643 * Note that this kind of operation could be expensive for a
644 * %vector and if it is frequently used the user should
645 * consider using std::list.
646 */
647 void
648 insert(iterator __position, size_type __n, const value_type& __x)
649 { _M_fill_insert(__position, __n, __x); }
650
651 /**
652 * @brief Inserts a range into the %vector.
653 * @param position An iterator into the %vector.
654 * @param first An input iterator.
655 * @param last An input iterator.
656 *
657 * This function will insert copies of the data in the range
658 * [first,last) into the %vector before the location specified
659 * by @a pos.
660 *
661 * Note that this kind of operation could be expensive for a
662 * %vector and if it is frequently used the user should
663 * consider using std::list.
664 */
665 template<typename _InputIterator>
666 void
667 insert(iterator __position, _InputIterator __first,
668 _InputIterator __last)
669 {
670 // Check whether it's an integral type. If so, it's not an iterator.
671 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
672 _M_insert_dispatch(__position, __first, __last, _Integral());
673 }
674
675 /**
676 * @brief Remove element at given position.
677 * @param position Iterator pointing to element to be erased.
678 * @return An iterator pointing to the next element (or end()).
679 *
680 * This function will erase the element at the given position and thus
681 * shorten the %vector by one.
682 *
683 * Note This operation could be expensive and if it is
684 * frequently used the user should consider using std::list.
685 * The user is also cautioned that this function only erases
686 * the element, and that if the element is itself a pointer,
687 * the pointed-to memory is not touched in any way. Managing
688 * the pointer is the user's responsibilty.
689 */
690 iterator
691 erase(iterator __position);
692
693 /**
694 * @brief Remove a range of elements.
695 * @param first Iterator pointing to the first element to be erased.
696 * @param last Iterator pointing to one past the last element to be
697 * erased.
698 * @return An iterator pointing to the element pointed to by @a last
699 * prior to erasing (or end()).
700 *
701 * This function will erase the elements in the range [first,last) and
702 * shorten the %vector accordingly.
703 *
704 * Note This operation could be expensive and if it is
705 * frequently used the user should consider using std::list.
706 * The user is also cautioned that this function only erases
707 * the elements, and that if the elements themselves are
708 * pointers, the pointed-to memory is not touched in any way.
709 * Managing the pointer is the user's responsibilty.
710 */
711 iterator
712 erase(iterator __first, iterator __last);
713
714 /**
715 * @brief Swaps data with another %vector.
716 * @param x A %vector of the same element and allocator types.
717 *
718 * This exchanges the elements between two vectors in constant time.
719 * (Three pointers, so it should be quite fast.)
720 * Note that the global std::swap() function is specialized such that
721 * std::swap(v1,v2) will feed to this function.
722 */
723 void
724 swap(vector& __x)
725 {
726 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
727 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
728 std::swap(this->_M_impl._M_end_of_storage,
729 __x._M_impl._M_end_of_storage);
730
731 // _GLIBCXX_RESOLVE_LIB_DEFECTS
732 // 431. Swapping containers with unequal allocators.
733 std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
734 __x._M_get_Tp_allocator());
735 }
736
737 /**
738 * Erases all the elements. Note that this function only erases the
739 * elements, and that if the elements themselves are pointers, the
740 * pointed-to memory is not touched in any way. Managing the pointer is
741 * the user's responsibilty.
742 */
743 void
744 clear()
745 { _M_erase_at_end(this->_M_impl._M_start); }
746
747 protected:
748 /**
749 * @if maint
750 * Memory expansion handler. Uses the member allocation function to
751 * obtain @a n bytes of memory, and then copies [first,last) into it.
752 * @endif
753 */
754 template<typename _ForwardIterator>
755 pointer
756 _M_allocate_and_copy(size_type __n,
757 _ForwardIterator __first, _ForwardIterator __last)
758 {
759 pointer __result = this->_M_allocate(__n);
760 try
761 {
762 std::__uninitialized_copy_a(__first, __last, __result,
763 _M_get_Tp_allocator());
764 return __result;
765 }
766 catch(...)
767 {
768 _M_deallocate(__result, __n);
769 __throw_exception_again;
770 }
771 }
772
773
774 // Internal constructor functions follow.
775
776 // Called by the range constructor to implement [23.1.1]/9
777
778 // _GLIBCXX_RESOLVE_LIB_DEFECTS
779 // 438. Ambiguity in the "do the right thing" clause
780 template<typename _Integer>
781 void
782 _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
783 {
784 this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
785 this->_M_impl._M_end_of_storage =
786 this->_M_impl._M_start + static_cast<size_type>(__n);
787 _M_fill_initialize(static_cast<size_type>(__n), __value);
788 }
789
790 // Called by the range constructor to implement [23.1.1]/9
791 template<typename _InputIterator>
792 void
793 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
794 __false_type)
795 {
796 typedef typename std::iterator_traits<_InputIterator>::
797 iterator_category _IterCategory;
798 _M_range_initialize(__first, __last, _IterCategory());
799 }
800
801 // Called by the second initialize_dispatch above
802 template<typename _InputIterator>
803 void
804 _M_range_initialize(_InputIterator __first,
805 _InputIterator __last, std::input_iterator_tag)
806 {
807 for (; __first != __last; ++__first)
808 push_back(*__first);
809 }
810
811 // Called by the second initialize_dispatch above
812 template<typename _ForwardIterator>
813 void
814 _M_range_initialize(_ForwardIterator __first,
815 _ForwardIterator __last, std::forward_iterator_tag)
816 {
817 const size_type __n = std::distance(__first, __last);
818 this->_M_impl._M_start = this->_M_allocate(__n);
819 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
820 this->_M_impl._M_finish =
821 std::__uninitialized_copy_a(__first, __last,
822 this->_M_impl._M_start,
823 _M_get_Tp_allocator());
824 }
825
826 // Called by the first initialize_dispatch above and by the
827 // vector(n,value,a) constructor.
828 void
829 _M_fill_initialize(size_type __n, const value_type& __value)
830 {
831 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
832 _M_get_Tp_allocator());
833 this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
834 }
835
836
837 // Internal assign functions follow. The *_aux functions do the actual
838 // assignment work for the range versions.
839
840 // Called by the range assign to implement [23.1.1]/9
841
842 // _GLIBCXX_RESOLVE_LIB_DEFECTS
843 // 438. Ambiguity in the "do the right thing" clause
844 template<typename _Integer>
845 void
846 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
847 { _M_fill_assign(__n, __val); }
848
849 // Called by the range assign to implement [23.1.1]/9
850 template<typename _InputIterator>
851 void
852 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
853 __false_type)
854 {
855 typedef typename std::iterator_traits<_InputIterator>::
856 iterator_category _IterCategory;
857 _M_assign_aux(__first, __last, _IterCategory());
858 }
859
860 // Called by the second assign_dispatch above
861 template<typename _InputIterator>
862 void
863 _M_assign_aux(_InputIterator __first, _InputIterator __last,
864 std::input_iterator_tag);
865
866 // Called by the second assign_dispatch above
867 template<typename _ForwardIterator>
868 void
869 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
870 std::forward_iterator_tag);
871
872 // Called by assign(n,t), and the range assign when it turns out
873 // to be the same thing.
874 void
875 _M_fill_assign(size_type __n, const value_type& __val);
876
877
878 // Internal insert functions follow.
879
880 // Called by the range insert to implement [23.1.1]/9
881
882 // _GLIBCXX_RESOLVE_LIB_DEFECTS
883 // 438. Ambiguity in the "do the right thing" clause
884 template<typename _Integer>
885 void
886 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
887 __true_type)
888 { _M_fill_insert(__pos, __n, __val); }
889
890 // Called by the range insert to implement [23.1.1]/9
891 template<typename _InputIterator>
892 void
893 _M_insert_dispatch(iterator __pos, _InputIterator __first,
894 _InputIterator __last, __false_type)
895 {
896 typedef typename std::iterator_traits<_InputIterator>::
897 iterator_category _IterCategory;
898 _M_range_insert(__pos, __first, __last, _IterCategory());
899 }
900
901 // Called by the second insert_dispatch above
902 template<typename _InputIterator>
903 void
904 _M_range_insert(iterator __pos, _InputIterator __first,
905 _InputIterator __last, std::input_iterator_tag);
906
907 // Called by the second insert_dispatch above
908 template<typename _ForwardIterator>
909 void
910 _M_range_insert(iterator __pos, _ForwardIterator __first,
911 _ForwardIterator __last, std::forward_iterator_tag);
912
913 // Called by insert(p,n,x), and the range insert when it turns out to be
914 // the same thing.
915 void
916 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
917
918 // Called by insert(p,x)
919 void
920 _M_insert_aux(iterator __position, const value_type& __x);
921
922 // Called by the latter.
923 size_type
924 _M_check_len(size_type __n, const char* __s) const
925 {
926 if (max_size() - size() < __n)
927 __throw_length_error(__N(__s));
928
929 const size_type __len = size() + std::max(size(), __n);
930 return (__len < size() || __len > max_size()) ? max_size() : __len;
931 }
932
933 // Internal erase functions follow.
934
935 // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
936 // _M_assign_aux.
937 void
938 _M_erase_at_end(pointer __pos)
939 {
940 std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
941 this->_M_impl._M_finish = __pos;
942 }
943 };
944
945
946 /**
947 * @brief Vector equality comparison.
948 * @param x A %vector.
949 * @param y A %vector of the same type as @a x.
950 * @return True iff the size and elements of the vectors are equal.
951 *
952 * This is an equivalence relation. It is linear in the size of the
953 * vectors. Vectors are considered equivalent if their sizes are equal,
954 * and if corresponding elements compare equal.
955 */
956 template<typename _Tp, typename _Alloc>
957 inline bool
958 operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
959 { return (__x.size() == __y.size()
960 && std::equal(__x.begin(), __x.end(), __y.begin())); }
961
962 /**
963 * @brief Vector ordering relation.
964 * @param x A %vector.
965 * @param y A %vector of the same type as @a x.
966 * @return True iff @a x is lexicographically less than @a y.
967 *
968 * This is a total ordering relation. It is linear in the size of the
969 * vectors. The elements must be comparable with @c <.
970 *
971 * See std::lexicographical_compare() for how the determination is made.
972 */
973 template<typename _Tp, typename _Alloc>
974 inline bool
975 operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
976 { return std::lexicographical_compare(__x.begin(), __x.end(),
977 __y.begin(), __y.end()); }
978
979 /// Based on operator==
980 template<typename _Tp, typename _Alloc>
981 inline bool
982 operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
983 { return !(__x == __y); }
984
985 /// Based on operator<
986 template<typename _Tp, typename _Alloc>
987 inline bool
988 operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
989 { return __y < __x; }
990
991 /// Based on operator<
992 template<typename _Tp, typename _Alloc>
993 inline bool
994 operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
995 { return !(__y < __x); }
996
997 /// Based on operator<
998 template<typename _Tp, typename _Alloc>
999 inline bool
1000 operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1001 { return !(__x < __y); }
1002
1003 /// See std::vector::swap().
1004 template<typename _Tp, typename _Alloc>
1005 inline void
1006 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
1007 { __x.swap(__y); }
1008
1009 _GLIBCXX_END_NESTED_NAMESPACE
1010
1011 #endif /* _STL_VECTOR_H */