basic_string.h (basic_string<>:: basic_string(basic_string&&), [...]): Add.
[gcc.git] / libstdc++-v3 / include / ext / rc_string_base.h
1 // Reference-counted versatile string base -*- C++ -*-
2
3 // Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
25
26 /** @file ext/rc_string_base.h
27 * This file is a GNU extension to the Standard C++ Library.
28 * This is an internal header file, included by other library headers.
29 * You should not attempt to use it directly.
30 */
31
32 #ifndef _RC_STRING_BASE_H
33 #define _RC_STRING_BASE_H 1
34
35 #include <ext/atomicity.h>
36 #include <bits/stl_iterator_base_funcs.h>
37
38 _GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
39
40 /**
41 * Documentation? What's that?
42 * Nathan Myers <ncm@cantrip.org>.
43 *
44 * A string looks like this:
45 *
46 * @code
47 * [_Rep]
48 * _M_length
49 * [__rc_string_base<char_type>] _M_capacity
50 * _M_dataplus _M_refcount
51 * _M_p ----------------> unnamed array of char_type
52 * @endcode
53 *
54 * Where the _M_p points to the first character in the string, and
55 * you cast it to a pointer-to-_Rep and subtract 1 to get a
56 * pointer to the header.
57 *
58 * This approach has the enormous advantage that a string object
59 * requires only one allocation. All the ugliness is confined
60 * within a single pair of inline functions, which each compile to
61 * a single "add" instruction: _Rep::_M_refdata(), and
62 * __rc_string_base::_M_rep(); and the allocation function which gets a
63 * block of raw bytes and with room enough and constructs a _Rep
64 * object at the front.
65 *
66 * The reason you want _M_data pointing to the character array and
67 * not the _Rep is so that the debugger can see the string
68 * contents. (Probably we should add a non-inline member to get
69 * the _Rep for the debugger to use, so users can check the actual
70 * string length.)
71 *
72 * Note that the _Rep object is a POD so that you can have a
73 * static "empty string" _Rep object already "constructed" before
74 * static constructors have run. The reference-count encoding is
75 * chosen so that a 0 indicates one reference, so you never try to
76 * destroy the empty-string _Rep object.
77 *
78 * All but the last paragraph is considered pretty conventional
79 * for a C++ string implementation.
80 */
81 template<typename _CharT, typename _Traits, typename _Alloc>
82 class __rc_string_base
83 : protected __vstring_utility<_CharT, _Traits, _Alloc>
84 {
85 public:
86 typedef _Traits traits_type;
87 typedef typename _Traits::char_type value_type;
88 typedef _Alloc allocator_type;
89
90 typedef __vstring_utility<_CharT, _Traits, _Alloc> _Util_Base;
91 typedef typename _Util_Base::_CharT_alloc_type _CharT_alloc_type;
92 typedef typename _CharT_alloc_type::size_type size_type;
93
94 private:
95 // _Rep: string representation
96 // Invariants:
97 // 1. String really contains _M_length + 1 characters: due to 21.3.4
98 // must be kept null-terminated.
99 // 2. _M_capacity >= _M_length
100 // Allocated memory is always (_M_capacity + 1) * sizeof(_CharT).
101 // 3. _M_refcount has three states:
102 // -1: leaked, one reference, no ref-copies allowed, non-const.
103 // 0: one reference, non-const.
104 // n>0: n + 1 references, operations require a lock, const.
105 // 4. All fields == 0 is an empty string, given the extra storage
106 // beyond-the-end for a null terminator; thus, the shared
107 // empty string representation needs no constructor.
108 struct _Rep
109 {
110 union
111 {
112 struct
113 {
114 size_type _M_length;
115 size_type _M_capacity;
116 _Atomic_word _M_refcount;
117 } _M_info;
118
119 // Only for alignment purposes.
120 _CharT _M_align;
121 };
122
123 typedef typename _Alloc::template rebind<_Rep>::other _Rep_alloc_type;
124
125 _CharT*
126 _M_refdata() throw()
127 { return reinterpret_cast<_CharT*>(this + 1); }
128
129 _CharT*
130 _M_refcopy() throw()
131 {
132 __atomic_add_dispatch(&_M_info._M_refcount, 1);
133 return _M_refdata();
134 } // XXX MT
135
136 void
137 _M_set_length(size_type __n)
138 {
139 _M_info._M_refcount = 0; // One reference.
140 _M_info._M_length = __n;
141 // grrr. (per 21.3.4)
142 // You cannot leave those LWG people alone for a second.
143 traits_type::assign(_M_refdata()[__n], _CharT());
144 }
145
146 // Create & Destroy
147 static _Rep*
148 _S_create(size_type, size_type, const _Alloc&);
149
150 void
151 _M_destroy(const _Alloc&) throw();
152
153 _CharT*
154 _M_clone(const _Alloc&, size_type __res = 0);
155 };
156
157 struct _Rep_empty
158 : public _Rep
159 {
160 _CharT _M_terminal;
161 };
162
163 static _Rep_empty _S_empty_rep;
164
165 // The maximum number of individual char_type elements of an
166 // individual string is determined by _S_max_size. This is the
167 // value that will be returned by max_size(). (Whereas npos
168 // is the maximum number of bytes the allocator can allocate.)
169 // If one was to divvy up the theoretical largest size string,
170 // with a terminating character and m _CharT elements, it'd
171 // look like this:
172 // npos = sizeof(_Rep) + (m * sizeof(_CharT)) + sizeof(_CharT)
173 // + sizeof(_Rep) - 1
174 // (NB: last two terms for rounding reasons, see _M_create below)
175 // Solving for m:
176 // m = ((npos - 2 * sizeof(_Rep) + 1) / sizeof(_CharT)) - 1
177 // In addition, this implementation halves this amount.
178 enum { _S_max_size = (((static_cast<size_type>(-1) - 2 * sizeof(_Rep)
179 + 1) / sizeof(_CharT)) - 1) / 2 };
180
181 // Data Member (private):
182 mutable typename _Util_Base::template _Alloc_hider<_Alloc> _M_dataplus;
183
184 void
185 _M_data(_CharT* __p)
186 { _M_dataplus._M_p = __p; }
187
188 _Rep*
189 _M_rep() const
190 { return &((reinterpret_cast<_Rep*>(_M_data()))[-1]); }
191
192 _CharT*
193 _M_grab(const _Alloc& __alloc) const
194 {
195 return (!_M_is_leaked() && _M_get_allocator() == __alloc)
196 ? _M_rep()->_M_refcopy() : _M_rep()->_M_clone(__alloc);
197 }
198
199 void
200 _M_dispose()
201 {
202 if (__exchange_and_add_dispatch(&_M_rep()->_M_info._M_refcount,
203 -1) <= 0)
204 _M_rep()->_M_destroy(_M_get_allocator());
205 } // XXX MT
206
207 bool
208 _M_is_leaked() const
209 { return _M_rep()->_M_info._M_refcount < 0; }
210
211 void
212 _M_set_sharable()
213 { _M_rep()->_M_info._M_refcount = 0; }
214
215 void
216 _M_leak_hard();
217
218 // _S_construct_aux is used to implement the 21.3.1 para 15 which
219 // requires special behaviour if _InIterator is an integral type
220 template<typename _InIterator>
221 static _CharT*
222 _S_construct_aux(_InIterator __beg, _InIterator __end,
223 const _Alloc& __a, std::__false_type)
224 {
225 typedef typename iterator_traits<_InIterator>::iterator_category _Tag;
226 return _S_construct(__beg, __end, __a, _Tag());
227 }
228
229 // _GLIBCXX_RESOLVE_LIB_DEFECTS
230 // 438. Ambiguity in the "do the right thing" clause
231 template<typename _Integer>
232 static _CharT*
233 _S_construct_aux(_Integer __beg, _Integer __end,
234 const _Alloc& __a, std::__true_type)
235 { return _S_construct_aux_2(static_cast<size_type>(__beg),
236 __end, __a); }
237
238 static _CharT*
239 _S_construct_aux_2(size_type __req, _CharT __c, const _Alloc& __a)
240 { return _S_construct(__req, __c, __a); }
241
242 template<typename _InIterator>
243 static _CharT*
244 _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a)
245 {
246 typedef typename std::__is_integer<_InIterator>::__type _Integral;
247 return _S_construct_aux(__beg, __end, __a, _Integral());
248 }
249
250 // For Input Iterators, used in istreambuf_iterators, etc.
251 template<typename _InIterator>
252 static _CharT*
253 _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
254 std::input_iterator_tag);
255
256 // For forward_iterators up to random_access_iterators, used for
257 // string::iterator, _CharT*, etc.
258 template<typename _FwdIterator>
259 static _CharT*
260 _S_construct(_FwdIterator __beg, _FwdIterator __end, const _Alloc& __a,
261 std::forward_iterator_tag);
262
263 static _CharT*
264 _S_construct(size_type __req, _CharT __c, const _Alloc& __a);
265
266 public:
267 size_type
268 _M_max_size() const
269 { return size_type(_S_max_size); }
270
271 _CharT*
272 _M_data() const
273 { return _M_dataplus._M_p; }
274
275 size_type
276 _M_length() const
277 { return _M_rep()->_M_info._M_length; }
278
279 size_type
280 _M_capacity() const
281 { return _M_rep()->_M_info._M_capacity; }
282
283 bool
284 _M_is_shared() const
285 { return _M_rep()->_M_info._M_refcount > 0; }
286
287 void
288 _M_set_leaked()
289 { _M_rep()->_M_info._M_refcount = -1; }
290
291 void
292 _M_leak() // for use in begin() & non-const op[]
293 {
294 if (!_M_is_leaked())
295 _M_leak_hard();
296 }
297
298 void
299 _M_set_length(size_type __n)
300 { _M_rep()->_M_set_length(__n); }
301
302 __rc_string_base()
303 : _M_dataplus(_S_empty_rep._M_refcopy()) { }
304
305 __rc_string_base(const _Alloc& __a);
306
307 __rc_string_base(const __rc_string_base& __rcs);
308
309 #ifdef __GXX_EXPERIMENTAL_CXX0X__
310 __rc_string_base(__rc_string_base&& __rcs)
311 : _M_dataplus(__rcs._M_dataplus)
312 { __rcs._M_data(_S_empty_rep._M_refcopy()); }
313 #endif
314
315 __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a);
316
317 template<typename _InputIterator>
318 __rc_string_base(_InputIterator __beg, _InputIterator __end,
319 const _Alloc& __a);
320
321 ~__rc_string_base()
322 { _M_dispose(); }
323
324 allocator_type&
325 _M_get_allocator()
326 { return _M_dataplus; }
327
328 const allocator_type&
329 _M_get_allocator() const
330 { return _M_dataplus; }
331
332 void
333 _M_swap(__rc_string_base& __rcs);
334
335 void
336 _M_assign(const __rc_string_base& __rcs);
337
338 void
339 _M_reserve(size_type __res);
340
341 void
342 _M_mutate(size_type __pos, size_type __len1, const _CharT* __s,
343 size_type __len2);
344
345 void
346 _M_erase(size_type __pos, size_type __n);
347
348 void
349 _M_clear()
350 { _M_erase(size_type(0), _M_length()); }
351
352 bool
353 _M_compare(const __rc_string_base&) const
354 { return false; }
355 };
356
357 template<typename _CharT, typename _Traits, typename _Alloc>
358 typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep_empty
359 __rc_string_base<_CharT, _Traits, _Alloc>::_S_empty_rep;
360
361 template<typename _CharT, typename _Traits, typename _Alloc>
362 typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep*
363 __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
364 _S_create(size_type __capacity, size_type __old_capacity,
365 const _Alloc& __alloc)
366 {
367 // _GLIBCXX_RESOLVE_LIB_DEFECTS
368 // 83. String::npos vs. string::max_size()
369 if (__capacity > size_type(_S_max_size))
370 std::__throw_length_error(__N("__rc_string_base::_Rep::_S_create"));
371
372 // The standard places no restriction on allocating more memory
373 // than is strictly needed within this layer at the moment or as
374 // requested by an explicit application call to reserve().
375
376 // Many malloc implementations perform quite poorly when an
377 // application attempts to allocate memory in a stepwise fashion
378 // growing each allocation size by only 1 char. Additionally,
379 // it makes little sense to allocate less linear memory than the
380 // natural blocking size of the malloc implementation.
381 // Unfortunately, we would need a somewhat low-level calculation
382 // with tuned parameters to get this perfect for any particular
383 // malloc implementation. Fortunately, generalizations about
384 // common features seen among implementations seems to suffice.
385
386 // __pagesize need not match the actual VM page size for good
387 // results in practice, thus we pick a common value on the low
388 // side. __malloc_header_size is an estimate of the amount of
389 // overhead per memory allocation (in practice seen N * sizeof
390 // (void*) where N is 0, 2 or 4). According to folklore,
391 // picking this value on the high side is better than
392 // low-balling it (especially when this algorithm is used with
393 // malloc implementations that allocate memory blocks rounded up
394 // to a size which is a power of 2).
395 const size_type __pagesize = 4096;
396 const size_type __malloc_header_size = 4 * sizeof(void*);
397
398 // The below implements an exponential growth policy, necessary to
399 // meet amortized linear time requirements of the library: see
400 // http://gcc.gnu.org/ml/libstdc++/2001-07/msg00085.html.
401 if (__capacity > __old_capacity && __capacity < 2 * __old_capacity)
402 {
403 __capacity = 2 * __old_capacity;
404 // Never allocate a string bigger than _S_max_size.
405 if (__capacity > size_type(_S_max_size))
406 __capacity = size_type(_S_max_size);
407 }
408
409 // NB: Need an array of char_type[__capacity], plus a terminating
410 // null char_type() element, plus enough for the _Rep data structure,
411 // plus sizeof(_Rep) - 1 to upper round to a size multiple of
412 // sizeof(_Rep).
413 // Whew. Seemingly so needy, yet so elemental.
414 size_type __size = ((__capacity + 1) * sizeof(_CharT)
415 + 2 * sizeof(_Rep) - 1);
416
417 const size_type __adj_size = __size + __malloc_header_size;
418 if (__adj_size > __pagesize && __capacity > __old_capacity)
419 {
420 const size_type __extra = __pagesize - __adj_size % __pagesize;
421 __capacity += __extra / sizeof(_CharT);
422 if (__capacity > size_type(_S_max_size))
423 __capacity = size_type(_S_max_size);
424 __size = (__capacity + 1) * sizeof(_CharT) + 2 * sizeof(_Rep) - 1;
425 }
426
427 // NB: Might throw, but no worries about a leak, mate: _Rep()
428 // does not throw.
429 _Rep* __place = _Rep_alloc_type(__alloc).allocate(__size / sizeof(_Rep));
430 _Rep* __p = new (__place) _Rep;
431 __p->_M_info._M_capacity = __capacity;
432 return __p;
433 }
434
435 template<typename _CharT, typename _Traits, typename _Alloc>
436 void
437 __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
438 _M_destroy(const _Alloc& __a) throw ()
439 {
440 const size_type __size = ((_M_info._M_capacity + 1) * sizeof(_CharT)
441 + 2 * sizeof(_Rep) - 1);
442 _Rep_alloc_type(__a).deallocate(this, __size / sizeof(_Rep));
443 }
444
445 template<typename _CharT, typename _Traits, typename _Alloc>
446 _CharT*
447 __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
448 _M_clone(const _Alloc& __alloc, size_type __res)
449 {
450 // Requested capacity of the clone.
451 const size_type __requested_cap = _M_info._M_length + __res;
452 _Rep* __r = _Rep::_S_create(__requested_cap, _M_info._M_capacity,
453 __alloc);
454
455 if (_M_info._M_length)
456 _S_copy(__r->_M_refdata(), _M_refdata(), _M_info._M_length);
457
458 __r->_M_set_length(_M_info._M_length);
459 return __r->_M_refdata();
460 }
461
462 template<typename _CharT, typename _Traits, typename _Alloc>
463 __rc_string_base<_CharT, _Traits, _Alloc>::
464 __rc_string_base(const _Alloc& __a)
465 : _M_dataplus(__a, _S_construct(size_type(), _CharT(), __a)) { }
466
467 template<typename _CharT, typename _Traits, typename _Alloc>
468 __rc_string_base<_CharT, _Traits, _Alloc>::
469 __rc_string_base(const __rc_string_base& __rcs)
470 : _M_dataplus(__rcs._M_get_allocator(),
471 __rcs._M_grab(__rcs._M_get_allocator())) { }
472
473 template<typename _CharT, typename _Traits, typename _Alloc>
474 __rc_string_base<_CharT, _Traits, _Alloc>::
475 __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a)
476 : _M_dataplus(__a, _S_construct(__n, __c, __a)) { }
477
478 template<typename _CharT, typename _Traits, typename _Alloc>
479 template<typename _InputIterator>
480 __rc_string_base<_CharT, _Traits, _Alloc>::
481 __rc_string_base(_InputIterator __beg, _InputIterator __end,
482 const _Alloc& __a)
483 : _M_dataplus(__a, _S_construct(__beg, __end, __a)) { }
484
485 template<typename _CharT, typename _Traits, typename _Alloc>
486 void
487 __rc_string_base<_CharT, _Traits, _Alloc>::
488 _M_leak_hard()
489 {
490 if (_M_is_shared())
491 _M_erase(0, 0);
492 _M_set_leaked();
493 }
494
495 // NB: This is the special case for Input Iterators, used in
496 // istreambuf_iterators, etc.
497 // Input Iterators have a cost structure very different from
498 // pointers, calling for a different coding style.
499 template<typename _CharT, typename _Traits, typename _Alloc>
500 template<typename _InIterator>
501 _CharT*
502 __rc_string_base<_CharT, _Traits, _Alloc>::
503 _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
504 std::input_iterator_tag)
505 {
506 if (__beg == __end && __a == _Alloc())
507 return _S_empty_rep._M_refcopy();
508
509 // Avoid reallocation for common case.
510 _CharT __buf[128];
511 size_type __len = 0;
512 while (__beg != __end && __len < sizeof(__buf) / sizeof(_CharT))
513 {
514 __buf[__len++] = *__beg;
515 ++__beg;
516 }
517 _Rep* __r = _Rep::_S_create(__len, size_type(0), __a);
518 _S_copy(__r->_M_refdata(), __buf, __len);
519 __try
520 {
521 while (__beg != __end)
522 {
523 if (__len == __r->_M_info._M_capacity)
524 {
525 // Allocate more space.
526 _Rep* __another = _Rep::_S_create(__len + 1, __len, __a);
527 _S_copy(__another->_M_refdata(), __r->_M_refdata(), __len);
528 __r->_M_destroy(__a);
529 __r = __another;
530 }
531 __r->_M_refdata()[__len++] = *__beg;
532 ++__beg;
533 }
534 }
535 __catch(...)
536 {
537 __r->_M_destroy(__a);
538 __throw_exception_again;
539 }
540 __r->_M_set_length(__len);
541 return __r->_M_refdata();
542 }
543
544 template<typename _CharT, typename _Traits, typename _Alloc>
545 template<typename _InIterator>
546 _CharT*
547 __rc_string_base<_CharT, _Traits, _Alloc>::
548 _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
549 std::forward_iterator_tag)
550 {
551 if (__beg == __end && __a == _Alloc())
552 return _S_empty_rep._M_refcopy();
553
554 // NB: Not required, but considered best practice.
555 if (__is_null_pointer(__beg) && __beg != __end)
556 std::__throw_logic_error(__N("__rc_string_base::"
557 "_S_construct NULL not valid"));
558
559 const size_type __dnew = static_cast<size_type>(std::distance(__beg,
560 __end));
561 // Check for out_of_range and length_error exceptions.
562 _Rep* __r = _Rep::_S_create(__dnew, size_type(0), __a);
563 __try
564 { _S_copy_chars(__r->_M_refdata(), __beg, __end); }
565 __catch(...)
566 {
567 __r->_M_destroy(__a);
568 __throw_exception_again;
569 }
570 __r->_M_set_length(__dnew);
571 return __r->_M_refdata();
572 }
573
574 template<typename _CharT, typename _Traits, typename _Alloc>
575 _CharT*
576 __rc_string_base<_CharT, _Traits, _Alloc>::
577 _S_construct(size_type __n, _CharT __c, const _Alloc& __a)
578 {
579 if (__n == 0 && __a == _Alloc())
580 return _S_empty_rep._M_refcopy();
581
582 // Check for out_of_range and length_error exceptions.
583 _Rep* __r = _Rep::_S_create(__n, size_type(0), __a);
584 if (__n)
585 _S_assign(__r->_M_refdata(), __n, __c);
586
587 __r->_M_set_length(__n);
588 return __r->_M_refdata();
589 }
590
591 template<typename _CharT, typename _Traits, typename _Alloc>
592 void
593 __rc_string_base<_CharT, _Traits, _Alloc>::
594 _M_swap(__rc_string_base& __rcs)
595 {
596 if (_M_is_leaked())
597 _M_set_sharable();
598 if (__rcs._M_is_leaked())
599 __rcs._M_set_sharable();
600
601 _CharT* __tmp = _M_data();
602 _M_data(__rcs._M_data());
603 __rcs._M_data(__tmp);
604
605 // _GLIBCXX_RESOLVE_LIB_DEFECTS
606 // 431. Swapping containers with unequal allocators.
607 std::__alloc_swap<allocator_type>::_S_do_it(_M_get_allocator(),
608 __rcs._M_get_allocator());
609 }
610
611 template<typename _CharT, typename _Traits, typename _Alloc>
612 void
613 __rc_string_base<_CharT, _Traits, _Alloc>::
614 _M_assign(const __rc_string_base& __rcs)
615 {
616 if (_M_rep() != __rcs._M_rep())
617 {
618 _CharT* __tmp = __rcs._M_grab(_M_get_allocator());
619 _M_dispose();
620 _M_data(__tmp);
621 }
622 }
623
624 template<typename _CharT, typename _Traits, typename _Alloc>
625 void
626 __rc_string_base<_CharT, _Traits, _Alloc>::
627 _M_reserve(size_type __res)
628 {
629 // Make sure we don't shrink below the current size.
630 if (__res < _M_length())
631 __res = _M_length();
632
633 if (__res != _M_capacity() || _M_is_shared())
634 {
635 _CharT* __tmp = _M_rep()->_M_clone(_M_get_allocator(),
636 __res - _M_length());
637 _M_dispose();
638 _M_data(__tmp);
639 }
640 }
641
642 template<typename _CharT, typename _Traits, typename _Alloc>
643 void
644 __rc_string_base<_CharT, _Traits, _Alloc>::
645 _M_mutate(size_type __pos, size_type __len1, const _CharT* __s,
646 size_type __len2)
647 {
648 const size_type __how_much = _M_length() - __pos - __len1;
649
650 _Rep* __r = _Rep::_S_create(_M_length() + __len2 - __len1,
651 _M_capacity(), _M_get_allocator());
652
653 if (__pos)
654 _S_copy(__r->_M_refdata(), _M_data(), __pos);
655 if (__s && __len2)
656 _S_copy(__r->_M_refdata() + __pos, __s, __len2);
657 if (__how_much)
658 _S_copy(__r->_M_refdata() + __pos + __len2,
659 _M_data() + __pos + __len1, __how_much);
660
661 _M_dispose();
662 _M_data(__r->_M_refdata());
663 }
664
665 template<typename _CharT, typename _Traits, typename _Alloc>
666 void
667 __rc_string_base<_CharT, _Traits, _Alloc>::
668 _M_erase(size_type __pos, size_type __n)
669 {
670 const size_type __new_size = _M_length() - __n;
671 const size_type __how_much = _M_length() - __pos - __n;
672
673 if (_M_is_shared())
674 {
675 // Must reallocate.
676 _Rep* __r = _Rep::_S_create(__new_size, _M_capacity(),
677 _M_get_allocator());
678
679 if (__pos)
680 _S_copy(__r->_M_refdata(), _M_data(), __pos);
681 if (__how_much)
682 _S_copy(__r->_M_refdata() + __pos,
683 _M_data() + __pos + __n, __how_much);
684
685 _M_dispose();
686 _M_data(__r->_M_refdata());
687 }
688 else if (__how_much && __n)
689 {
690 // Work in-place.
691 _S_move(_M_data() + __pos,
692 _M_data() + __pos + __n, __how_much);
693 }
694
695 _M_rep()->_M_set_length(__new_size);
696 }
697
698 template<>
699 inline bool
700 __rc_string_base<char, std::char_traits<char>,
701 std::allocator<char> >::
702 _M_compare(const __rc_string_base& __rcs) const
703 {
704 if (_M_rep() == __rcs._M_rep())
705 return true;
706 return false;
707 }
708
709 #ifdef _GLIBCXX_USE_WCHAR_T
710 template<>
711 inline bool
712 __rc_string_base<wchar_t, std::char_traits<wchar_t>,
713 std::allocator<wchar_t> >::
714 _M_compare(const __rc_string_base& __rcs) const
715 {
716 if (_M_rep() == __rcs._M_rep())
717 return true;
718 return false;
719 }
720 #endif
721
722 _GLIBCXX_END_NAMESPACE
723
724 #endif /* _RC_STRING_BASE_H */