stl_vector.h (vector(const vector&)): Use _M_get_Tp_allocator.
[gcc.git] / libstdc++-v3 / include / bits / stl_vector.h
1 // Vector implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
54 */
55
56 /** @file stl_vector.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
59 */
60
61 #ifndef _VECTOR_H
62 #define _VECTOR_H 1
63
64 #include <bits/stl_iterator_base_funcs.h>
65 #include <bits/functexcept.h>
66 #include <bits/concept_check.h>
67
68 namespace _GLIBCXX_STD
69 {
70 /**
71 * @if maint
72 * See bits/stl_deque.h's _Deque_base for an explanation.
73 * @endif
74 */
75 template<typename _Tp, typename _Alloc>
76 struct _Vector_base
77 {
78 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
79
80 struct _Vector_impl
81 : public _Tp_alloc_type
82 {
83 _Tp* _M_start;
84 _Tp* _M_finish;
85 _Tp* _M_end_of_storage;
86 _Vector_impl(_Tp_alloc_type const& __a)
87 : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
88 { }
89 };
90
91 public:
92 typedef _Alloc allocator_type;
93
94 _Tp_alloc_type&
95 _M_get_Tp_allocator()
96 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
97
98 const _Tp_alloc_type&
99 _M_get_Tp_allocator() const
100 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
101
102 allocator_type
103 get_allocator() const
104 { return _M_get_Tp_allocator(); }
105
106 _Vector_base(const allocator_type& __a)
107 : _M_impl(__a)
108 { }
109
110 _Vector_base(size_t __n, const allocator_type& __a)
111 : _M_impl(__a)
112 {
113 this->_M_impl._M_start = this->_M_allocate(__n);
114 this->_M_impl._M_finish = this->_M_impl._M_start;
115 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
116 }
117
118 ~_Vector_base()
119 { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
120 - this->_M_impl._M_start); }
121
122 public:
123 _Vector_impl _M_impl;
124
125 _Tp*
126 _M_allocate(size_t __n)
127 { return _M_impl.allocate(__n); }
128
129 void
130 _M_deallocate(_Tp* __p, size_t __n)
131 {
132 if (__p)
133 _M_impl.deallocate(__p, __n);
134 }
135 };
136
137
138 /**
139 * @brief A standard container which offers fixed time access to
140 * individual elements in any order.
141 *
142 * @ingroup Containers
143 * @ingroup Sequences
144 *
145 * Meets the requirements of a <a href="tables.html#65">container</a>, a
146 * <a href="tables.html#66">reversible container</a>, and a
147 * <a href="tables.html#67">sequence</a>, including the
148 * <a href="tables.html#68">optional sequence requirements</a> with the
149 * %exception of @c push_front and @c pop_front.
150 *
151 * In some terminology a %vector can be described as a dynamic
152 * C-style array, it offers fast and efficient access to individual
153 * elements in any order and saves the user from worrying about
154 * memory and size allocation. Subscripting ( @c [] ) access is
155 * also provided as with C-style arrays.
156 */
157 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
158 class vector : protected _Vector_base<_Tp, _Alloc>
159 {
160 // Concept requirements.
161 typedef typename _Alloc::value_type _Alloc_value_type;
162 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
163 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
164
165 typedef _Vector_base<_Tp, _Alloc> _Base;
166 typedef vector<_Tp, _Alloc> vector_type;
167 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
168
169 public:
170 typedef _Tp value_type;
171 typedef typename _Tp_alloc_type::pointer pointer;
172 typedef typename _Tp_alloc_type::const_pointer const_pointer;
173 typedef typename _Tp_alloc_type::reference reference;
174 typedef typename _Tp_alloc_type::const_reference const_reference;
175 typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
176 typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
177 const_iterator;
178 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
179 typedef std::reverse_iterator<iterator> reverse_iterator;
180 typedef size_t size_type;
181 typedef ptrdiff_t difference_type;
182 typedef _Alloc allocator_type;
183
184 protected:
185 /** @if maint
186 * These two functions and three data members are all from the
187 * base class. They should be pretty self-explanatory, as
188 * %vector uses a simple contiguous allocation scheme. @endif
189 */
190 using _Base::_M_allocate;
191 using _Base::_M_deallocate;
192 using _Base::_M_impl;
193 using _Base::_M_get_Tp_allocator;
194
195 public:
196 // [23.2.4.1] construct/copy/destroy
197 // (assign() and get_allocator() are also listed in this section)
198 /**
199 * @brief Default constructor creates no elements.
200 */
201 explicit
202 vector(const allocator_type& __a = allocator_type())
203 : _Base(__a)
204 { }
205
206 /**
207 * @brief Create a %vector with copies of an exemplar element.
208 * @param n The number of elements to initially create.
209 * @param value An element to copy.
210 *
211 * This constructor fills the %vector with @a n copies of @a value.
212 */
213 explicit
214 vector(size_type __n, const value_type& __value = value_type(),
215 const allocator_type& __a = allocator_type())
216 : _Base(__n, __a)
217 {
218 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
219 _M_get_Tp_allocator());
220 this->_M_impl._M_finish = this->_M_impl._M_start + __n;
221 }
222
223 /**
224 * @brief %Vector copy constructor.
225 * @param x A %vector of identical element and allocator types.
226 *
227 * The newly-created %vector uses a copy of the allocation
228 * object used by @a x. All the elements of @a x are copied,
229 * but any extra memory in
230 * @a x (for fast expansion) will not be copied.
231 */
232 vector(const vector& __x)
233 : _Base(__x.size(), __x._M_get_Tp_allocator())
234 { this->_M_impl._M_finish =
235 std::__uninitialized_copy_a(__x.begin(), __x.end(),
236 this->_M_impl._M_start,
237 _M_get_Tp_allocator());
238 }
239
240 /**
241 * @brief Builds a %vector from a range.
242 * @param first An input iterator.
243 * @param last An input iterator.
244 *
245 * Create a %vector consisting of copies of the elements from
246 * [first,last).
247 *
248 * If the iterators are forward, bidirectional, or
249 * random-access, then this will call the elements' copy
250 * constructor N times (where N is distance(first,last)) and do
251 * no memory reallocation. But if only input iterators are
252 * used, then this will do at most 2N calls to the copy
253 * constructor, and logN memory reallocations.
254 */
255 template<typename _InputIterator>
256 vector(_InputIterator __first, _InputIterator __last,
257 const allocator_type& __a = allocator_type())
258 : _Base(__a)
259 {
260 // Check whether it's an integral type. If so, it's not an iterator.
261 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
262 _M_initialize_dispatch(__first, __last, _Integral());
263 }
264
265 /**
266 * The dtor only erases the elements, and note that if the
267 * elements themselves are pointers, the pointed-to memory is
268 * not touched in any way. Managing the pointer is the user's
269 * responsibilty.
270 */
271 ~vector()
272 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
273 _M_get_Tp_allocator()); }
274
275 /**
276 * @brief %Vector assignment operator.
277 * @param x A %vector of identical element and allocator types.
278 *
279 * All the elements of @a x are copied, but any extra memory in
280 * @a x (for fast expansion) will not be copied. Unlike the
281 * copy constructor, the allocator object is not copied.
282 */
283 vector&
284 operator=(const vector& __x);
285
286 /**
287 * @brief Assigns a given value to a %vector.
288 * @param n Number of elements to be assigned.
289 * @param val Value to be assigned.
290 *
291 * This function fills a %vector with @a n copies of the given
292 * value. Note that the assignment completely changes the
293 * %vector and that the resulting %vector's size is the same as
294 * the number of elements assigned. Old data may be lost.
295 */
296 void
297 assign(size_type __n, const value_type& __val)
298 { _M_fill_assign(__n, __val); }
299
300 /**
301 * @brief Assigns a range to a %vector.
302 * @param first An input iterator.
303 * @param last An input iterator.
304 *
305 * This function fills a %vector with copies of the elements in the
306 * range [first,last).
307 *
308 * Note that the assignment completely changes the %vector and
309 * that the resulting %vector's size is the same as the number
310 * of elements assigned. Old data may be lost.
311 */
312 template<typename _InputIterator>
313 void
314 assign(_InputIterator __first, _InputIterator __last)
315 {
316 // Check whether it's an integral type. If so, it's not an iterator.
317 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
318 _M_assign_dispatch(__first, __last, _Integral());
319 }
320
321 /// Get a copy of the memory allocation object.
322 using _Base::get_allocator;
323
324 // iterators
325 /**
326 * Returns a read/write iterator that points to the first
327 * element in the %vector. Iteration is done in ordinary
328 * element order.
329 */
330 iterator
331 begin()
332 { return iterator(this->_M_impl._M_start); }
333
334 /**
335 * Returns a read-only (constant) iterator that points to the
336 * first element in the %vector. Iteration is done in ordinary
337 * element order.
338 */
339 const_iterator
340 begin() const
341 { return const_iterator(this->_M_impl._M_start); }
342
343 /**
344 * Returns a read/write iterator that points one past the last
345 * element in the %vector. Iteration is done in ordinary
346 * element order.
347 */
348 iterator
349 end()
350 { return iterator(this->_M_impl._M_finish); }
351
352 /**
353 * Returns a read-only (constant) iterator that points one past
354 * the last element in the %vector. Iteration is done in
355 * ordinary element order.
356 */
357 const_iterator
358 end() const
359 { return const_iterator(this->_M_impl._M_finish); }
360
361 /**
362 * Returns a read/write reverse iterator that points to the
363 * last element in the %vector. Iteration is done in reverse
364 * element order.
365 */
366 reverse_iterator
367 rbegin()
368 { return reverse_iterator(end()); }
369
370 /**
371 * Returns a read-only (constant) reverse iterator that points
372 * to the last element in the %vector. Iteration is done in
373 * reverse element order.
374 */
375 const_reverse_iterator
376 rbegin() const
377 { return const_reverse_iterator(end()); }
378
379 /**
380 * Returns a read/write reverse iterator that points to one
381 * before the first element in the %vector. Iteration is done
382 * in reverse element order.
383 */
384 reverse_iterator
385 rend()
386 { return reverse_iterator(begin()); }
387
388 /**
389 * Returns a read-only (constant) reverse iterator that points
390 * to one before the first element in the %vector. Iteration
391 * is done in reverse element order.
392 */
393 const_reverse_iterator
394 rend() const
395 { return const_reverse_iterator(begin()); }
396
397 // [23.2.4.2] capacity
398 /** Returns the number of elements in the %vector. */
399 size_type
400 size() const
401 { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
402
403 /** Returns the size() of the largest possible %vector. */
404 size_type
405 max_size() const
406 { return size_type(-1) / sizeof(value_type); }
407
408 /**
409 * @brief Resizes the %vector to the specified number of elements.
410 * @param new_size Number of elements the %vector should contain.
411 * @param x Data with which new elements should be populated.
412 *
413 * This function will %resize the %vector to the specified
414 * number of elements. If the number is smaller than the
415 * %vector's current size the %vector is truncated, otherwise
416 * the %vector is extended and new elements are populated with
417 * given data.
418 */
419 void
420 resize(size_type __new_size, value_type __x = value_type())
421 {
422 if (__new_size < size())
423 _M_erase_at_end(this->_M_impl._M_start + __new_size);
424 else
425 insert(end(), __new_size - size(), __x);
426 }
427
428 /**
429 * Returns the total number of elements that the %vector can
430 * hold before needing to allocate more memory.
431 */
432 size_type
433 capacity() const
434 { return size_type(this->_M_impl._M_end_of_storage
435 - this->_M_impl._M_start); }
436
437 /**
438 * Returns true if the %vector is empty. (Thus begin() would
439 * equal end().)
440 */
441 bool
442 empty() const
443 { return begin() == end(); }
444
445 /**
446 * @brief Attempt to preallocate enough memory for specified number of
447 * elements.
448 * @param n Number of elements required.
449 * @throw std::length_error If @a n exceeds @c max_size().
450 *
451 * This function attempts to reserve enough memory for the
452 * %vector to hold the specified number of elements. If the
453 * number requested is more than max_size(), length_error is
454 * thrown.
455 *
456 * The advantage of this function is that if optimal code is a
457 * necessity and the user can determine the number of elements
458 * that will be required, the user can reserve the memory in
459 * %advance, and thus prevent a possible reallocation of memory
460 * and copying of %vector data.
461 */
462 void
463 reserve(size_type __n);
464
465 // element access
466 /**
467 * @brief Subscript access to the data contained in the %vector.
468 * @param n The index of the element for which data should be
469 * accessed.
470 * @return Read/write reference to data.
471 *
472 * This operator allows for easy, array-style, data access.
473 * Note that data access with this operator is unchecked and
474 * out_of_range lookups are not defined. (For checked lookups
475 * see at().)
476 */
477 reference
478 operator[](size_type __n)
479 { return *(this->_M_impl._M_start + __n); }
480
481 /**
482 * @brief Subscript access to the data contained in the %vector.
483 * @param n The index of the element for which data should be
484 * accessed.
485 * @return Read-only (constant) reference to data.
486 *
487 * This operator allows for easy, array-style, data access.
488 * Note that data access with this operator is unchecked and
489 * out_of_range lookups are not defined. (For checked lookups
490 * see at().)
491 */
492 const_reference
493 operator[](size_type __n) const
494 { return *(this->_M_impl._M_start + __n); }
495
496 protected:
497 /// @if maint Safety check used only from at(). @endif
498 void
499 _M_range_check(size_type __n) const
500 {
501 if (__n >= this->size())
502 __throw_out_of_range(__N("vector::_M_range_check"));
503 }
504
505 public:
506 /**
507 * @brief Provides access to the data contained in the %vector.
508 * @param n The index of the element for which data should be
509 * accessed.
510 * @return Read/write reference to data.
511 * @throw std::out_of_range If @a n is an invalid index.
512 *
513 * This function provides for safer data access. The parameter
514 * is first checked that it is in the range of the vector. The
515 * function throws out_of_range if the check fails.
516 */
517 reference
518 at(size_type __n)
519 {
520 _M_range_check(__n);
521 return (*this)[__n];
522 }
523
524 /**
525 * @brief Provides access to the data contained in the %vector.
526 * @param n The index of the element for which data should be
527 * accessed.
528 * @return Read-only (constant) reference to data.
529 * @throw std::out_of_range If @a n is an invalid index.
530 *
531 * This function provides for safer data access. The parameter
532 * is first checked that it is in the range of the vector. The
533 * function throws out_of_range if the check fails.
534 */
535 const_reference
536 at(size_type __n) const
537 {
538 _M_range_check(__n);
539 return (*this)[__n];
540 }
541
542 /**
543 * Returns a read/write reference to the data at the first
544 * element of the %vector.
545 */
546 reference
547 front()
548 { return *begin(); }
549
550 /**
551 * Returns a read-only (constant) reference to the data at the first
552 * element of the %vector.
553 */
554 const_reference
555 front() const
556 { return *begin(); }
557
558 /**
559 * Returns a read/write reference to the data at the last
560 * element of the %vector.
561 */
562 reference
563 back()
564 { return *(end() - 1); }
565
566 /**
567 * Returns a read-only (constant) reference to the data at the
568 * last element of the %vector.
569 */
570 const_reference
571 back() const
572 { return *(end() - 1); }
573
574 // _GLIBCXX_RESOLVE_LIB_DEFECTS
575 // DR 464. Suggestion for new member functions in standard containers.
576 // data access
577 /**
578 * Returns a pointer such that [data(), data() + size()) is a valid
579 * range. For a non-empty %vector, data() == &front().
580 */
581 pointer
582 data()
583 { return pointer(this->_M_impl._M_start); }
584
585 const_pointer
586 data() const
587 { return const_pointer(this->_M_impl._M_start); }
588
589 // [23.2.4.3] modifiers
590 /**
591 * @brief Add data to the end of the %vector.
592 * @param x Data to be added.
593 *
594 * This is a typical stack operation. The function creates an
595 * element at the end of the %vector and assigns the given data
596 * to it. Due to the nature of a %vector this operation can be
597 * done in constant time if the %vector has preallocated space
598 * available.
599 */
600 void
601 push_back(const value_type& __x)
602 {
603 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
604 {
605 this->_M_impl.construct(this->_M_impl._M_finish, __x);
606 ++this->_M_impl._M_finish;
607 }
608 else
609 _M_insert_aux(end(), __x);
610 }
611
612 /**
613 * @brief Removes last element.
614 *
615 * This is a typical stack operation. It shrinks the %vector by one.
616 *
617 * Note that no data is returned, and if the last element's
618 * data is needed, it should be retrieved before pop_back() is
619 * called.
620 */
621 void
622 pop_back()
623 {
624 --this->_M_impl._M_finish;
625 this->_M_impl.destroy(this->_M_impl._M_finish);
626 }
627
628 /**
629 * @brief Inserts given value into %vector before specified iterator.
630 * @param position An iterator into the %vector.
631 * @param x Data to be inserted.
632 * @return An iterator that points to the inserted data.
633 *
634 * This function will insert a copy of the given value before
635 * the specified location. Note that this kind of operation
636 * could be expensive for a %vector and if it is frequently
637 * used the user should consider using std::list.
638 */
639 iterator
640 insert(iterator __position, const value_type& __x);
641
642 /**
643 * @brief Inserts a number of copies of given data into the %vector.
644 * @param position An iterator into the %vector.
645 * @param n Number of elements to be inserted.
646 * @param x Data to be inserted.
647 *
648 * This function will insert a specified number of copies of
649 * the given data before the location specified by @a position.
650 *
651 * Note that this kind of operation could be expensive for a
652 * %vector and if it is frequently used the user should
653 * consider using std::list.
654 */
655 void
656 insert(iterator __position, size_type __n, const value_type& __x)
657 { _M_fill_insert(__position, __n, __x); }
658
659 /**
660 * @brief Inserts a range into the %vector.
661 * @param position An iterator into the %vector.
662 * @param first An input iterator.
663 * @param last An input iterator.
664 *
665 * This function will insert copies of the data in the range
666 * [first,last) into the %vector before the location specified
667 * by @a pos.
668 *
669 * Note that this kind of operation could be expensive for a
670 * %vector and if it is frequently used the user should
671 * consider using std::list.
672 */
673 template<typename _InputIterator>
674 void
675 insert(iterator __position, _InputIterator __first,
676 _InputIterator __last)
677 {
678 // Check whether it's an integral type. If so, it's not an iterator.
679 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
680 _M_insert_dispatch(__position, __first, __last, _Integral());
681 }
682
683 /**
684 * @brief Remove element at given position.
685 * @param position Iterator pointing to element to be erased.
686 * @return An iterator pointing to the next element (or end()).
687 *
688 * This function will erase the element at the given position and thus
689 * shorten the %vector by one.
690 *
691 * Note This operation could be expensive and if it is
692 * frequently used the user should consider using std::list.
693 * The user is also cautioned that this function only erases
694 * the element, and that if the element is itself a pointer,
695 * the pointed-to memory is not touched in any way. Managing
696 * the pointer is the user's responsibilty.
697 */
698 iterator
699 erase(iterator __position);
700
701 /**
702 * @brief Remove a range of elements.
703 * @param first Iterator pointing to the first element to be erased.
704 * @param last Iterator pointing to one past the last element to be
705 * erased.
706 * @return An iterator pointing to the element pointed to by @a last
707 * prior to erasing (or end()).
708 *
709 * This function will erase the elements in the range [first,last) and
710 * shorten the %vector accordingly.
711 *
712 * Note This operation could be expensive and if it is
713 * frequently used the user should consider using std::list.
714 * The user is also cautioned that this function only erases
715 * the elements, and that if the elements themselves are
716 * pointers, the pointed-to memory is not touched in any way.
717 * Managing the pointer is the user's responsibilty.
718 */
719 iterator
720 erase(iterator __first, iterator __last);
721
722 /**
723 * @brief Swaps data with another %vector.
724 * @param x A %vector of the same element and allocator types.
725 *
726 * This exchanges the elements between two vectors in constant time.
727 * (Three pointers, so it should be quite fast.)
728 * Note that the global std::swap() function is specialized such that
729 * std::swap(v1,v2) will feed to this function.
730 */
731 void
732 swap(vector& __x)
733 {
734 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
735 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
736 std::swap(this->_M_impl._M_end_of_storage,
737 __x._M_impl._M_end_of_storage);
738 }
739
740 /**
741 * Erases all the elements. Note that this function only erases the
742 * elements, and that if the elements themselves are pointers, the
743 * pointed-to memory is not touched in any way. Managing the pointer is
744 * the user's responsibilty.
745 */
746 void
747 clear()
748 { _M_erase_at_end(this->_M_impl._M_start); }
749
750 protected:
751 /**
752 * @if maint
753 * Memory expansion handler. Uses the member allocation function to
754 * obtain @a n bytes of memory, and then copies [first,last) into it.
755 * @endif
756 */
757 template<typename _ForwardIterator>
758 pointer
759 _M_allocate_and_copy(size_type __n,
760 _ForwardIterator __first, _ForwardIterator __last)
761 {
762 pointer __result = this->_M_allocate(__n);
763 try
764 {
765 std::__uninitialized_copy_a(__first, __last, __result,
766 _M_get_Tp_allocator());
767 return __result;
768 }
769 catch(...)
770 {
771 _M_deallocate(__result, __n);
772 __throw_exception_again;
773 }
774 }
775
776
777 // Internal constructor functions follow.
778
779 // Called by the range constructor to implement [23.1.1]/9
780 template<typename _Integer>
781 void
782 _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
783 {
784 this->_M_impl._M_start = _M_allocate(__n);
785 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
786 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
787 _M_get_Tp_allocator());
788 this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
789 }
790
791 // Called by the range constructor to implement [23.1.1]/9
792 template<typename _InputIterator>
793 void
794 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
795 __false_type)
796 {
797 typedef typename std::iterator_traits<_InputIterator>::
798 iterator_category _IterCategory;
799 _M_range_initialize(__first, __last, _IterCategory());
800 }
801
802 // Called by the second initialize_dispatch above
803 template<typename _InputIterator>
804 void
805 _M_range_initialize(_InputIterator __first,
806 _InputIterator __last, std::input_iterator_tag)
807 {
808 for (; __first != __last; ++__first)
809 push_back(*__first);
810 }
811
812 // Called by the second initialize_dispatch above
813 template<typename _ForwardIterator>
814 void
815 _M_range_initialize(_ForwardIterator __first,
816 _ForwardIterator __last, std::forward_iterator_tag)
817 {
818 const size_type __n = std::distance(__first, __last);
819 this->_M_impl._M_start = this->_M_allocate(__n);
820 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
821 this->_M_impl._M_finish =
822 std::__uninitialized_copy_a(__first, __last,
823 this->_M_impl._M_start,
824 _M_get_Tp_allocator());
825 }
826
827
828 // Internal assign functions follow. The *_aux functions do the actual
829 // assignment work for the range versions.
830
831 // Called by the range assign to implement [23.1.1]/9
832 template<typename _Integer>
833 void
834 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
835 {
836 _M_fill_assign(static_cast<size_type>(__n),
837 static_cast<value_type>(__val));
838 }
839
840 // Called by the range assign to implement [23.1.1]/9
841 template<typename _InputIterator>
842 void
843 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
844 __false_type)
845 {
846 typedef typename std::iterator_traits<_InputIterator>::
847 iterator_category _IterCategory;
848 _M_assign_aux(__first, __last, _IterCategory());
849 }
850
851 // Called by the second assign_dispatch above
852 template<typename _InputIterator>
853 void
854 _M_assign_aux(_InputIterator __first, _InputIterator __last,
855 std::input_iterator_tag);
856
857 // Called by the second assign_dispatch above
858 template<typename _ForwardIterator>
859 void
860 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
861 std::forward_iterator_tag);
862
863 // Called by assign(n,t), and the range assign when it turns out
864 // to be the same thing.
865 void
866 _M_fill_assign(size_type __n, const value_type& __val);
867
868
869 // Internal insert functions follow.
870
871 // Called by the range insert to implement [23.1.1]/9
872 template<typename _Integer>
873 void
874 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
875 __true_type)
876 {
877 _M_fill_insert(__pos, static_cast<size_type>(__n),
878 static_cast<value_type>(__val));
879 }
880
881 // Called by the range insert to implement [23.1.1]/9
882 template<typename _InputIterator>
883 void
884 _M_insert_dispatch(iterator __pos, _InputIterator __first,
885 _InputIterator __last, __false_type)
886 {
887 typedef typename std::iterator_traits<_InputIterator>::
888 iterator_category _IterCategory;
889 _M_range_insert(__pos, __first, __last, _IterCategory());
890 }
891
892 // Called by the second insert_dispatch above
893 template<typename _InputIterator>
894 void
895 _M_range_insert(iterator __pos, _InputIterator __first,
896 _InputIterator __last, std::input_iterator_tag);
897
898 // Called by the second insert_dispatch above
899 template<typename _ForwardIterator>
900 void
901 _M_range_insert(iterator __pos, _ForwardIterator __first,
902 _ForwardIterator __last, std::forward_iterator_tag);
903
904 // Called by insert(p,n,x), and the range insert when it turns out to be
905 // the same thing.
906 void
907 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
908
909 // Called by insert(p,x)
910 void
911 _M_insert_aux(iterator __position, const value_type& __x);
912
913 // Internal erase functions follow.
914
915 // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
916 // _M_assign_aux.
917 void
918 _M_erase_at_end(pointer __pos)
919 {
920 std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
921 this->_M_impl._M_finish = __pos;
922 }
923 };
924
925
926 /**
927 * @brief Vector equality comparison.
928 * @param x A %vector.
929 * @param y A %vector of the same type as @a x.
930 * @return True iff the size and elements of the vectors are equal.
931 *
932 * This is an equivalence relation. It is linear in the size of the
933 * vectors. Vectors are considered equivalent if their sizes are equal,
934 * and if corresponding elements compare equal.
935 */
936 template<typename _Tp, typename _Alloc>
937 inline bool
938 operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
939 { return (__x.size() == __y.size()
940 && std::equal(__x.begin(), __x.end(), __y.begin())); }
941
942 /**
943 * @brief Vector ordering relation.
944 * @param x A %vector.
945 * @param y A %vector of the same type as @a x.
946 * @return True iff @a x is lexicographically less than @a y.
947 *
948 * This is a total ordering relation. It is linear in the size of the
949 * vectors. The elements must be comparable with @c <.
950 *
951 * See std::lexicographical_compare() for how the determination is made.
952 */
953 template<typename _Tp, typename _Alloc>
954 inline bool
955 operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
956 { return std::lexicographical_compare(__x.begin(), __x.end(),
957 __y.begin(), __y.end()); }
958
959 /// Based on operator==
960 template<typename _Tp, typename _Alloc>
961 inline bool
962 operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
963 { return !(__x == __y); }
964
965 /// Based on operator<
966 template<typename _Tp, typename _Alloc>
967 inline bool
968 operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
969 { return __y < __x; }
970
971 /// Based on operator<
972 template<typename _Tp, typename _Alloc>
973 inline bool
974 operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
975 { return !(__y < __x); }
976
977 /// Based on operator<
978 template<typename _Tp, typename _Alloc>
979 inline bool
980 operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
981 { return !(__x < __y); }
982
983 /// See std::vector::swap().
984 template<typename _Tp, typename _Alloc>
985 inline void
986 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
987 { __x.swap(__y); }
988 } // namespace std
989
990 #endif /* _VECTOR_H */