list.cc: Use noexcept per the FDIS.
[gcc.git] / libstdc++-v3 / include / bits / stl_vector.h
1 // Vector implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 // 2011 Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
25
26 /*
27 *
28 * Copyright (c) 1994
29 * Hewlett-Packard Company
30 *
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation. Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose. It is provided "as is" without express or implied warranty.
38 *
39 *
40 * Copyright (c) 1996
41 * Silicon Graphics Computer Systems, Inc.
42 *
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation. Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose. It is provided "as is" without express or implied warranty.
50 */
51
52 /** @file bits/stl_vector.h
53 * This is an internal header file, included by other library headers.
54 * Do not attempt to use it directly. @headername{vector}
55 */
56
57 #ifndef _STL_VECTOR_H
58 #define _STL_VECTOR_H 1
59
60 #include <bits/stl_iterator_base_funcs.h>
61 #include <bits/functexcept.h>
62 #include <bits/concept_check.h>
63 #include <initializer_list>
64
65 namespace std _GLIBCXX_VISIBILITY(default)
66 {
67 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
68
69 /// See bits/stl_deque.h's _Deque_base for an explanation.
70 template<typename _Tp, typename _Alloc>
71 struct _Vector_base
72 {
73 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
74
75 struct _Vector_impl
76 : public _Tp_alloc_type
77 {
78 typename _Tp_alloc_type::pointer _M_start;
79 typename _Tp_alloc_type::pointer _M_finish;
80 typename _Tp_alloc_type::pointer _M_end_of_storage;
81
82 _Vector_impl()
83 : _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
84 { }
85
86 _Vector_impl(_Tp_alloc_type const& __a)
87 : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
88 { }
89 };
90
91 public:
92 typedef _Alloc allocator_type;
93
94 _Tp_alloc_type&
95 _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
96 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
97
98 const _Tp_alloc_type&
99 _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
100 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
101
102 allocator_type
103 get_allocator() const _GLIBCXX_NOEXCEPT
104 { return allocator_type(_M_get_Tp_allocator()); }
105
106 _Vector_base()
107 : _M_impl() { }
108
109 _Vector_base(const allocator_type& __a)
110 : _M_impl(__a) { }
111
112 _Vector_base(size_t __n)
113 : _M_impl()
114 {
115 this->_M_impl._M_start = this->_M_allocate(__n);
116 this->_M_impl._M_finish = this->_M_impl._M_start;
117 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
118 }
119
120 _Vector_base(size_t __n, const allocator_type& __a)
121 : _M_impl(__a)
122 {
123 this->_M_impl._M_start = this->_M_allocate(__n);
124 this->_M_impl._M_finish = this->_M_impl._M_start;
125 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
126 }
127
128 #ifdef __GXX_EXPERIMENTAL_CXX0X__
129 _Vector_base(_Vector_base&& __x)
130 : _M_impl(__x._M_get_Tp_allocator())
131 {
132 this->_M_impl._M_start = __x._M_impl._M_start;
133 this->_M_impl._M_finish = __x._M_impl._M_finish;
134 this->_M_impl._M_end_of_storage = __x._M_impl._M_end_of_storage;
135 __x._M_impl._M_start = 0;
136 __x._M_impl._M_finish = 0;
137 __x._M_impl._M_end_of_storage = 0;
138 }
139 #endif
140
141 ~_Vector_base()
142 { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
143 - this->_M_impl._M_start); }
144
145 public:
146 _Vector_impl _M_impl;
147
148 typename _Tp_alloc_type::pointer
149 _M_allocate(size_t __n)
150 { return __n != 0 ? _M_impl.allocate(__n) : 0; }
151
152 void
153 _M_deallocate(typename _Tp_alloc_type::pointer __p, size_t __n)
154 {
155 if (__p)
156 _M_impl.deallocate(__p, __n);
157 }
158 };
159
160
161 /**
162 * @brief A standard container which offers fixed time access to
163 * individual elements in any order.
164 *
165 * @ingroup sequences
166 *
167 * Meets the requirements of a <a href="tables.html#65">container</a>, a
168 * <a href="tables.html#66">reversible container</a>, and a
169 * <a href="tables.html#67">sequence</a>, including the
170 * <a href="tables.html#68">optional sequence requirements</a> with the
171 * %exception of @c push_front and @c pop_front.
172 *
173 * In some terminology a %vector can be described as a dynamic
174 * C-style array, it offers fast and efficient access to individual
175 * elements in any order and saves the user from worrying about
176 * memory and size allocation. Subscripting ( @c [] ) access is
177 * also provided as with C-style arrays.
178 */
179 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
180 class vector : protected _Vector_base<_Tp, _Alloc>
181 {
182 // Concept requirements.
183 typedef typename _Alloc::value_type _Alloc_value_type;
184 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
185 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
186
187 typedef _Vector_base<_Tp, _Alloc> _Base;
188 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
189
190 public:
191 typedef _Tp value_type;
192 typedef typename _Tp_alloc_type::pointer pointer;
193 typedef typename _Tp_alloc_type::const_pointer const_pointer;
194 typedef typename _Tp_alloc_type::reference reference;
195 typedef typename _Tp_alloc_type::const_reference const_reference;
196 typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
197 typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
198 const_iterator;
199 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
200 typedef std::reverse_iterator<iterator> reverse_iterator;
201 typedef size_t size_type;
202 typedef ptrdiff_t difference_type;
203 typedef _Alloc allocator_type;
204
205 protected:
206 using _Base::_M_allocate;
207 using _Base::_M_deallocate;
208 using _Base::_M_impl;
209 using _Base::_M_get_Tp_allocator;
210
211 public:
212 // [23.2.4.1] construct/copy/destroy
213 // (assign() and get_allocator() are also listed in this section)
214 /**
215 * @brief Default constructor creates no elements.
216 */
217 vector()
218 : _Base() { }
219
220 /**
221 * @brief Creates a %vector with no elements.
222 * @param a An allocator object.
223 */
224 explicit
225 vector(const allocator_type& __a)
226 : _Base(__a) { }
227
228 #ifdef __GXX_EXPERIMENTAL_CXX0X__
229 /**
230 * @brief Creates a %vector with default constructed elements.
231 * @param n The number of elements to initially create.
232 *
233 * This constructor fills the %vector with @a n default
234 * constructed elements.
235 */
236 explicit
237 vector(size_type __n)
238 : _Base(__n)
239 { _M_default_initialize(__n); }
240
241 /**
242 * @brief Creates a %vector with copies of an exemplar element.
243 * @param n The number of elements to initially create.
244 * @param value An element to copy.
245 * @param a An allocator.
246 *
247 * This constructor fills the %vector with @a n copies of @a value.
248 */
249 vector(size_type __n, const value_type& __value,
250 const allocator_type& __a = allocator_type())
251 : _Base(__n, __a)
252 { _M_fill_initialize(__n, __value); }
253 #else
254 /**
255 * @brief Creates a %vector with copies of an exemplar element.
256 * @param n The number of elements to initially create.
257 * @param value An element to copy.
258 * @param a An allocator.
259 *
260 * This constructor fills the %vector with @a n copies of @a value.
261 */
262 explicit
263 vector(size_type __n, const value_type& __value = value_type(),
264 const allocator_type& __a = allocator_type())
265 : _Base(__n, __a)
266 { _M_fill_initialize(__n, __value); }
267 #endif
268
269 /**
270 * @brief %Vector copy constructor.
271 * @param x A %vector of identical element and allocator types.
272 *
273 * The newly-created %vector uses a copy of the allocation
274 * object used by @a x. All the elements of @a x are copied,
275 * but any extra memory in
276 * @a x (for fast expansion) will not be copied.
277 */
278 vector(const vector& __x)
279 : _Base(__x.size(), __x._M_get_Tp_allocator())
280 { this->_M_impl._M_finish =
281 std::__uninitialized_copy_a(__x.begin(), __x.end(),
282 this->_M_impl._M_start,
283 _M_get_Tp_allocator());
284 }
285
286 #ifdef __GXX_EXPERIMENTAL_CXX0X__
287 /**
288 * @brief %Vector move constructor.
289 * @param x A %vector of identical element and allocator types.
290 *
291 * The newly-created %vector contains the exact contents of @a x.
292 * The contents of @a x are a valid, but unspecified %vector.
293 */
294 vector(vector&& __x)
295 : _Base(std::move(__x)) { }
296
297 /**
298 * @brief Builds a %vector from an initializer list.
299 * @param l An initializer_list.
300 * @param a An allocator.
301 *
302 * Create a %vector consisting of copies of the elements in the
303 * initializer_list @a l.
304 *
305 * This will call the element type's copy constructor N times
306 * (where N is @a l.size()) and do no memory reallocation.
307 */
308 vector(initializer_list<value_type> __l,
309 const allocator_type& __a = allocator_type())
310 : _Base(__a)
311 {
312 _M_range_initialize(__l.begin(), __l.end(),
313 random_access_iterator_tag());
314 }
315 #endif
316
317 /**
318 * @brief Builds a %vector from a range.
319 * @param first An input iterator.
320 * @param last An input iterator.
321 * @param a An allocator.
322 *
323 * Create a %vector consisting of copies of the elements from
324 * [first,last).
325 *
326 * If the iterators are forward, bidirectional, or
327 * random-access, then this will call the elements' copy
328 * constructor N times (where N is distance(first,last)) and do
329 * no memory reallocation. But if only input iterators are
330 * used, then this will do at most 2N calls to the copy
331 * constructor, and logN memory reallocations.
332 */
333 template<typename _InputIterator>
334 vector(_InputIterator __first, _InputIterator __last,
335 const allocator_type& __a = allocator_type())
336 : _Base(__a)
337 {
338 // Check whether it's an integral type. If so, it's not an iterator.
339 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
340 _M_initialize_dispatch(__first, __last, _Integral());
341 }
342
343 /**
344 * The dtor only erases the elements, and note that if the
345 * elements themselves are pointers, the pointed-to memory is
346 * not touched in any way. Managing the pointer is the user's
347 * responsibility.
348 */
349 ~vector()
350 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
351 _M_get_Tp_allocator()); }
352
353 /**
354 * @brief %Vector assignment operator.
355 * @param x A %vector of identical element and allocator types.
356 *
357 * All the elements of @a x are copied, but any extra memory in
358 * @a x (for fast expansion) will not be copied. Unlike the
359 * copy constructor, the allocator object is not copied.
360 */
361 vector&
362 operator=(const vector& __x);
363
364 #ifdef __GXX_EXPERIMENTAL_CXX0X__
365 /**
366 * @brief %Vector move assignment operator.
367 * @param x A %vector of identical element and allocator types.
368 *
369 * The contents of @a x are moved into this %vector (without copying).
370 * @a x is a valid, but unspecified %vector.
371 */
372 vector&
373 operator=(vector&& __x)
374 {
375 // NB: DR 1204.
376 // NB: DR 675.
377 this->clear();
378 this->swap(__x);
379 return *this;
380 }
381
382 /**
383 * @brief %Vector list assignment operator.
384 * @param l An initializer_list.
385 *
386 * This function fills a %vector with copies of the elements in the
387 * initializer list @a l.
388 *
389 * Note that the assignment completely changes the %vector and
390 * that the resulting %vector's size is the same as the number
391 * of elements assigned. Old data may be lost.
392 */
393 vector&
394 operator=(initializer_list<value_type> __l)
395 {
396 this->assign(__l.begin(), __l.end());
397 return *this;
398 }
399 #endif
400
401 /**
402 * @brief Assigns a given value to a %vector.
403 * @param n Number of elements to be assigned.
404 * @param val Value to be assigned.
405 *
406 * This function fills a %vector with @a n copies of the given
407 * value. Note that the assignment completely changes the
408 * %vector and that the resulting %vector's size is the same as
409 * the number of elements assigned. Old data may be lost.
410 */
411 void
412 assign(size_type __n, const value_type& __val)
413 { _M_fill_assign(__n, __val); }
414
415 /**
416 * @brief Assigns a range to a %vector.
417 * @param first An input iterator.
418 * @param last An input iterator.
419 *
420 * This function fills a %vector with copies of the elements in the
421 * range [first,last).
422 *
423 * Note that the assignment completely changes the %vector and
424 * that the resulting %vector's size is the same as the number
425 * of elements assigned. Old data may be lost.
426 */
427 template<typename _InputIterator>
428 void
429 assign(_InputIterator __first, _InputIterator __last)
430 {
431 // Check whether it's an integral type. If so, it's not an iterator.
432 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
433 _M_assign_dispatch(__first, __last, _Integral());
434 }
435
436 #ifdef __GXX_EXPERIMENTAL_CXX0X__
437 /**
438 * @brief Assigns an initializer list to a %vector.
439 * @param l An initializer_list.
440 *
441 * This function fills a %vector with copies of the elements in the
442 * initializer list @a l.
443 *
444 * Note that the assignment completely changes the %vector and
445 * that the resulting %vector's size is the same as the number
446 * of elements assigned. Old data may be lost.
447 */
448 void
449 assign(initializer_list<value_type> __l)
450 { this->assign(__l.begin(), __l.end()); }
451 #endif
452
453 /// Get a copy of the memory allocation object.
454 using _Base::get_allocator;
455
456 // iterators
457 /**
458 * Returns a read/write iterator that points to the first
459 * element in the %vector. Iteration is done in ordinary
460 * element order.
461 */
462 iterator
463 begin() _GLIBCXX_NOEXCEPT
464 { return iterator(this->_M_impl._M_start); }
465
466 /**
467 * Returns a read-only (constant) iterator that points to the
468 * first element in the %vector. Iteration is done in ordinary
469 * element order.
470 */
471 const_iterator
472 begin() const _GLIBCXX_NOEXCEPT
473 { return const_iterator(this->_M_impl._M_start); }
474
475 /**
476 * Returns a read/write iterator that points one past the last
477 * element in the %vector. Iteration is done in ordinary
478 * element order.
479 */
480 iterator
481 end() _GLIBCXX_NOEXCEPT
482 { return iterator(this->_M_impl._M_finish); }
483
484 /**
485 * Returns a read-only (constant) iterator that points one past
486 * the last element in the %vector. Iteration is done in
487 * ordinary element order.
488 */
489 const_iterator
490 end() const _GLIBCXX_NOEXCEPT
491 { return const_iterator(this->_M_impl._M_finish); }
492
493 /**
494 * Returns a read/write reverse iterator that points to the
495 * last element in the %vector. Iteration is done in reverse
496 * element order.
497 */
498 reverse_iterator
499 rbegin() _GLIBCXX_NOEXCEPT
500 { return reverse_iterator(end()); }
501
502 /**
503 * Returns a read-only (constant) reverse iterator that points
504 * to the last element in the %vector. Iteration is done in
505 * reverse element order.
506 */
507 const_reverse_iterator
508 rbegin() const _GLIBCXX_NOEXCEPT
509 { return const_reverse_iterator(end()); }
510
511 /**
512 * Returns a read/write reverse iterator that points to one
513 * before the first element in the %vector. Iteration is done
514 * in reverse element order.
515 */
516 reverse_iterator
517 rend() _GLIBCXX_NOEXCEPT
518 { return reverse_iterator(begin()); }
519
520 /**
521 * Returns a read-only (constant) reverse iterator that points
522 * to one before the first element in the %vector. Iteration
523 * is done in reverse element order.
524 */
525 const_reverse_iterator
526 rend() const _GLIBCXX_NOEXCEPT
527 { return const_reverse_iterator(begin()); }
528
529 #ifdef __GXX_EXPERIMENTAL_CXX0X__
530 /**
531 * Returns a read-only (constant) iterator that points to the
532 * first element in the %vector. Iteration is done in ordinary
533 * element order.
534 */
535 const_iterator
536 cbegin() const noexcept
537 { return const_iterator(this->_M_impl._M_start); }
538
539 /**
540 * Returns a read-only (constant) iterator that points one past
541 * the last element in the %vector. Iteration is done in
542 * ordinary element order.
543 */
544 const_iterator
545 cend() const noexcept
546 { return const_iterator(this->_M_impl._M_finish); }
547
548 /**
549 * Returns a read-only (constant) reverse iterator that points
550 * to the last element in the %vector. Iteration is done in
551 * reverse element order.
552 */
553 const_reverse_iterator
554 crbegin() const noexcept
555 { return const_reverse_iterator(end()); }
556
557 /**
558 * Returns a read-only (constant) reverse iterator that points
559 * to one before the first element in the %vector. Iteration
560 * is done in reverse element order.
561 */
562 const_reverse_iterator
563 crend() const noexcept
564 { return const_reverse_iterator(begin()); }
565 #endif
566
567 // [23.2.4.2] capacity
568 /** Returns the number of elements in the %vector. */
569 size_type
570 size() const _GLIBCXX_NOEXCEPT
571 { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
572
573 /** Returns the size() of the largest possible %vector. */
574 size_type
575 max_size() const _GLIBCXX_NOEXCEPT
576 { return _M_get_Tp_allocator().max_size(); }
577
578 #ifdef __GXX_EXPERIMENTAL_CXX0X__
579 /**
580 * @brief Resizes the %vector to the specified number of elements.
581 * @param new_size Number of elements the %vector should contain.
582 *
583 * This function will %resize the %vector to the specified
584 * number of elements. If the number is smaller than the
585 * %vector's current size the %vector is truncated, otherwise
586 * default constructed elements are appended.
587 */
588 void
589 resize(size_type __new_size)
590 {
591 if (__new_size > size())
592 _M_default_append(__new_size - size());
593 else if (__new_size < size())
594 _M_erase_at_end(this->_M_impl._M_start + __new_size);
595 }
596
597 /**
598 * @brief Resizes the %vector to the specified number of elements.
599 * @param new_size Number of elements the %vector should contain.
600 * @param x Data with which new elements should be populated.
601 *
602 * This function will %resize the %vector to the specified
603 * number of elements. If the number is smaller than the
604 * %vector's current size the %vector is truncated, otherwise
605 * the %vector is extended and new elements are populated with
606 * given data.
607 */
608 void
609 resize(size_type __new_size, const value_type& __x)
610 {
611 if (__new_size > size())
612 insert(end(), __new_size - size(), __x);
613 else if (__new_size < size())
614 _M_erase_at_end(this->_M_impl._M_start + __new_size);
615 }
616 #else
617 /**
618 * @brief Resizes the %vector to the specified number of elements.
619 * @param new_size Number of elements the %vector should contain.
620 * @param x Data with which new elements should be populated.
621 *
622 * This function will %resize the %vector to the specified
623 * number of elements. If the number is smaller than the
624 * %vector's current size the %vector is truncated, otherwise
625 * the %vector is extended and new elements are populated with
626 * given data.
627 */
628 void
629 resize(size_type __new_size, value_type __x = value_type())
630 {
631 if (__new_size > size())
632 insert(end(), __new_size - size(), __x);
633 else if (__new_size < size())
634 _M_erase_at_end(this->_M_impl._M_start + __new_size);
635 }
636 #endif
637
638 #ifdef __GXX_EXPERIMENTAL_CXX0X__
639 /** A non-binding request to reduce capacity() to size(). */
640 void
641 shrink_to_fit()
642 { std::__shrink_to_fit<vector>::_S_do_it(*this); }
643 #endif
644
645 /**
646 * Returns the total number of elements that the %vector can
647 * hold before needing to allocate more memory.
648 */
649 size_type
650 capacity() const _GLIBCXX_NOEXCEPT
651 { return size_type(this->_M_impl._M_end_of_storage
652 - this->_M_impl._M_start); }
653
654 /**
655 * Returns true if the %vector is empty. (Thus begin() would
656 * equal end().)
657 */
658 bool
659 empty() const _GLIBCXX_NOEXCEPT
660 { return begin() == end(); }
661
662 /**
663 * @brief Attempt to preallocate enough memory for specified number of
664 * elements.
665 * @param n Number of elements required.
666 * @throw std::length_error If @a n exceeds @c max_size().
667 *
668 * This function attempts to reserve enough memory for the
669 * %vector to hold the specified number of elements. If the
670 * number requested is more than max_size(), length_error is
671 * thrown.
672 *
673 * The advantage of this function is that if optimal code is a
674 * necessity and the user can determine the number of elements
675 * that will be required, the user can reserve the memory in
676 * %advance, and thus prevent a possible reallocation of memory
677 * and copying of %vector data.
678 */
679 void
680 reserve(size_type __n);
681
682 // element access
683 /**
684 * @brief Subscript access to the data contained in the %vector.
685 * @param n The index of the element for which data should be
686 * accessed.
687 * @return Read/write reference to data.
688 *
689 * This operator allows for easy, array-style, data access.
690 * Note that data access with this operator is unchecked and
691 * out_of_range lookups are not defined. (For checked lookups
692 * see at().)
693 */
694 reference
695 operator[](size_type __n)
696 { return *(this->_M_impl._M_start + __n); }
697
698 /**
699 * @brief Subscript access to the data contained in the %vector.
700 * @param n The index of the element for which data should be
701 * accessed.
702 * @return Read-only (constant) reference to data.
703 *
704 * This operator allows for easy, array-style, data access.
705 * Note that data access with this operator is unchecked and
706 * out_of_range lookups are not defined. (For checked lookups
707 * see at().)
708 */
709 const_reference
710 operator[](size_type __n) const
711 { return *(this->_M_impl._M_start + __n); }
712
713 protected:
714 /// Safety check used only from at().
715 void
716 _M_range_check(size_type __n) const
717 {
718 if (__n >= this->size())
719 __throw_out_of_range(__N("vector::_M_range_check"));
720 }
721
722 public:
723 /**
724 * @brief Provides access to the data contained in the %vector.
725 * @param n The index of the element for which data should be
726 * accessed.
727 * @return Read/write reference to data.
728 * @throw std::out_of_range If @a n is an invalid index.
729 *
730 * This function provides for safer data access. The parameter
731 * is first checked that it is in the range of the vector. The
732 * function throws out_of_range if the check fails.
733 */
734 reference
735 at(size_type __n)
736 {
737 _M_range_check(__n);
738 return (*this)[__n];
739 }
740
741 /**
742 * @brief Provides access to the data contained in the %vector.
743 * @param n The index of the element for which data should be
744 * accessed.
745 * @return Read-only (constant) reference to data.
746 * @throw std::out_of_range If @a n is an invalid index.
747 *
748 * This function provides for safer data access. The parameter
749 * is first checked that it is in the range of the vector. The
750 * function throws out_of_range if the check fails.
751 */
752 const_reference
753 at(size_type __n) const
754 {
755 _M_range_check(__n);
756 return (*this)[__n];
757 }
758
759 /**
760 * Returns a read/write reference to the data at the first
761 * element of the %vector.
762 */
763 reference
764 front()
765 { return *begin(); }
766
767 /**
768 * Returns a read-only (constant) reference to the data at the first
769 * element of the %vector.
770 */
771 const_reference
772 front() const
773 { return *begin(); }
774
775 /**
776 * Returns a read/write reference to the data at the last
777 * element of the %vector.
778 */
779 reference
780 back()
781 { return *(end() - 1); }
782
783 /**
784 * Returns a read-only (constant) reference to the data at the
785 * last element of the %vector.
786 */
787 const_reference
788 back() const
789 { return *(end() - 1); }
790
791 // _GLIBCXX_RESOLVE_LIB_DEFECTS
792 // DR 464. Suggestion for new member functions in standard containers.
793 // data access
794 /**
795 * Returns a pointer such that [data(), data() + size()) is a valid
796 * range. For a non-empty %vector, data() == &front().
797 */
798 #ifdef __GXX_EXPERIMENTAL_CXX0X__
799 _Tp*
800 #else
801 pointer
802 #endif
803 data() _GLIBCXX_NOEXCEPT
804 { return std::__addressof(front()); }
805
806 #ifdef __GXX_EXPERIMENTAL_CXX0X__
807 const _Tp*
808 #else
809 const_pointer
810 #endif
811 data() const _GLIBCXX_NOEXCEPT
812 { return std::__addressof(front()); }
813
814 // [23.2.4.3] modifiers
815 /**
816 * @brief Add data to the end of the %vector.
817 * @param x Data to be added.
818 *
819 * This is a typical stack operation. The function creates an
820 * element at the end of the %vector and assigns the given data
821 * to it. Due to the nature of a %vector this operation can be
822 * done in constant time if the %vector has preallocated space
823 * available.
824 */
825 void
826 push_back(const value_type& __x)
827 {
828 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
829 {
830 this->_M_impl.construct(this->_M_impl._M_finish, __x);
831 ++this->_M_impl._M_finish;
832 }
833 else
834 _M_insert_aux(end(), __x);
835 }
836
837 #ifdef __GXX_EXPERIMENTAL_CXX0X__
838 void
839 push_back(value_type&& __x)
840 { emplace_back(std::move(__x)); }
841
842 template<typename... _Args>
843 void
844 emplace_back(_Args&&... __args);
845 #endif
846
847 /**
848 * @brief Removes last element.
849 *
850 * This is a typical stack operation. It shrinks the %vector by one.
851 *
852 * Note that no data is returned, and if the last element's
853 * data is needed, it should be retrieved before pop_back() is
854 * called.
855 */
856 void
857 pop_back()
858 {
859 --this->_M_impl._M_finish;
860 this->_M_impl.destroy(this->_M_impl._M_finish);
861 }
862
863 #ifdef __GXX_EXPERIMENTAL_CXX0X__
864 /**
865 * @brief Inserts an object in %vector before specified iterator.
866 * @param position An iterator into the %vector.
867 * @param args Arguments.
868 * @return An iterator that points to the inserted data.
869 *
870 * This function will insert an object of type T constructed
871 * with T(std::forward<Args>(args)...) before the specified location.
872 * Note that this kind of operation could be expensive for a %vector
873 * and if it is frequently used the user should consider using
874 * std::list.
875 */
876 template<typename... _Args>
877 iterator
878 emplace(iterator __position, _Args&&... __args);
879 #endif
880
881 /**
882 * @brief Inserts given value into %vector before specified iterator.
883 * @param position An iterator into the %vector.
884 * @param x Data to be inserted.
885 * @return An iterator that points to the inserted data.
886 *
887 * This function will insert a copy of the given value before
888 * the specified location. Note that this kind of operation
889 * could be expensive for a %vector and if it is frequently
890 * used the user should consider using std::list.
891 */
892 iterator
893 insert(iterator __position, const value_type& __x);
894
895 #ifdef __GXX_EXPERIMENTAL_CXX0X__
896 /**
897 * @brief Inserts given rvalue into %vector before specified iterator.
898 * @param position An iterator into the %vector.
899 * @param x Data to be inserted.
900 * @return An iterator that points to the inserted data.
901 *
902 * This function will insert a copy of the given rvalue before
903 * the specified location. Note that this kind of operation
904 * could be expensive for a %vector and if it is frequently
905 * used the user should consider using std::list.
906 */
907 iterator
908 insert(iterator __position, value_type&& __x)
909 { return emplace(__position, std::move(__x)); }
910
911 /**
912 * @brief Inserts an initializer_list into the %vector.
913 * @param position An iterator into the %vector.
914 * @param l An initializer_list.
915 *
916 * This function will insert copies of the data in the
917 * initializer_list @a l into the %vector before the location
918 * specified by @a position.
919 *
920 * Note that this kind of operation could be expensive for a
921 * %vector and if it is frequently used the user should
922 * consider using std::list.
923 */
924 void
925 insert(iterator __position, initializer_list<value_type> __l)
926 { this->insert(__position, __l.begin(), __l.end()); }
927 #endif
928
929 /**
930 * @brief Inserts a number of copies of given data into the %vector.
931 * @param position An iterator into the %vector.
932 * @param n Number of elements to be inserted.
933 * @param x Data to be inserted.
934 *
935 * This function will insert a specified number of copies of
936 * the given data before the location specified by @a position.
937 *
938 * Note that this kind of operation could be expensive for a
939 * %vector and if it is frequently used the user should
940 * consider using std::list.
941 */
942 void
943 insert(iterator __position, size_type __n, const value_type& __x)
944 { _M_fill_insert(__position, __n, __x); }
945
946 /**
947 * @brief Inserts a range into the %vector.
948 * @param position An iterator into the %vector.
949 * @param first An input iterator.
950 * @param last An input iterator.
951 *
952 * This function will insert copies of the data in the range
953 * [first,last) into the %vector before the location specified
954 * by @a pos.
955 *
956 * Note that this kind of operation could be expensive for a
957 * %vector and if it is frequently used the user should
958 * consider using std::list.
959 */
960 template<typename _InputIterator>
961 void
962 insert(iterator __position, _InputIterator __first,
963 _InputIterator __last)
964 {
965 // Check whether it's an integral type. If so, it's not an iterator.
966 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
967 _M_insert_dispatch(__position, __first, __last, _Integral());
968 }
969
970 /**
971 * @brief Remove element at given position.
972 * @param position Iterator pointing to element to be erased.
973 * @return An iterator pointing to the next element (or end()).
974 *
975 * This function will erase the element at the given position and thus
976 * shorten the %vector by one.
977 *
978 * Note This operation could be expensive and if it is
979 * frequently used the user should consider using std::list.
980 * The user is also cautioned that this function only erases
981 * the element, and that if the element is itself a pointer,
982 * the pointed-to memory is not touched in any way. Managing
983 * the pointer is the user's responsibility.
984 */
985 iterator
986 erase(iterator __position);
987
988 /**
989 * @brief Remove a range of elements.
990 * @param first Iterator pointing to the first element to be erased.
991 * @param last Iterator pointing to one past the last element to be
992 * erased.
993 * @return An iterator pointing to the element pointed to by @a last
994 * prior to erasing (or end()).
995 *
996 * This function will erase the elements in the range [first,last) and
997 * shorten the %vector accordingly.
998 *
999 * Note This operation could be expensive and if it is
1000 * frequently used the user should consider using std::list.
1001 * The user is also cautioned that this function only erases
1002 * the elements, and that if the elements themselves are
1003 * pointers, the pointed-to memory is not touched in any way.
1004 * Managing the pointer is the user's responsibility.
1005 */
1006 iterator
1007 erase(iterator __first, iterator __last);
1008
1009 /**
1010 * @brief Swaps data with another %vector.
1011 * @param x A %vector of the same element and allocator types.
1012 *
1013 * This exchanges the elements between two vectors in constant time.
1014 * (Three pointers, so it should be quite fast.)
1015 * Note that the global std::swap() function is specialized such that
1016 * std::swap(v1,v2) will feed to this function.
1017 */
1018 void
1019 swap(vector& __x)
1020 {
1021 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1022 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1023 std::swap(this->_M_impl._M_end_of_storage,
1024 __x._M_impl._M_end_of_storage);
1025
1026 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1027 // 431. Swapping containers with unequal allocators.
1028 std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1029 __x._M_get_Tp_allocator());
1030 }
1031
1032 /**
1033 * Erases all the elements. Note that this function only erases the
1034 * elements, and that if the elements themselves are pointers, the
1035 * pointed-to memory is not touched in any way. Managing the pointer is
1036 * the user's responsibility.
1037 */
1038 void
1039 clear() _GLIBCXX_NOEXCEPT
1040 { _M_erase_at_end(this->_M_impl._M_start); }
1041
1042 protected:
1043 /**
1044 * Memory expansion handler. Uses the member allocation function to
1045 * obtain @a n bytes of memory, and then copies [first,last) into it.
1046 */
1047 template<typename _ForwardIterator>
1048 pointer
1049 _M_allocate_and_copy(size_type __n,
1050 _ForwardIterator __first, _ForwardIterator __last)
1051 {
1052 pointer __result = this->_M_allocate(__n);
1053 __try
1054 {
1055 std::__uninitialized_copy_a(__first, __last, __result,
1056 _M_get_Tp_allocator());
1057 return __result;
1058 }
1059 __catch(...)
1060 {
1061 _M_deallocate(__result, __n);
1062 __throw_exception_again;
1063 }
1064 }
1065
1066
1067 // Internal constructor functions follow.
1068
1069 // Called by the range constructor to implement [23.1.1]/9
1070
1071 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1072 // 438. Ambiguity in the "do the right thing" clause
1073 template<typename _Integer>
1074 void
1075 _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
1076 {
1077 this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
1078 this->_M_impl._M_end_of_storage =
1079 this->_M_impl._M_start + static_cast<size_type>(__n);
1080 _M_fill_initialize(static_cast<size_type>(__n), __value);
1081 }
1082
1083 // Called by the range constructor to implement [23.1.1]/9
1084 template<typename _InputIterator>
1085 void
1086 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1087 __false_type)
1088 {
1089 typedef typename std::iterator_traits<_InputIterator>::
1090 iterator_category _IterCategory;
1091 _M_range_initialize(__first, __last, _IterCategory());
1092 }
1093
1094 // Called by the second initialize_dispatch above
1095 template<typename _InputIterator>
1096 void
1097 _M_range_initialize(_InputIterator __first,
1098 _InputIterator __last, std::input_iterator_tag)
1099 {
1100 for (; __first != __last; ++__first)
1101 push_back(*__first);
1102 }
1103
1104 // Called by the second initialize_dispatch above
1105 template<typename _ForwardIterator>
1106 void
1107 _M_range_initialize(_ForwardIterator __first,
1108 _ForwardIterator __last, std::forward_iterator_tag)
1109 {
1110 const size_type __n = std::distance(__first, __last);
1111 this->_M_impl._M_start = this->_M_allocate(__n);
1112 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1113 this->_M_impl._M_finish =
1114 std::__uninitialized_copy_a(__first, __last,
1115 this->_M_impl._M_start,
1116 _M_get_Tp_allocator());
1117 }
1118
1119 // Called by the first initialize_dispatch above and by the
1120 // vector(n,value,a) constructor.
1121 void
1122 _M_fill_initialize(size_type __n, const value_type& __value)
1123 {
1124 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1125 _M_get_Tp_allocator());
1126 this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1127 }
1128
1129 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1130 // Called by the vector(n) constructor.
1131 void
1132 _M_default_initialize(size_type __n)
1133 {
1134 std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
1135 _M_get_Tp_allocator());
1136 this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1137 }
1138 #endif
1139
1140 // Internal assign functions follow. The *_aux functions do the actual
1141 // assignment work for the range versions.
1142
1143 // Called by the range assign to implement [23.1.1]/9
1144
1145 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1146 // 438. Ambiguity in the "do the right thing" clause
1147 template<typename _Integer>
1148 void
1149 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1150 { _M_fill_assign(__n, __val); }
1151
1152 // Called by the range assign to implement [23.1.1]/9
1153 template<typename _InputIterator>
1154 void
1155 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1156 __false_type)
1157 {
1158 typedef typename std::iterator_traits<_InputIterator>::
1159 iterator_category _IterCategory;
1160 _M_assign_aux(__first, __last, _IterCategory());
1161 }
1162
1163 // Called by the second assign_dispatch above
1164 template<typename _InputIterator>
1165 void
1166 _M_assign_aux(_InputIterator __first, _InputIterator __last,
1167 std::input_iterator_tag);
1168
1169 // Called by the second assign_dispatch above
1170 template<typename _ForwardIterator>
1171 void
1172 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1173 std::forward_iterator_tag);
1174
1175 // Called by assign(n,t), and the range assign when it turns out
1176 // to be the same thing.
1177 void
1178 _M_fill_assign(size_type __n, const value_type& __val);
1179
1180
1181 // Internal insert functions follow.
1182
1183 // Called by the range insert to implement [23.1.1]/9
1184
1185 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1186 // 438. Ambiguity in the "do the right thing" clause
1187 template<typename _Integer>
1188 void
1189 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1190 __true_type)
1191 { _M_fill_insert(__pos, __n, __val); }
1192
1193 // Called by the range insert to implement [23.1.1]/9
1194 template<typename _InputIterator>
1195 void
1196 _M_insert_dispatch(iterator __pos, _InputIterator __first,
1197 _InputIterator __last, __false_type)
1198 {
1199 typedef typename std::iterator_traits<_InputIterator>::
1200 iterator_category _IterCategory;
1201 _M_range_insert(__pos, __first, __last, _IterCategory());
1202 }
1203
1204 // Called by the second insert_dispatch above
1205 template<typename _InputIterator>
1206 void
1207 _M_range_insert(iterator __pos, _InputIterator __first,
1208 _InputIterator __last, std::input_iterator_tag);
1209
1210 // Called by the second insert_dispatch above
1211 template<typename _ForwardIterator>
1212 void
1213 _M_range_insert(iterator __pos, _ForwardIterator __first,
1214 _ForwardIterator __last, std::forward_iterator_tag);
1215
1216 // Called by insert(p,n,x), and the range insert when it turns out to be
1217 // the same thing.
1218 void
1219 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1220
1221 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1222 // Called by resize(n).
1223 void
1224 _M_default_append(size_type __n);
1225 #endif
1226
1227 // Called by insert(p,x)
1228 #ifndef __GXX_EXPERIMENTAL_CXX0X__
1229 void
1230 _M_insert_aux(iterator __position, const value_type& __x);
1231 #else
1232 template<typename... _Args>
1233 void
1234 _M_insert_aux(iterator __position, _Args&&... __args);
1235 #endif
1236
1237 // Called by the latter.
1238 size_type
1239 _M_check_len(size_type __n, const char* __s) const
1240 {
1241 if (max_size() - size() < __n)
1242 __throw_length_error(__N(__s));
1243
1244 const size_type __len = size() + std::max(size(), __n);
1245 return (__len < size() || __len > max_size()) ? max_size() : __len;
1246 }
1247
1248 // Internal erase functions follow.
1249
1250 // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1251 // _M_assign_aux.
1252 void
1253 _M_erase_at_end(pointer __pos)
1254 {
1255 std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
1256 this->_M_impl._M_finish = __pos;
1257 }
1258 };
1259
1260
1261 /**
1262 * @brief Vector equality comparison.
1263 * @param x A %vector.
1264 * @param y A %vector of the same type as @a x.
1265 * @return True iff the size and elements of the vectors are equal.
1266 *
1267 * This is an equivalence relation. It is linear in the size of the
1268 * vectors. Vectors are considered equivalent if their sizes are equal,
1269 * and if corresponding elements compare equal.
1270 */
1271 template<typename _Tp, typename _Alloc>
1272 inline bool
1273 operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1274 { return (__x.size() == __y.size()
1275 && std::equal(__x.begin(), __x.end(), __y.begin())); }
1276
1277 /**
1278 * @brief Vector ordering relation.
1279 * @param x A %vector.
1280 * @param y A %vector of the same type as @a x.
1281 * @return True iff @a x is lexicographically less than @a y.
1282 *
1283 * This is a total ordering relation. It is linear in the size of the
1284 * vectors. The elements must be comparable with @c <.
1285 *
1286 * See std::lexicographical_compare() for how the determination is made.
1287 */
1288 template<typename _Tp, typename _Alloc>
1289 inline bool
1290 operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1291 { return std::lexicographical_compare(__x.begin(), __x.end(),
1292 __y.begin(), __y.end()); }
1293
1294 /// Based on operator==
1295 template<typename _Tp, typename _Alloc>
1296 inline bool
1297 operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1298 { return !(__x == __y); }
1299
1300 /// Based on operator<
1301 template<typename _Tp, typename _Alloc>
1302 inline bool
1303 operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1304 { return __y < __x; }
1305
1306 /// Based on operator<
1307 template<typename _Tp, typename _Alloc>
1308 inline bool
1309 operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1310 { return !(__y < __x); }
1311
1312 /// Based on operator<
1313 template<typename _Tp, typename _Alloc>
1314 inline bool
1315 operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1316 { return !(__x < __y); }
1317
1318 /// See std::vector::swap().
1319 template<typename _Tp, typename _Alloc>
1320 inline void
1321 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
1322 { __x.swap(__y); }
1323
1324 _GLIBCXX_END_NAMESPACE_CONTAINER
1325 } // namespace std
1326
1327 #endif /* _STL_VECTOR_H */