algorithm, [...]: Remove trailing whitespace.
[gcc.git] / libstdc++-v3 / include / ext / slist
1 // Singly-linked list implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
20
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29
30 /*
31 * Copyright (c) 1997
32 * Silicon Graphics Computer Systems, Inc.
33 *
34 * Permission to use, copy, modify, distribute and sell this software
35 * and its documentation for any purpose is hereby granted without fee,
36 * provided that the above copyright notice appear in all copies and
37 * that both that copyright notice and this permission notice appear
38 * in supporting documentation. Silicon Graphics makes no
39 * representations about the suitability of this software for any
40 * purpose. It is provided "as is" without express or implied warranty.
41 *
42 */
43
44 /** @file ext/slist
45 * This file is a GNU extension to the Standard C++ Library (possibly
46 * containing extensions from the HP/SGI STL subset). You should only
47 * include this header if you are using GCC 3 or later.
48 */
49
50 #ifndef _SLIST
51 #define _SLIST 1
52
53 #include <bits/stl_algobase.h>
54 #include <bits/allocator.h>
55 #include <bits/stl_construct.h>
56 #include <bits/stl_uninitialized.h>
57 #include <bits/concept_check.h>
58
59 namespace __gnu_cxx
60 {
61 using std::size_t;
62 using std::ptrdiff_t;
63 using std::_Alloc_traits;
64 using std::_Construct;
65 using std::_Destroy;
66 using std::allocator;
67
68 struct _Slist_node_base
69 {
70 _Slist_node_base* _M_next;
71 };
72
73 inline _Slist_node_base*
74 __slist_make_link(_Slist_node_base* __prev_node,
75 _Slist_node_base* __new_node)
76 {
77 __new_node->_M_next = __prev_node->_M_next;
78 __prev_node->_M_next = __new_node;
79 return __new_node;
80 }
81
82 inline _Slist_node_base*
83 __slist_previous(_Slist_node_base* __head,
84 const _Slist_node_base* __node)
85 {
86 while (__head && __head->_M_next != __node)
87 __head = __head->_M_next;
88 return __head;
89 }
90
91 inline const _Slist_node_base*
92 __slist_previous(const _Slist_node_base* __head,
93 const _Slist_node_base* __node)
94 {
95 while (__head && __head->_M_next != __node)
96 __head = __head->_M_next;
97 return __head;
98 }
99
100 inline void __slist_splice_after(_Slist_node_base* __pos,
101 _Slist_node_base* __before_first,
102 _Slist_node_base* __before_last)
103 {
104 if (__pos != __before_first && __pos != __before_last) {
105 _Slist_node_base* __first = __before_first->_M_next;
106 _Slist_node_base* __after = __pos->_M_next;
107 __before_first->_M_next = __before_last->_M_next;
108 __pos->_M_next = __first;
109 __before_last->_M_next = __after;
110 }
111 }
112
113 inline void
114 __slist_splice_after(_Slist_node_base* __pos, _Slist_node_base* __head)
115 {
116 _Slist_node_base* __before_last = __slist_previous(__head, 0);
117 if (__before_last != __head) {
118 _Slist_node_base* __after = __pos->_M_next;
119 __pos->_M_next = __head->_M_next;
120 __head->_M_next = 0;
121 __before_last->_M_next = __after;
122 }
123 }
124
125 inline _Slist_node_base* __slist_reverse(_Slist_node_base* __node)
126 {
127 _Slist_node_base* __result = __node;
128 __node = __node->_M_next;
129 __result->_M_next = 0;
130 while(__node) {
131 _Slist_node_base* __next = __node->_M_next;
132 __node->_M_next = __result;
133 __result = __node;
134 __node = __next;
135 }
136 return __result;
137 }
138
139 inline size_t __slist_size(_Slist_node_base* __node)
140 {
141 size_t __result = 0;
142 for ( ; __node != 0; __node = __node->_M_next)
143 ++__result;
144 return __result;
145 }
146
147 template <class _Tp>
148 struct _Slist_node : public _Slist_node_base
149 {
150 _Tp _M_data;
151 };
152
153 struct _Slist_iterator_base
154 {
155 typedef size_t size_type;
156 typedef ptrdiff_t difference_type;
157 typedef std::forward_iterator_tag iterator_category;
158
159 _Slist_node_base* _M_node;
160
161 _Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {}
162 void _M_incr() { _M_node = _M_node->_M_next; }
163
164 bool operator==(const _Slist_iterator_base& __x) const {
165 return _M_node == __x._M_node;
166 }
167 bool operator!=(const _Slist_iterator_base& __x) const {
168 return _M_node != __x._M_node;
169 }
170 };
171
172 template <class _Tp, class _Ref, class _Ptr>
173 struct _Slist_iterator : public _Slist_iterator_base
174 {
175 typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
176 typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
177 typedef _Slist_iterator<_Tp, _Ref, _Ptr> _Self;
178
179 typedef _Tp value_type;
180 typedef _Ptr pointer;
181 typedef _Ref reference;
182 typedef _Slist_node<_Tp> _Node;
183
184 _Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {}
185 _Slist_iterator() : _Slist_iterator_base(0) {}
186 _Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {}
187
188 reference operator*() const { return ((_Node*) _M_node)->_M_data; }
189 pointer operator->() const { return &(operator*()); }
190
191 _Self& operator++()
192 {
193 _M_incr();
194 return *this;
195 }
196 _Self operator++(int)
197 {
198 _Self __tmp = *this;
199 _M_incr();
200 return __tmp;
201 }
202 };
203
204
205 // Base class that encapsulates details of allocators. Three cases:
206 // an ordinary standard-conforming allocator, a standard-conforming
207 // allocator with no non-static data, and an SGI-style allocator.
208 // This complexity is necessary only because we're worrying about backward
209 // compatibility and because we want to avoid wasting storage on an
210 // allocator instance if it isn't necessary.
211
212 // Base for general standard-conforming allocators.
213 template <class _Tp, class _Allocator, bool _IsStatic>
214 class _Slist_alloc_base {
215 public:
216 typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
217 allocator_type;
218 allocator_type get_allocator() const { return _M_node_allocator; }
219
220 _Slist_alloc_base(const allocator_type& __a) : _M_node_allocator(__a) {}
221
222 protected:
223 _Slist_node<_Tp>* _M_get_node()
224 { return _M_node_allocator.allocate(1); }
225 void _M_put_node(_Slist_node<_Tp>* __p)
226 { _M_node_allocator.deallocate(__p, 1); }
227
228 protected:
229 typename _Alloc_traits<_Slist_node<_Tp>,_Allocator>::allocator_type
230 _M_node_allocator;
231 _Slist_node_base _M_head;
232 };
233
234 // Specialization for instanceless allocators.
235 template <class _Tp, class _Allocator>
236 class _Slist_alloc_base<_Tp,_Allocator, true> {
237 public:
238 typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
239 allocator_type;
240 allocator_type get_allocator() const { return allocator_type(); }
241
242 _Slist_alloc_base(const allocator_type&) {}
243
244 protected:
245 typedef typename _Alloc_traits<_Slist_node<_Tp>, _Allocator>::_Alloc_type
246 _Alloc_type;
247 _Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
248 void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
249
250 protected:
251 _Slist_node_base _M_head;
252 };
253
254
255 template <class _Tp, class _Alloc>
256 struct _Slist_base
257 : public _Slist_alloc_base<_Tp, _Alloc,
258 _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
259 {
260 typedef _Slist_alloc_base<_Tp, _Alloc,
261 _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
262 _Base;
263 typedef typename _Base::allocator_type allocator_type;
264
265 _Slist_base(const allocator_type& __a)
266 : _Base(__a) { this->_M_head._M_next = 0; }
267 ~_Slist_base() { _M_erase_after(&this->_M_head, 0); }
268
269 protected:
270
271 _Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
272 {
273 _Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
274 _Slist_node_base* __next_next = __next->_M_next;
275 __pos->_M_next = __next_next;
276 _Destroy(&__next->_M_data);
277 _M_put_node(__next);
278 return __next_next;
279 }
280 _Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
281 };
282
283 template <class _Tp, class _Alloc>
284 _Slist_node_base*
285 _Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first,
286 _Slist_node_base* __last_node) {
287 _Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next);
288 while (__cur != __last_node) {
289 _Slist_node<_Tp>* __tmp = __cur;
290 __cur = (_Slist_node<_Tp>*) __cur->_M_next;
291 _Destroy(&__tmp->_M_data);
292 _M_put_node(__tmp);
293 }
294 __before_first->_M_next = __last_node;
295 return __last_node;
296 }
297
298 /**
299 * This is an SGI extension.
300 * @ingroup SGIextensions
301 * @doctodo
302 */
303 template <class _Tp, class _Alloc = allocator<_Tp> >
304 class slist : private _Slist_base<_Tp,_Alloc>
305 {
306 // concept requirements
307 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
308
309 private:
310 typedef _Slist_base<_Tp,_Alloc> _Base;
311 public:
312 typedef _Tp value_type;
313 typedef value_type* pointer;
314 typedef const value_type* const_pointer;
315 typedef value_type& reference;
316 typedef const value_type& const_reference;
317 typedef size_t size_type;
318 typedef ptrdiff_t difference_type;
319
320 typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
321 typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
322
323 typedef typename _Base::allocator_type allocator_type;
324 allocator_type get_allocator() const { return _Base::get_allocator(); }
325
326 private:
327 typedef _Slist_node<_Tp> _Node;
328 typedef _Slist_node_base _Node_base;
329 typedef _Slist_iterator_base _Iterator_base;
330
331 _Node* _M_create_node(const value_type& __x) {
332 _Node* __node = this->_M_get_node();
333 try {
334 _Construct(&__node->_M_data, __x);
335 __node->_M_next = 0;
336 }
337 catch(...)
338 {
339 this->_M_put_node(__node);
340 __throw_exception_again;
341 }
342 return __node;
343 }
344
345 _Node* _M_create_node() {
346 _Node* __node = this->_M_get_node();
347 try {
348 _Construct(&__node->_M_data);
349 __node->_M_next = 0;
350 }
351 catch(...)
352 {
353 this->_M_put_node(__node);
354 __throw_exception_again;
355 }
356 return __node;
357 }
358
359 public:
360 explicit slist(const allocator_type& __a = allocator_type()) : _Base(__a) {}
361
362 slist(size_type __n, const value_type& __x,
363 const allocator_type& __a = allocator_type()) : _Base(__a)
364 { _M_insert_after_fill(&this->_M_head, __n, __x); }
365
366 explicit slist(size_type __n) : _Base(allocator_type())
367 { _M_insert_after_fill(&this->_M_head, __n, value_type()); }
368
369 // We don't need any dispatching tricks here, because _M_insert_after_range
370 // already does them.
371 template <class _InputIterator>
372 slist(_InputIterator __first, _InputIterator __last,
373 const allocator_type& __a = allocator_type()) : _Base(__a)
374 { _M_insert_after_range(&this->_M_head, __first, __last); }
375
376 slist(const slist& __x) : _Base(__x.get_allocator())
377 { _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); }
378
379 slist& operator= (const slist& __x);
380
381 ~slist() {}
382
383 public:
384 // assign(), a generalized assignment member function. Two
385 // versions: one that takes a count, and one that takes a range.
386 // The range version is a member template, so we dispatch on whether
387 // or not the type is an integer.
388
389 void assign(size_type __n, const _Tp& __val)
390 { _M_fill_assign(__n, __val); }
391
392 void _M_fill_assign(size_type __n, const _Tp& __val);
393
394 template <class _InputIterator>
395 void assign(_InputIterator __first, _InputIterator __last) {
396 typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
397 _M_assign_dispatch(__first, __last, _Integral());
398 }
399
400 template <class _Integer>
401 void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
402 { _M_fill_assign((size_type) __n, (_Tp) __val); }
403
404 template <class _InputIterator>
405 void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
406 __false_type);
407
408 public:
409
410 iterator begin() { return iterator((_Node*)this->_M_head._M_next); }
411 const_iterator begin() const
412 { return const_iterator((_Node*)this->_M_head._M_next);}
413
414 iterator end() { return iterator(0); }
415 const_iterator end() const { return const_iterator(0); }
416
417 // Experimental new feature: before_begin() returns a
418 // non-dereferenceable iterator that, when incremented, yields
419 // begin(). This iterator may be used as the argument to
420 // insert_after, erase_after, etc. Note that even for an empty
421 // slist, before_begin() is not the same iterator as end(). It
422 // is always necessary to increment before_begin() at least once to
423 // obtain end().
424 iterator before_begin() { return iterator((_Node*) &this->_M_head); }
425 const_iterator before_begin() const
426 { return const_iterator((_Node*) &this->_M_head); }
427
428 size_type size() const { return __slist_size(this->_M_head._M_next); }
429
430 size_type max_size() const { return size_type(-1); }
431
432 bool empty() const { return this->_M_head._M_next == 0; }
433
434 void swap(slist& __x)
435 { std::swap(this->_M_head._M_next, __x._M_head._M_next); }
436
437 public:
438
439 reference front() { return ((_Node*) this->_M_head._M_next)->_M_data; }
440 const_reference front() const
441 { return ((_Node*) this->_M_head._M_next)->_M_data; }
442 void push_front(const value_type& __x) {
443 __slist_make_link(&this->_M_head, _M_create_node(__x));
444 }
445 void push_front() { __slist_make_link(&this->_M_head, _M_create_node()); }
446 void pop_front() {
447 _Node* __node = (_Node*) this->_M_head._M_next;
448 this->_M_head._M_next = __node->_M_next;
449 _Destroy(&__node->_M_data);
450 this->_M_put_node(__node);
451 }
452
453 iterator previous(const_iterator __pos) {
454 return iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node));
455 }
456 const_iterator previous(const_iterator __pos) const {
457 return const_iterator((_Node*) __slist_previous(&this->_M_head,
458 __pos._M_node));
459 }
460
461 private:
462 _Node* _M_insert_after(_Node_base* __pos, const value_type& __x) {
463 return (_Node*) (__slist_make_link(__pos, _M_create_node(__x)));
464 }
465
466 _Node* _M_insert_after(_Node_base* __pos) {
467 return (_Node*) (__slist_make_link(__pos, _M_create_node()));
468 }
469
470 void _M_insert_after_fill(_Node_base* __pos,
471 size_type __n, const value_type& __x) {
472 for (size_type __i = 0; __i < __n; ++__i)
473 __pos = __slist_make_link(__pos, _M_create_node(__x));
474 }
475
476 // Check whether it's an integral type. If so, it's not an iterator.
477 template <class _InIterator>
478 void _M_insert_after_range(_Node_base* __pos,
479 _InIterator __first, _InIterator __last) {
480 typedef typename _Is_integer<_InIterator>::_Integral _Integral;
481 _M_insert_after_range(__pos, __first, __last, _Integral());
482 }
483
484 template <class _Integer>
485 void _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x,
486 __true_type) {
487 _M_insert_after_fill(__pos, __n, __x);
488 }
489
490 template <class _InIterator>
491 void _M_insert_after_range(_Node_base* __pos,
492 _InIterator __first, _InIterator __last,
493 __false_type) {
494 while (__first != __last) {
495 __pos = __slist_make_link(__pos, _M_create_node(*__first));
496 ++__first;
497 }
498 }
499
500 public:
501
502 iterator insert_after(iterator __pos, const value_type& __x) {
503 return iterator(_M_insert_after(__pos._M_node, __x));
504 }
505
506 iterator insert_after(iterator __pos) {
507 return insert_after(__pos, value_type());
508 }
509
510 void insert_after(iterator __pos, size_type __n, const value_type& __x) {
511 _M_insert_after_fill(__pos._M_node, __n, __x);
512 }
513
514 // We don't need any dispatching tricks here, because _M_insert_after_range
515 // already does them.
516 template <class _InIterator>
517 void insert_after(iterator __pos, _InIterator __first, _InIterator __last) {
518 _M_insert_after_range(__pos._M_node, __first, __last);
519 }
520
521 iterator insert(iterator __pos, const value_type& __x) {
522 return iterator(_M_insert_after(__slist_previous(&this->_M_head,
523 __pos._M_node),
524 __x));
525 }
526
527 iterator insert(iterator __pos) {
528 return iterator(_M_insert_after(__slist_previous(&this->_M_head,
529 __pos._M_node),
530 value_type()));
531 }
532
533 void insert(iterator __pos, size_type __n, const value_type& __x) {
534 _M_insert_after_fill(__slist_previous(&this->_M_head, __pos._M_node),
535 __n, __x);
536 }
537
538 // We don't need any dispatching tricks here, because _M_insert_after_range
539 // already does them.
540 template <class _InIterator>
541 void insert(iterator __pos, _InIterator __first, _InIterator __last) {
542 _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node),
543 __first, __last);
544 }
545
546 public:
547 iterator erase_after(iterator __pos) {
548 return iterator((_Node*) this->_M_erase_after(__pos._M_node));
549 }
550 iterator erase_after(iterator __before_first, iterator __last) {
551 return iterator((_Node*) this->_M_erase_after(__before_first._M_node,
552 __last._M_node));
553 }
554
555 iterator erase(iterator __pos) {
556 return (_Node*) this->_M_erase_after(__slist_previous(&this->_M_head,
557 __pos._M_node));
558 }
559 iterator erase(iterator __first, iterator __last) {
560 return (_Node*) this->_M_erase_after(
561 __slist_previous(&this->_M_head, __first._M_node), __last._M_node);
562 }
563
564 void resize(size_type new_size, const _Tp& __x);
565 void resize(size_type new_size) { resize(new_size, _Tp()); }
566 void clear() { this->_M_erase_after(&this->_M_head, 0); }
567
568 public:
569 // Moves the range [__before_first + 1, __before_last + 1) to *this,
570 // inserting it immediately after __pos. This is constant time.
571 void splice_after(iterator __pos,
572 iterator __before_first, iterator __before_last)
573 {
574 if (__before_first != __before_last)
575 __slist_splice_after(__pos._M_node, __before_first._M_node,
576 __before_last._M_node);
577 }
578
579 // Moves the element that follows __prev to *this, inserting it immediately
580 // after __pos. This is constant time.
581 void splice_after(iterator __pos, iterator __prev)
582 {
583 __slist_splice_after(__pos._M_node,
584 __prev._M_node, __prev._M_node->_M_next);
585 }
586
587
588 // Removes all of the elements from the list __x to *this, inserting
589 // them immediately after __pos. __x must not be *this. Complexity:
590 // linear in __x.size().
591 void splice_after(iterator __pos, slist& __x)
592 {
593 __slist_splice_after(__pos._M_node, &__x._M_head);
594 }
595
596 // Linear in distance(begin(), __pos), and linear in __x.size().
597 void splice(iterator __pos, slist& __x) {
598 if (__x._M_head._M_next)
599 __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
600 &__x._M_head, __slist_previous(&__x._M_head, 0));
601 }
602
603 // Linear in distance(begin(), __pos), and in distance(__x.begin(), __i).
604 void splice(iterator __pos, slist& __x, iterator __i) {
605 __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
606 __slist_previous(&__x._M_head, __i._M_node),
607 __i._M_node);
608 }
609
610 // Linear in distance(begin(), __pos), in distance(__x.begin(), __first),
611 // and in distance(__first, __last).
612 void splice(iterator __pos, slist& __x, iterator __first, iterator __last)
613 {
614 if (__first != __last)
615 __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
616 __slist_previous(&__x._M_head, __first._M_node),
617 __slist_previous(__first._M_node, __last._M_node));
618 }
619
620 public:
621 void reverse() {
622 if (this->_M_head._M_next)
623 this->_M_head._M_next = __slist_reverse(this->_M_head._M_next);
624 }
625
626 void remove(const _Tp& __val);
627 void unique();
628 void merge(slist& __x);
629 void sort();
630
631 template <class _Predicate>
632 void remove_if(_Predicate __pred);
633
634 template <class _BinaryPredicate>
635 void unique(_BinaryPredicate __pred);
636
637 template <class _StrictWeakOrdering>
638 void merge(slist&, _StrictWeakOrdering);
639
640 template <class _StrictWeakOrdering>
641 void sort(_StrictWeakOrdering __comp);
642 };
643
644 template <class _Tp, class _Alloc>
645 slist<_Tp,_Alloc>& slist<_Tp,_Alloc>::operator=(const slist<_Tp,_Alloc>& __x)
646 {
647 if (&__x != this) {
648 _Node_base* __p1 = &this->_M_head;
649 _Node* __n1 = (_Node*) this->_M_head._M_next;
650 const _Node* __n2 = (const _Node*) __x._M_head._M_next;
651 while (__n1 && __n2) {
652 __n1->_M_data = __n2->_M_data;
653 __p1 = __n1;
654 __n1 = (_Node*) __n1->_M_next;
655 __n2 = (const _Node*) __n2->_M_next;
656 }
657 if (__n2 == 0)
658 this->_M_erase_after(__p1, 0);
659 else
660 _M_insert_after_range(__p1, const_iterator((_Node*)__n2),
661 const_iterator(0));
662 }
663 return *this;
664 }
665
666 template <class _Tp, class _Alloc>
667 void slist<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val) {
668 _Node_base* __prev = &this->_M_head;
669 _Node* __node = (_Node*) this->_M_head._M_next;
670 for ( ; __node != 0 && __n > 0 ; --__n) {
671 __node->_M_data = __val;
672 __prev = __node;
673 __node = (_Node*) __node->_M_next;
674 }
675 if (__n > 0)
676 _M_insert_after_fill(__prev, __n, __val);
677 else
678 this->_M_erase_after(__prev, 0);
679 }
680
681 template <class _Tp, class _Alloc> template <class _InputIterator>
682 void
683 slist<_Tp, _Alloc>::_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
684 __false_type)
685 {
686 _Node_base* __prev = &this->_M_head;
687 _Node* __node = (_Node*) this->_M_head._M_next;
688 while (__node != 0 && __first != __last) {
689 __node->_M_data = *__first;
690 __prev = __node;
691 __node = (_Node*) __node->_M_next;
692 ++__first;
693 }
694 if (__first != __last)
695 _M_insert_after_range(__prev, __first, __last);
696 else
697 this->_M_erase_after(__prev, 0);
698 }
699
700 template <class _Tp, class _Alloc>
701 inline bool
702 operator==(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
703 {
704 typedef typename slist<_Tp,_Alloc>::const_iterator const_iterator;
705 const_iterator __end1 = _SL1.end();
706 const_iterator __end2 = _SL2.end();
707
708 const_iterator __i1 = _SL1.begin();
709 const_iterator __i2 = _SL2.begin();
710 while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
711 ++__i1;
712 ++__i2;
713 }
714 return __i1 == __end1 && __i2 == __end2;
715 }
716
717
718 template <class _Tp, class _Alloc>
719 inline bool
720 operator<(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
721 {
722 return std::lexicographical_compare(_SL1.begin(), _SL1.end(),
723 _SL2.begin(), _SL2.end());
724 }
725
726 template <class _Tp, class _Alloc>
727 inline bool
728 operator!=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
729 return !(_SL1 == _SL2);
730 }
731
732 template <class _Tp, class _Alloc>
733 inline bool
734 operator>(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
735 return _SL2 < _SL1;
736 }
737
738 template <class _Tp, class _Alloc>
739 inline bool
740 operator<=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
741 return !(_SL2 < _SL1);
742 }
743
744 template <class _Tp, class _Alloc>
745 inline bool
746 operator>=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
747 return !(_SL1 < _SL2);
748 }
749
750 template <class _Tp, class _Alloc>
751 inline void swap(slist<_Tp,_Alloc>& __x, slist<_Tp,_Alloc>& __y) {
752 __x.swap(__y);
753 }
754
755
756 template <class _Tp, class _Alloc>
757 void slist<_Tp,_Alloc>::resize(size_type __len, const _Tp& __x)
758 {
759 _Node_base* __cur = &this->_M_head;
760 while (__cur->_M_next != 0 && __len > 0) {
761 --__len;
762 __cur = __cur->_M_next;
763 }
764 if (__cur->_M_next)
765 this->_M_erase_after(__cur, 0);
766 else
767 _M_insert_after_fill(__cur, __len, __x);
768 }
769
770 template <class _Tp, class _Alloc>
771 void slist<_Tp,_Alloc>::remove(const _Tp& __val)
772 {
773 _Node_base* __cur = &this->_M_head;
774 while (__cur && __cur->_M_next) {
775 if (((_Node*) __cur->_M_next)->_M_data == __val)
776 this->_M_erase_after(__cur);
777 else
778 __cur = __cur->_M_next;
779 }
780 }
781
782 template <class _Tp, class _Alloc>
783 void slist<_Tp,_Alloc>::unique()
784 {
785 _Node_base* __cur = this->_M_head._M_next;
786 if (__cur) {
787 while (__cur->_M_next) {
788 if (((_Node*)__cur)->_M_data ==
789 ((_Node*)(__cur->_M_next))->_M_data)
790 this->_M_erase_after(__cur);
791 else
792 __cur = __cur->_M_next;
793 }
794 }
795 }
796
797 template <class _Tp, class _Alloc>
798 void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x)
799 {
800 _Node_base* __n1 = &this->_M_head;
801 while (__n1->_M_next && __x._M_head._M_next) {
802 if (((_Node*) __x._M_head._M_next)->_M_data <
803 ((_Node*) __n1->_M_next)->_M_data)
804 __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
805 __n1 = __n1->_M_next;
806 }
807 if (__x._M_head._M_next) {
808 __n1->_M_next = __x._M_head._M_next;
809 __x._M_head._M_next = 0;
810 }
811 }
812
813 template <class _Tp, class _Alloc>
814 void slist<_Tp,_Alloc>::sort()
815 {
816 if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
817 slist __carry;
818 slist __counter[64];
819 int __fill = 0;
820 while (!empty()) {
821 __slist_splice_after(&__carry._M_head,
822 &this->_M_head, this->_M_head._M_next);
823 int __i = 0;
824 while (__i < __fill && !__counter[__i].empty()) {
825 __counter[__i].merge(__carry);
826 __carry.swap(__counter[__i]);
827 ++__i;
828 }
829 __carry.swap(__counter[__i]);
830 if (__i == __fill)
831 ++__fill;
832 }
833
834 for (int __i = 1; __i < __fill; ++__i)
835 __counter[__i].merge(__counter[__i-1]);
836 this->swap(__counter[__fill-1]);
837 }
838 }
839
840 template <class _Tp, class _Alloc>
841 template <class _Predicate>
842 void slist<_Tp,_Alloc>::remove_if(_Predicate __pred)
843 {
844 _Node_base* __cur = &this->_M_head;
845 while (__cur->_M_next) {
846 if (__pred(((_Node*) __cur->_M_next)->_M_data))
847 this->_M_erase_after(__cur);
848 else
849 __cur = __cur->_M_next;
850 }
851 }
852
853 template <class _Tp, class _Alloc> template <class _BinaryPredicate>
854 void slist<_Tp,_Alloc>::unique(_BinaryPredicate __pred)
855 {
856 _Node* __cur = (_Node*) this->_M_head._M_next;
857 if (__cur) {
858 while (__cur->_M_next) {
859 if (__pred(((_Node*)__cur)->_M_data,
860 ((_Node*)(__cur->_M_next))->_M_data))
861 this->_M_erase_after(__cur);
862 else
863 __cur = (_Node*) __cur->_M_next;
864 }
865 }
866 }
867
868 template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
869 void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x,
870 _StrictWeakOrdering __comp)
871 {
872 _Node_base* __n1 = &this->_M_head;
873 while (__n1->_M_next && __x._M_head._M_next) {
874 if (__comp(((_Node*) __x._M_head._M_next)->_M_data,
875 ((_Node*) __n1->_M_next)->_M_data))
876 __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
877 __n1 = __n1->_M_next;
878 }
879 if (__x._M_head._M_next) {
880 __n1->_M_next = __x._M_head._M_next;
881 __x._M_head._M_next = 0;
882 }
883 }
884
885 template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
886 void slist<_Tp,_Alloc>::sort(_StrictWeakOrdering __comp)
887 {
888 if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
889 slist __carry;
890 slist __counter[64];
891 int __fill = 0;
892 while (!empty()) {
893 __slist_splice_after(&__carry._M_head,
894 &this->_M_head, this->_M_head._M_next);
895 int __i = 0;
896 while (__i < __fill && !__counter[__i].empty()) {
897 __counter[__i].merge(__carry, __comp);
898 __carry.swap(__counter[__i]);
899 ++__i;
900 }
901 __carry.swap(__counter[__i]);
902 if (__i == __fill)
903 ++__fill;
904 }
905
906 for (int __i = 1; __i < __fill; ++__i)
907 __counter[__i].merge(__counter[__i-1], __comp);
908 this->swap(__counter[__fill-1]);
909 }
910 }
911
912 } // namespace __gnu_cxx
913
914 namespace std
915 {
916 // Specialization of insert_iterator so that insertions will be constant
917 // time rather than linear time.
918
919 template <class _Tp, class _Alloc>
920 class insert_iterator<__gnu_cxx::slist<_Tp, _Alloc> > {
921 protected:
922 typedef __gnu_cxx::slist<_Tp, _Alloc> _Container;
923 _Container* container;
924 typename _Container::iterator iter;
925 public:
926 typedef _Container container_type;
927 typedef output_iterator_tag iterator_category;
928 typedef void value_type;
929 typedef void difference_type;
930 typedef void pointer;
931 typedef void reference;
932
933 insert_iterator(_Container& __x, typename _Container::iterator __i)
934 : container(&__x) {
935 if (__i == __x.begin())
936 iter = __x.before_begin();
937 else
938 iter = __x.previous(__i);
939 }
940
941 insert_iterator<_Container>&
942 operator=(const typename _Container::value_type& __value) {
943 iter = container->insert_after(iter, __value);
944 return *this;
945 }
946 insert_iterator<_Container>& operator*() { return *this; }
947 insert_iterator<_Container>& operator++() { return *this; }
948 insert_iterator<_Container>& operator++(int) { return *this; }
949 };
950
951 } // namespace std
952
953 #endif