[multiple changes]
[gcc.git] / libstdc++-v3 / include / std / functional
1 // <functional> -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
25
26 /*
27 * Copyright (c) 1997
28 * Silicon Graphics Computer Systems, Inc.
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Silicon Graphics makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 */
39
40 /** @file include/functional
41 * This is a Standard C++ Library header.
42 */
43
44 #ifndef _GLIBCXX_FUNCTIONAL
45 #define _GLIBCXX_FUNCTIONAL 1
46
47 #pragma GCC system_header
48
49 #include <bits/c++config.h>
50 #include <bits/stl_function.h>
51
52 #ifdef __GXX_EXPERIMENTAL_CXX0X__
53
54 #include <typeinfo>
55 #include <new>
56 #include <tuple>
57 #include <type_traits>
58 #include <bits/functional_hash.h>
59 #include <ext/type_traits.h>
60
61 namespace std
62 {
63 template<typename _MemberPointer>
64 class _Mem_fn;
65
66 /**
67 * Actual implementation of _Has_result_type, which uses SFINAE to
68 * determine if the type _Tp has a publicly-accessible member type
69 * result_type.
70 */
71 template<typename _Tp>
72 class _Has_result_type_helper : __sfinae_types
73 {
74 template<typename _Up>
75 struct _Wrap_type
76 { };
77
78 template<typename _Up>
79 static __one __test(_Wrap_type<typename _Up::result_type>*);
80
81 template<typename _Up>
82 static __two __test(...);
83
84 public:
85 static const bool value = sizeof(__test<_Tp>(0)) == 1;
86 };
87
88 template<typename _Tp>
89 struct _Has_result_type
90 : integral_constant<bool,
91 _Has_result_type_helper<typename remove_cv<_Tp>::type>::value>
92 { };
93
94 /**
95 *
96 */
97 /// If we have found a result_type, extract it.
98 template<bool _Has_result_type, typename _Functor>
99 struct _Maybe_get_result_type
100 { };
101
102 template<typename _Functor>
103 struct _Maybe_get_result_type<true, _Functor>
104 {
105 typedef typename _Functor::result_type result_type;
106 };
107
108 /**
109 * Base class for any function object that has a weak result type, as
110 * defined in 3.3/3 of TR1.
111 */
112 template<typename _Functor>
113 struct _Weak_result_type_impl
114 : _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor>
115 {
116 };
117
118 /// Retrieve the result type for a function type.
119 template<typename _Res, typename... _ArgTypes>
120 struct _Weak_result_type_impl<_Res(_ArgTypes...)>
121 {
122 typedef _Res result_type;
123 };
124
125 /// Retrieve the result type for a function reference.
126 template<typename _Res, typename... _ArgTypes>
127 struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)>
128 {
129 typedef _Res result_type;
130 };
131
132 /// Retrieve the result type for a function pointer.
133 template<typename _Res, typename... _ArgTypes>
134 struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)>
135 {
136 typedef _Res result_type;
137 };
138
139 /// Retrieve result type for a member function pointer.
140 template<typename _Res, typename _Class, typename... _ArgTypes>
141 struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)>
142 {
143 typedef _Res result_type;
144 };
145
146 /// Retrieve result type for a const member function pointer.
147 template<typename _Res, typename _Class, typename... _ArgTypes>
148 struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const>
149 {
150 typedef _Res result_type;
151 };
152
153 /// Retrieve result type for a volatile member function pointer.
154 template<typename _Res, typename _Class, typename... _ArgTypes>
155 struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile>
156 {
157 typedef _Res result_type;
158 };
159
160 /// Retrieve result type for a const volatile member function pointer.
161 template<typename _Res, typename _Class, typename... _ArgTypes>
162 struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)const volatile>
163 {
164 typedef _Res result_type;
165 };
166
167 /**
168 * Strip top-level cv-qualifiers from the function object and let
169 * _Weak_result_type_impl perform the real work.
170 */
171 template<typename _Functor>
172 struct _Weak_result_type
173 : _Weak_result_type_impl<typename remove_cv<_Functor>::type>
174 {
175 };
176
177 template<typename _Signature>
178 class result_of;
179
180 /**
181 * Actual implementation of result_of. When _Has_result_type is
182 * true, gets its result from _Weak_result_type. Otherwise, uses
183 * the function object's member template result to extract the
184 * result type.
185 */
186 template<bool _Has_result_type, typename _Signature>
187 struct _Result_of_impl;
188
189 // Handle member data pointers using _Mem_fn's logic
190 template<typename _Res, typename _Class, typename _T1>
191 struct _Result_of_impl<false, _Res _Class::*(_T1)>
192 {
193 typedef typename _Mem_fn<_Res _Class::*>
194 ::template _Result_type<_T1>::type type;
195 };
196
197 /**
198 * Determine whether we can determine a result type from @c Functor
199 * alone.
200 */
201 template<typename _Functor, typename... _ArgTypes>
202 class result_of<_Functor(_ArgTypes...)>
203 : public _Result_of_impl<
204 _Has_result_type<_Weak_result_type<_Functor> >::value,
205 _Functor(_ArgTypes...)>
206 {
207 };
208
209 /// We already know the result type for @c Functor; use it.
210 template<typename _Functor, typename... _ArgTypes>
211 struct _Result_of_impl<true, _Functor(_ArgTypes...)>
212 {
213 typedef typename _Weak_result_type<_Functor>::result_type type;
214 };
215
216 /**
217 * We need to compute the result type for this invocation the hard
218 * way.
219 */
220 template<typename _Functor, typename... _ArgTypes>
221 struct _Result_of_impl<false, _Functor(_ArgTypes...)>
222 {
223 typedef typename _Functor
224 ::template result<_Functor(_ArgTypes...)>::type type;
225 };
226
227 /**
228 * It is unsafe to access ::result when there are zero arguments, so we
229 * return @c void instead.
230 */
231 template<typename _Functor>
232 struct _Result_of_impl<false, _Functor()>
233 {
234 typedef void type;
235 };
236
237 /// Determines if the type _Tp derives from unary_function.
238 template<typename _Tp>
239 struct _Derives_from_unary_function : __sfinae_types
240 {
241 private:
242 template<typename _T1, typename _Res>
243 static __one __test(const volatile unary_function<_T1, _Res>*);
244
245 // It's tempting to change "..." to const volatile void*, but
246 // that fails when _Tp is a function type.
247 static __two __test(...);
248
249 public:
250 static const bool value = sizeof(__test((_Tp*)0)) == 1;
251 };
252
253 /// Determines if the type _Tp derives from binary_function.
254 template<typename _Tp>
255 struct _Derives_from_binary_function : __sfinae_types
256 {
257 private:
258 template<typename _T1, typename _T2, typename _Res>
259 static __one __test(const volatile binary_function<_T1, _T2, _Res>*);
260
261 // It's tempting to change "..." to const volatile void*, but
262 // that fails when _Tp is a function type.
263 static __two __test(...);
264
265 public:
266 static const bool value = sizeof(__test((_Tp*)0)) == 1;
267 };
268
269 /// Turns a function type into a function pointer type
270 template<typename _Tp, bool _IsFunctionType = is_function<_Tp>::value>
271 struct _Function_to_function_pointer
272 {
273 typedef _Tp type;
274 };
275
276 template<typename _Tp>
277 struct _Function_to_function_pointer<_Tp, true>
278 {
279 typedef _Tp* type;
280 };
281
282 /**
283 * Invoke a function object, which may be either a member pointer or a
284 * function object. The first parameter will tell which.
285 */
286 template<typename _Functor, typename... _Args>
287 inline
288 typename __gnu_cxx::__enable_if<
289 (!is_member_pointer<_Functor>::value
290 && !is_function<_Functor>::value
291 && !is_function<typename remove_pointer<_Functor>::type>::value),
292 typename result_of<_Functor(_Args...)>::type
293 >::__type
294 __invoke(_Functor& __f, _Args&... __args)
295 {
296 return __f(__args...);
297 }
298
299 template<typename _Functor, typename... _Args>
300 inline
301 typename __gnu_cxx::__enable_if<
302 (is_member_pointer<_Functor>::value
303 && !is_function<_Functor>::value
304 && !is_function<typename remove_pointer<_Functor>::type>::value),
305 typename result_of<_Functor(_Args...)>::type
306 >::__type
307 __invoke(_Functor& __f, _Args&... __args)
308 {
309 return mem_fn(__f)(__args...);
310 }
311
312 // To pick up function references (that will become function pointers)
313 template<typename _Functor, typename... _Args>
314 inline
315 typename __gnu_cxx::__enable_if<
316 (is_pointer<_Functor>::value
317 && is_function<typename remove_pointer<_Functor>::type>::value),
318 typename result_of<_Functor(_Args...)>::type
319 >::__type
320 __invoke(_Functor __f, _Args&... __args)
321 {
322 return __f(__args...);
323 }
324
325 /**
326 * Knowing which of unary_function and binary_function _Tp derives
327 * from, derives from the same and ensures that reference_wrapper
328 * will have a weak result type. See cases below.
329 */
330 template<bool _Unary, bool _Binary, typename _Tp>
331 struct _Reference_wrapper_base_impl;
332
333 // Not a unary_function or binary_function, so try a weak result type.
334 template<typename _Tp>
335 struct _Reference_wrapper_base_impl<false, false, _Tp>
336 : _Weak_result_type<_Tp>
337 { };
338
339 // unary_function but not binary_function
340 template<typename _Tp>
341 struct _Reference_wrapper_base_impl<true, false, _Tp>
342 : unary_function<typename _Tp::argument_type,
343 typename _Tp::result_type>
344 { };
345
346 // binary_function but not unary_function
347 template<typename _Tp>
348 struct _Reference_wrapper_base_impl<false, true, _Tp>
349 : binary_function<typename _Tp::first_argument_type,
350 typename _Tp::second_argument_type,
351 typename _Tp::result_type>
352 { };
353
354 // Both unary_function and binary_function. Import result_type to
355 // avoid conflicts.
356 template<typename _Tp>
357 struct _Reference_wrapper_base_impl<true, true, _Tp>
358 : unary_function<typename _Tp::argument_type,
359 typename _Tp::result_type>,
360 binary_function<typename _Tp::first_argument_type,
361 typename _Tp::second_argument_type,
362 typename _Tp::result_type>
363 {
364 typedef typename _Tp::result_type result_type;
365 };
366
367 /**
368 * Derives from unary_function or binary_function when it
369 * can. Specializations handle all of the easy cases. The primary
370 * template determines what to do with a class type, which may
371 * derive from both unary_function and binary_function.
372 */
373 template<typename _Tp>
374 struct _Reference_wrapper_base
375 : _Reference_wrapper_base_impl<
376 _Derives_from_unary_function<_Tp>::value,
377 _Derives_from_binary_function<_Tp>::value,
378 _Tp>
379 { };
380
381 // - a function type (unary)
382 template<typename _Res, typename _T1>
383 struct _Reference_wrapper_base<_Res(_T1)>
384 : unary_function<_T1, _Res>
385 { };
386
387 // - a function type (binary)
388 template<typename _Res, typename _T1, typename _T2>
389 struct _Reference_wrapper_base<_Res(_T1, _T2)>
390 : binary_function<_T1, _T2, _Res>
391 { };
392
393 // - a function pointer type (unary)
394 template<typename _Res, typename _T1>
395 struct _Reference_wrapper_base<_Res(*)(_T1)>
396 : unary_function<_T1, _Res>
397 { };
398
399 // - a function pointer type (binary)
400 template<typename _Res, typename _T1, typename _T2>
401 struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
402 : binary_function<_T1, _T2, _Res>
403 { };
404
405 // - a pointer to member function type (unary, no qualifiers)
406 template<typename _Res, typename _T1>
407 struct _Reference_wrapper_base<_Res (_T1::*)()>
408 : unary_function<_T1*, _Res>
409 { };
410
411 // - a pointer to member function type (binary, no qualifiers)
412 template<typename _Res, typename _T1, typename _T2>
413 struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
414 : binary_function<_T1*, _T2, _Res>
415 { };
416
417 // - a pointer to member function type (unary, const)
418 template<typename _Res, typename _T1>
419 struct _Reference_wrapper_base<_Res (_T1::*)() const>
420 : unary_function<const _T1*, _Res>
421 { };
422
423 // - a pointer to member function type (binary, const)
424 template<typename _Res, typename _T1, typename _T2>
425 struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
426 : binary_function<const _T1*, _T2, _Res>
427 { };
428
429 // - a pointer to member function type (unary, volatile)
430 template<typename _Res, typename _T1>
431 struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
432 : unary_function<volatile _T1*, _Res>
433 { };
434
435 // - a pointer to member function type (binary, volatile)
436 template<typename _Res, typename _T1, typename _T2>
437 struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
438 : binary_function<volatile _T1*, _T2, _Res>
439 { };
440
441 // - a pointer to member function type (unary, const volatile)
442 template<typename _Res, typename _T1>
443 struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
444 : unary_function<const volatile _T1*, _Res>
445 { };
446
447 // - a pointer to member function type (binary, const volatile)
448 template<typename _Res, typename _T1, typename _T2>
449 struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
450 : binary_function<const volatile _T1*, _T2, _Res>
451 { };
452
453 /// reference_wrapper
454 template<typename _Tp>
455 class reference_wrapper
456 : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
457 {
458 // If _Tp is a function type, we can't form result_of<_Tp(...)>,
459 // so turn it into a function pointer type.
460 typedef typename _Function_to_function_pointer<_Tp>::type
461 _M_func_type;
462
463 _Tp* _M_data;
464 public:
465 typedef _Tp type;
466
467 explicit
468 reference_wrapper(_Tp& __indata): _M_data(&__indata)
469 { }
470
471 reference_wrapper(const reference_wrapper<_Tp>& __inref):
472 _M_data(__inref._M_data)
473 { }
474
475 reference_wrapper&
476 operator=(const reference_wrapper<_Tp>& __inref)
477 {
478 _M_data = __inref._M_data;
479 return *this;
480 }
481
482 operator _Tp&() const
483 { return this->get(); }
484
485 _Tp&
486 get() const
487 { return *_M_data; }
488
489 template<typename... _Args>
490 typename result_of<_M_func_type(_Args...)>::type
491 operator()(_Args&... __args) const
492 {
493 return __invoke(get(), __args...);
494 }
495 };
496
497
498 // Denotes a reference should be taken to a variable.
499 template<typename _Tp>
500 inline reference_wrapper<_Tp>
501 ref(_Tp& __t)
502 { return reference_wrapper<_Tp>(__t); }
503
504 // Denotes a const reference should be taken to a variable.
505 template<typename _Tp>
506 inline reference_wrapper<const _Tp>
507 cref(const _Tp& __t)
508 { return reference_wrapper<const _Tp>(__t); }
509
510 template<typename _Tp>
511 inline reference_wrapper<_Tp>
512 ref(reference_wrapper<_Tp> __t)
513 { return ref(__t.get()); }
514
515 template<typename _Tp>
516 inline reference_wrapper<const _Tp>
517 cref(reference_wrapper<_Tp> __t)
518 { return cref(__t.get()); }
519
520 template<typename _Tp, bool>
521 struct _Mem_fn_const_or_non
522 {
523 typedef const _Tp& type;
524 };
525
526 template<typename _Tp>
527 struct _Mem_fn_const_or_non<_Tp, false>
528 {
529 typedef _Tp& type;
530 };
531
532 /**
533 * Derives from @c unary_function or @c binary_function, or perhaps
534 * nothing, depending on the number of arguments provided. The
535 * primary template is the basis case, which derives nothing.
536 */
537 template<typename _Res, typename... _ArgTypes>
538 struct _Maybe_unary_or_binary_function { };
539
540 /// Derives from @c unary_function, as appropriate.
541 template<typename _Res, typename _T1>
542 struct _Maybe_unary_or_binary_function<_Res, _T1>
543 : std::unary_function<_T1, _Res> { };
544
545 /// Derives from @c binary_function, as appropriate.
546 template<typename _Res, typename _T1, typename _T2>
547 struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
548 : std::binary_function<_T1, _T2, _Res> { };
549
550 /// Implementation of @c mem_fn for member function pointers.
551 template<typename _Res, typename _Class, typename... _ArgTypes>
552 class _Mem_fn<_Res (_Class::*)(_ArgTypes...)>
553 : public _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>
554 {
555 typedef _Res (_Class::*_Functor)(_ArgTypes...);
556
557 template<typename _Tp>
558 _Res
559 _M_call(_Tp& __object, const volatile _Class *,
560 _ArgTypes... __args) const
561 { return (__object.*__pmf)(__args...); }
562
563 template<typename _Tp>
564 _Res
565 _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
566 { return ((*__ptr).*__pmf)(__args...); }
567
568 public:
569 typedef _Res result_type;
570
571 explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
572
573 // Handle objects
574 _Res
575 operator()(_Class& __object, _ArgTypes... __args) const
576 { return (__object.*__pmf)(__args...); }
577
578 // Handle pointers
579 _Res
580 operator()(_Class* __object, _ArgTypes... __args) const
581 { return (__object->*__pmf)(__args...); }
582
583 // Handle smart pointers, references and pointers to derived
584 template<typename _Tp>
585 _Res
586 operator()(_Tp& __object, _ArgTypes... __args) const
587 { return _M_call(__object, &__object, __args...); }
588
589 private:
590 _Functor __pmf;
591 };
592
593 /// Implementation of @c mem_fn for const member function pointers.
594 template<typename _Res, typename _Class, typename... _ArgTypes>
595 class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const>
596 : public _Maybe_unary_or_binary_function<_Res, const _Class*,
597 _ArgTypes...>
598 {
599 typedef _Res (_Class::*_Functor)(_ArgTypes...) const;
600
601 template<typename _Tp>
602 _Res
603 _M_call(_Tp& __object, const volatile _Class *,
604 _ArgTypes... __args) const
605 { return (__object.*__pmf)(__args...); }
606
607 template<typename _Tp>
608 _Res
609 _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
610 { return ((*__ptr).*__pmf)(__args...); }
611
612 public:
613 typedef _Res result_type;
614
615 explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
616
617 // Handle objects
618 _Res
619 operator()(const _Class& __object, _ArgTypes... __args) const
620 { return (__object.*__pmf)(__args...); }
621
622 // Handle pointers
623 _Res
624 operator()(const _Class* __object, _ArgTypes... __args) const
625 { return (__object->*__pmf)(__args...); }
626
627 // Handle smart pointers, references and pointers to derived
628 template<typename _Tp>
629 _Res operator()(_Tp& __object, _ArgTypes... __args) const
630 { return _M_call(__object, &__object, __args...); }
631
632 private:
633 _Functor __pmf;
634 };
635
636 /// Implementation of @c mem_fn for volatile member function pointers.
637 template<typename _Res, typename _Class, typename... _ArgTypes>
638 class _Mem_fn<_Res (_Class::*)(_ArgTypes...) volatile>
639 : public _Maybe_unary_or_binary_function<_Res, volatile _Class*,
640 _ArgTypes...>
641 {
642 typedef _Res (_Class::*_Functor)(_ArgTypes...) volatile;
643
644 template<typename _Tp>
645 _Res
646 _M_call(_Tp& __object, const volatile _Class *,
647 _ArgTypes... __args) const
648 { return (__object.*__pmf)(__args...); }
649
650 template<typename _Tp>
651 _Res
652 _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
653 { return ((*__ptr).*__pmf)(__args...); }
654
655 public:
656 typedef _Res result_type;
657
658 explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
659
660 // Handle objects
661 _Res
662 operator()(volatile _Class& __object, _ArgTypes... __args) const
663 { return (__object.*__pmf)(__args...); }
664
665 // Handle pointers
666 _Res
667 operator()(volatile _Class* __object, _ArgTypes... __args) const
668 { return (__object->*__pmf)(__args...); }
669
670 // Handle smart pointers, references and pointers to derived
671 template<typename _Tp>
672 _Res
673 operator()(_Tp& __object, _ArgTypes... __args) const
674 { return _M_call(__object, &__object, __args...); }
675
676 private:
677 _Functor __pmf;
678 };
679
680 /// Implementation of @c mem_fn for const volatile member function pointers.
681 template<typename _Res, typename _Class, typename... _ArgTypes>
682 class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const volatile>
683 : public _Maybe_unary_or_binary_function<_Res, const volatile _Class*,
684 _ArgTypes...>
685 {
686 typedef _Res (_Class::*_Functor)(_ArgTypes...) const volatile;
687
688 template<typename _Tp>
689 _Res
690 _M_call(_Tp& __object, const volatile _Class *,
691 _ArgTypes... __args) const
692 { return (__object.*__pmf)(__args...); }
693
694 template<typename _Tp>
695 _Res
696 _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
697 { return ((*__ptr).*__pmf)(__args...); }
698
699 public:
700 typedef _Res result_type;
701
702 explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
703
704 // Handle objects
705 _Res
706 operator()(const volatile _Class& __object, _ArgTypes... __args) const
707 { return (__object.*__pmf)(__args...); }
708
709 // Handle pointers
710 _Res
711 operator()(const volatile _Class* __object, _ArgTypes... __args) const
712 { return (__object->*__pmf)(__args...); }
713
714 // Handle smart pointers, references and pointers to derived
715 template<typename _Tp>
716 _Res operator()(_Tp& __object, _ArgTypes... __args) const
717 { return _M_call(__object, &__object, __args...); }
718
719 private:
720 _Functor __pmf;
721 };
722
723
724 template<typename _Res, typename _Class>
725 class _Mem_fn<_Res _Class::*>
726 {
727 // This bit of genius is due to Peter Dimov, improved slightly by
728 // Douglas Gregor.
729 template<typename _Tp>
730 _Res&
731 _M_call(_Tp& __object, _Class *) const
732 { return __object.*__pm; }
733
734 template<typename _Tp, typename _Up>
735 _Res&
736 _M_call(_Tp& __object, _Up * const *) const
737 { return (*__object).*__pm; }
738
739 template<typename _Tp, typename _Up>
740 const _Res&
741 _M_call(_Tp& __object, const _Up * const *) const
742 { return (*__object).*__pm; }
743
744 template<typename _Tp>
745 const _Res&
746 _M_call(_Tp& __object, const _Class *) const
747 { return __object.*__pm; }
748
749 template<typename _Tp>
750 const _Res&
751 _M_call(_Tp& __ptr, const volatile void*) const
752 { return (*__ptr).*__pm; }
753
754 template<typename _Tp> static _Tp& __get_ref();
755
756 template<typename _Tp>
757 static __sfinae_types::__one __check_const(_Tp&, _Class*);
758 template<typename _Tp, typename _Up>
759 static __sfinae_types::__one __check_const(_Tp&, _Up * const *);
760 template<typename _Tp, typename _Up>
761 static __sfinae_types::__two __check_const(_Tp&, const _Up * const *);
762 template<typename _Tp>
763 static __sfinae_types::__two __check_const(_Tp&, const _Class*);
764 template<typename _Tp>
765 static __sfinae_types::__two __check_const(_Tp&, const volatile void*);
766
767 public:
768 template<typename _Tp>
769 struct _Result_type
770 : _Mem_fn_const_or_non<_Res,
771 (sizeof(__sfinae_types::__two)
772 == sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))>
773 { };
774
775 template<typename _Signature>
776 struct result;
777
778 template<typename _CVMem, typename _Tp>
779 struct result<_CVMem(_Tp)>
780 : public _Result_type<_Tp> { };
781
782 template<typename _CVMem, typename _Tp>
783 struct result<_CVMem(_Tp&)>
784 : public _Result_type<_Tp> { };
785
786 explicit
787 _Mem_fn(_Res _Class::*__pm) : __pm(__pm) { }
788
789 // Handle objects
790 _Res&
791 operator()(_Class& __object) const
792 { return __object.*__pm; }
793
794 const _Res&
795 operator()(const _Class& __object) const
796 { return __object.*__pm; }
797
798 // Handle pointers
799 _Res&
800 operator()(_Class* __object) const
801 { return __object->*__pm; }
802
803 const _Res&
804 operator()(const _Class* __object) const
805 { return __object->*__pm; }
806
807 // Handle smart pointers and derived
808 template<typename _Tp>
809 typename _Result_type<_Tp>::type
810 operator()(_Tp& __unknown) const
811 { return _M_call(__unknown, &__unknown); }
812
813 private:
814 _Res _Class::*__pm;
815 };
816
817 /**
818 * @brief Returns a function object that forwards to the member
819 * pointer @a pm.
820 */
821 template<typename _Tp, typename _Class>
822 inline _Mem_fn<_Tp _Class::*>
823 mem_fn(_Tp _Class::* __pm)
824 {
825 return _Mem_fn<_Tp _Class::*>(__pm);
826 }
827
828 /**
829 * @brief Determines if the given type _Tp is a function object
830 * should be treated as a subexpression when evaluating calls to
831 * function objects returned by bind(). [TR1 3.6.1]
832 */
833 template<typename _Tp>
834 struct is_bind_expression
835 { static const bool value = false; };
836
837 template<typename _Tp>
838 const bool is_bind_expression<_Tp>::value;
839
840 /**
841 * @brief Determines if the given type _Tp is a placeholder in a
842 * bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
843 */
844 template<typename _Tp>
845 struct is_placeholder
846 { static const int value = 0; };
847
848 template<typename _Tp>
849 const int is_placeholder<_Tp>::value;
850
851 /// The type of placeholder objects defined by libstdc++.
852 template<int _Num> struct _Placeholder { };
853
854 /** @namespace std::placeholders
855 * @brief ISO C++ 0x entities sub namespace for functional.
856 *
857 * Define a large number of placeholders. There is no way to
858 * simplify this with variadic templates, because we're introducing
859 * unique names for each.
860 */
861 namespace placeholders
862 {
863 namespace
864 {
865 _Placeholder<1> _1;
866 _Placeholder<2> _2;
867 _Placeholder<3> _3;
868 _Placeholder<4> _4;
869 _Placeholder<5> _5;
870 _Placeholder<6> _6;
871 _Placeholder<7> _7;
872 _Placeholder<8> _8;
873 _Placeholder<9> _9;
874 _Placeholder<10> _10;
875 _Placeholder<11> _11;
876 _Placeholder<12> _12;
877 _Placeholder<13> _13;
878 _Placeholder<14> _14;
879 _Placeholder<15> _15;
880 _Placeholder<16> _16;
881 _Placeholder<17> _17;
882 _Placeholder<18> _18;
883 _Placeholder<19> _19;
884 _Placeholder<20> _20;
885 _Placeholder<21> _21;
886 _Placeholder<22> _22;
887 _Placeholder<23> _23;
888 _Placeholder<24> _24;
889 _Placeholder<25> _25;
890 _Placeholder<26> _26;
891 _Placeholder<27> _27;
892 _Placeholder<28> _28;
893 _Placeholder<29> _29;
894 }
895 }
896
897 /**
898 * Partial specialization of is_placeholder that provides the placeholder
899 * number for the placeholder objects defined by libstdc++.
900 */
901 template<int _Num>
902 struct is_placeholder<_Placeholder<_Num> >
903 { static const int value = _Num; };
904
905 template<int _Num>
906 const int is_placeholder<_Placeholder<_Num> >::value;
907
908 /**
909 * Stores a tuple of indices. Used by bind() to extract the elements
910 * in a tuple.
911 */
912 template<int... _Indexes>
913 struct _Index_tuple { };
914
915 /// Builds an _Index_tuple<0, 1, 2, ..., _Num-1>.
916 template<std::size_t _Num, typename _Tuple = _Index_tuple<> >
917 struct _Build_index_tuple;
918
919 template<std::size_t _Num, int... _Indexes>
920 struct _Build_index_tuple<_Num, _Index_tuple<_Indexes...> >
921 : _Build_index_tuple<_Num - 1,
922 _Index_tuple<_Indexes..., sizeof...(_Indexes)> >
923 {
924 };
925
926 template<int... _Indexes>
927 struct _Build_index_tuple<0, _Index_tuple<_Indexes...> >
928 {
929 typedef _Index_tuple<_Indexes...> __type;
930 };
931
932 /**
933 * Used by _Safe_tuple_element to indicate that there is no tuple
934 * element at this position.
935 */
936 struct _No_tuple_element;
937
938 /**
939 * Implementation helper for _Safe_tuple_element. This primary
940 * template handles the case where it is safe to use @c
941 * tuple_element.
942 */
943 template<int __i, typename _Tuple, bool _IsSafe>
944 struct _Safe_tuple_element_impl
945 : tuple_element<__i, _Tuple> { };
946
947 /**
948 * Implementation helper for _Safe_tuple_element. This partial
949 * specialization handles the case where it is not safe to use @c
950 * tuple_element. We just return @c _No_tuple_element.
951 */
952 template<int __i, typename _Tuple>
953 struct _Safe_tuple_element_impl<__i, _Tuple, false>
954 {
955 typedef _No_tuple_element type;
956 };
957
958 /**
959 * Like tuple_element, but returns @c _No_tuple_element when
960 * tuple_element would return an error.
961 */
962 template<int __i, typename _Tuple>
963 struct _Safe_tuple_element
964 : _Safe_tuple_element_impl<__i, _Tuple,
965 (__i >= 0 && __i < tuple_size<_Tuple>::value)>
966 {
967 };
968
969 /**
970 * Maps an argument to bind() into an actual argument to the bound
971 * function object [TR1 3.6.3/5]. Only the first parameter should
972 * be specified: the rest are used to determine among the various
973 * implementations. Note that, although this class is a function
974 * object, it isn't entirely normal because it takes only two
975 * parameters regardless of the number of parameters passed to the
976 * bind expression. The first parameter is the bound argument and
977 * the second parameter is a tuple containing references to the
978 * rest of the arguments.
979 */
980 template<typename _Arg,
981 bool _IsBindExp = is_bind_expression<_Arg>::value,
982 bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
983 class _Mu;
984
985 /**
986 * If the argument is reference_wrapper<_Tp>, returns the
987 * underlying reference. [TR1 3.6.3/5 bullet 1]
988 */
989 template<typename _Tp>
990 class _Mu<reference_wrapper<_Tp>, false, false>
991 {
992 public:
993 typedef _Tp& result_type;
994
995 /* Note: This won't actually work for const volatile
996 * reference_wrappers, because reference_wrapper::get() is const
997 * but not volatile-qualified. This might be a defect in the TR.
998 */
999 template<typename _CVRef, typename _Tuple>
1000 result_type
1001 operator()(_CVRef& __arg, const _Tuple&) const volatile
1002 { return __arg.get(); }
1003 };
1004
1005 /**
1006 * If the argument is a bind expression, we invoke the underlying
1007 * function object with the same cv-qualifiers as we are given and
1008 * pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
1009 */
1010 template<typename _Arg>
1011 class _Mu<_Arg, true, false>
1012 {
1013 public:
1014 template<typename _Signature> class result;
1015
1016 // Determine the result type when we pass the arguments along. This
1017 // involves passing along the cv-qualifiers placed on _Mu and
1018 // unwrapping the argument bundle.
1019 template<typename _CVMu, typename _CVArg, typename... _Args>
1020 class result<_CVMu(_CVArg, tuple<_Args...>)>
1021 : public result_of<_CVArg(_Args...)> { };
1022
1023 template<typename _CVArg, typename... _Args>
1024 typename result_of<_CVArg(_Args...)>::type
1025 operator()(_CVArg& __arg,
1026 const tuple<_Args...>& __tuple) const volatile
1027 {
1028 // Construct an index tuple and forward to __call
1029 typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
1030 _Indexes;
1031 return this->__call(__arg, __tuple, _Indexes());
1032 }
1033
1034 private:
1035 // Invokes the underlying function object __arg by unpacking all
1036 // of the arguments in the tuple.
1037 template<typename _CVArg, typename... _Args, int... _Indexes>
1038 typename result_of<_CVArg(_Args...)>::type
1039 __call(_CVArg& __arg, const tuple<_Args...>& __tuple,
1040 const _Index_tuple<_Indexes...>&) const volatile
1041 {
1042 return __arg(get<_Indexes>(__tuple)...);
1043 }
1044 };
1045
1046 /**
1047 * If the argument is a placeholder for the Nth argument, returns
1048 * a reference to the Nth argument to the bind function object.
1049 * [TR1 3.6.3/5 bullet 3]
1050 */
1051 template<typename _Arg>
1052 class _Mu<_Arg, false, true>
1053 {
1054 public:
1055 template<typename _Signature> class result;
1056
1057 template<typename _CVMu, typename _CVArg, typename _Tuple>
1058 class result<_CVMu(_CVArg, _Tuple)>
1059 {
1060 // Add a reference, if it hasn't already been done for us.
1061 // This allows us to be a little bit sloppy in constructing
1062 // the tuple that we pass to result_of<...>.
1063 typedef typename _Safe_tuple_element<(is_placeholder<_Arg>::value
1064 - 1), _Tuple>::type
1065 __base_type;
1066
1067 public:
1068 typedef typename add_lvalue_reference<__base_type>::type type;
1069 };
1070
1071 template<typename _Tuple>
1072 typename result<_Mu(_Arg, _Tuple)>::type
1073 operator()(const volatile _Arg&, const _Tuple& __tuple) const volatile
1074 {
1075 return ::std::get<(is_placeholder<_Arg>::value - 1)>(__tuple);
1076 }
1077 };
1078
1079 /**
1080 * If the argument is just a value, returns a reference to that
1081 * value. The cv-qualifiers on the reference are the same as the
1082 * cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
1083 */
1084 template<typename _Arg>
1085 class _Mu<_Arg, false, false>
1086 {
1087 public:
1088 template<typename _Signature> struct result;
1089
1090 template<typename _CVMu, typename _CVArg, typename _Tuple>
1091 struct result<_CVMu(_CVArg, _Tuple)>
1092 {
1093 typedef typename add_lvalue_reference<_CVArg>::type type;
1094 };
1095
1096 // Pick up the cv-qualifiers of the argument
1097 template<typename _CVArg, typename _Tuple>
1098 _CVArg&
1099 operator()(_CVArg& __arg, const _Tuple&) const volatile
1100 { return __arg; }
1101 };
1102
1103 /**
1104 * Maps member pointers into instances of _Mem_fn but leaves all
1105 * other function objects untouched. Used by tr1::bind(). The
1106 * primary template handles the non--member-pointer case.
1107 */
1108 template<typename _Tp>
1109 struct _Maybe_wrap_member_pointer
1110 {
1111 typedef _Tp type;
1112
1113 static const _Tp&
1114 __do_wrap(const _Tp& __x)
1115 { return __x; }
1116 };
1117
1118 /**
1119 * Maps member pointers into instances of _Mem_fn but leaves all
1120 * other function objects untouched. Used by tr1::bind(). This
1121 * partial specialization handles the member pointer case.
1122 */
1123 template<typename _Tp, typename _Class>
1124 struct _Maybe_wrap_member_pointer<_Tp _Class::*>
1125 {
1126 typedef _Mem_fn<_Tp _Class::*> type;
1127
1128 static type
1129 __do_wrap(_Tp _Class::* __pm)
1130 { return type(__pm); }
1131 };
1132
1133 /// Type of the function object returned from bind().
1134 template<typename _Signature>
1135 struct _Bind;
1136
1137 template<typename _Functor, typename... _Bound_args>
1138 class _Bind<_Functor(_Bound_args...)>
1139 : public _Weak_result_type<_Functor>
1140 {
1141 typedef _Bind __self_type;
1142 typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
1143 _Bound_indexes;
1144
1145 _Functor _M_f;
1146 tuple<_Bound_args...> _M_bound_args;
1147
1148 // Call unqualified
1149 template<typename... _Args, int... _Indexes>
1150 typename result_of<
1151 _Functor(typename result_of<_Mu<_Bound_args>
1152 (_Bound_args, tuple<_Args...>)>::type...)
1153 >::type
1154 __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
1155 {
1156 return _M_f(_Mu<_Bound_args>()
1157 (get<_Indexes>(_M_bound_args), __args)...);
1158 }
1159
1160 // Call as const
1161 template<typename... _Args, int... _Indexes>
1162 typename result_of<
1163 const _Functor(typename result_of<_Mu<_Bound_args>
1164 (const _Bound_args, tuple<_Args...>)
1165 >::type...)>::type
1166 __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
1167 {
1168 return _M_f(_Mu<_Bound_args>()
1169 (get<_Indexes>(_M_bound_args), __args)...);
1170 }
1171
1172 // Call as volatile
1173 template<typename... _Args, int... _Indexes>
1174 typename result_of<
1175 volatile _Functor(typename result_of<_Mu<_Bound_args>
1176 (volatile _Bound_args, tuple<_Args...>)
1177 >::type...)>::type
1178 __call(const tuple<_Args...>& __args,
1179 _Index_tuple<_Indexes...>) volatile
1180 {
1181 return _M_f(_Mu<_Bound_args>()
1182 (get<_Indexes>(_M_bound_args), __args)...);
1183 }
1184
1185 // Call as const volatile
1186 template<typename... _Args, int... _Indexes>
1187 typename result_of<
1188 const volatile _Functor(typename result_of<_Mu<_Bound_args>
1189 (const volatile _Bound_args,
1190 tuple<_Args...>)
1191 >::type...)>::type
1192 __call(const tuple<_Args...>& __args,
1193 _Index_tuple<_Indexes...>) const volatile
1194 {
1195 return _M_f(_Mu<_Bound_args>()
1196 (get<_Indexes>(_M_bound_args), __args)...);
1197 }
1198
1199 public:
1200 explicit _Bind(_Functor __f, _Bound_args... __bound_args)
1201 : _M_f(__f), _M_bound_args(__bound_args...) { }
1202
1203 // Call unqualified
1204 template<typename... _Args>
1205 typename result_of<
1206 _Functor(typename result_of<_Mu<_Bound_args>
1207 (_Bound_args, tuple<_Args...>)>::type...)
1208 >::type
1209 operator()(_Args&... __args)
1210 {
1211 return this->__call(tie(__args...), _Bound_indexes());
1212 }
1213
1214 // Call as const
1215 template<typename... _Args>
1216 typename result_of<
1217 const _Functor(typename result_of<_Mu<_Bound_args>
1218 (const _Bound_args, tuple<_Args...>)>::type...)
1219 >::type
1220 operator()(_Args&... __args) const
1221 {
1222 return this->__call(tie(__args...), _Bound_indexes());
1223 }
1224
1225
1226 // Call as volatile
1227 template<typename... _Args>
1228 typename result_of<
1229 volatile _Functor(typename result_of<_Mu<_Bound_args>
1230 (volatile _Bound_args, tuple<_Args...>)>::type...)
1231 >::type
1232 operator()(_Args&... __args) volatile
1233 {
1234 return this->__call(tie(__args...), _Bound_indexes());
1235 }
1236
1237
1238 // Call as const volatile
1239 template<typename... _Args>
1240 typename result_of<
1241 const volatile _Functor(typename result_of<_Mu<_Bound_args>
1242 (const volatile _Bound_args,
1243 tuple<_Args...>)>::type...)
1244 >::type
1245 operator()(_Args&... __args) const volatile
1246 {
1247 return this->__call(tie(__args...), _Bound_indexes());
1248 }
1249 };
1250
1251 /// Type of the function object returned from bind<R>().
1252 template<typename _Result, typename _Signature>
1253 struct _Bind_result;
1254
1255 template<typename _Result, typename _Functor, typename... _Bound_args>
1256 class _Bind_result<_Result, _Functor(_Bound_args...)>
1257 {
1258 typedef _Bind_result __self_type;
1259 typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
1260 _Bound_indexes;
1261
1262 _Functor _M_f;
1263 tuple<_Bound_args...> _M_bound_args;
1264
1265 // Call unqualified
1266 template<typename... _Args, int... _Indexes>
1267 _Result
1268 __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
1269 {
1270 return _M_f(_Mu<_Bound_args>()
1271 (get<_Indexes>(_M_bound_args), __args)...);
1272 }
1273
1274 // Call as const
1275 template<typename... _Args, int... _Indexes>
1276 _Result
1277 __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
1278 {
1279 return _M_f(_Mu<_Bound_args>()
1280 (get<_Indexes>(_M_bound_args), __args)...);
1281 }
1282
1283 // Call as volatile
1284 template<typename... _Args, int... _Indexes>
1285 _Result
1286 __call(const tuple<_Args...>& __args,
1287 _Index_tuple<_Indexes...>) volatile
1288 {
1289 return _M_f(_Mu<_Bound_args>()
1290 (get<_Indexes>(_M_bound_args), __args)...);
1291 }
1292
1293 // Call as const volatile
1294 template<typename... _Args, int... _Indexes>
1295 _Result
1296 __call(const tuple<_Args...>& __args,
1297 _Index_tuple<_Indexes...>) const volatile
1298 {
1299 return _M_f(_Mu<_Bound_args>()
1300 (get<_Indexes>(_M_bound_args), __args)...);
1301 }
1302
1303 public:
1304 typedef _Result result_type;
1305
1306 explicit
1307 _Bind_result(_Functor __f, _Bound_args... __bound_args)
1308 : _M_f(__f), _M_bound_args(__bound_args...) { }
1309
1310 // Call unqualified
1311 template<typename... _Args>
1312 result_type
1313 operator()(_Args&... __args)
1314 {
1315 return this->__call(tie(__args...), _Bound_indexes());
1316 }
1317
1318 // Call as const
1319 template<typename... _Args>
1320 result_type
1321 operator()(_Args&... __args) const
1322 {
1323 return this->__call(tie(__args...), _Bound_indexes());
1324 }
1325
1326 // Call as volatile
1327 template<typename... _Args>
1328 result_type
1329 operator()(_Args&... __args) volatile
1330 {
1331 return this->__call(tie(__args...), _Bound_indexes());
1332 }
1333
1334 // Call as const volatile
1335 template<typename... _Args>
1336 result_type
1337 operator()(_Args&... __args) const volatile
1338 {
1339 return this->__call(tie(__args...), _Bound_indexes());
1340 }
1341 };
1342
1343 /// Class template _Bind is always a bind expression.
1344 template<typename _Signature>
1345 struct is_bind_expression<_Bind<_Signature> >
1346 { static const bool value = true; };
1347
1348 template<typename _Signature>
1349 const bool is_bind_expression<_Bind<_Signature> >::value;
1350
1351 /// Class template _Bind_result is always a bind expression.
1352 template<typename _Result, typename _Signature>
1353 struct is_bind_expression<_Bind_result<_Result, _Signature> >
1354 { static const bool value = true; };
1355
1356 template<typename _Result, typename _Signature>
1357 const bool is_bind_expression<_Bind_result<_Result, _Signature> >::value;
1358
1359 /// bind
1360 template<typename _Functor, typename... _ArgTypes>
1361 inline
1362 _Bind<typename _Maybe_wrap_member_pointer<_Functor>::type(_ArgTypes...)>
1363 bind(_Functor __f, _ArgTypes... __args)
1364 {
1365 typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
1366 typedef typename __maybe_type::type __functor_type;
1367 typedef _Bind<__functor_type(_ArgTypes...)> __result_type;
1368 return __result_type(__maybe_type::__do_wrap(__f), __args...);
1369 }
1370
1371 template<typename _Result, typename _Functor, typename... _ArgTypes>
1372 inline
1373 _Bind_result<_Result,
1374 typename _Maybe_wrap_member_pointer<_Functor>::type
1375 (_ArgTypes...)>
1376 bind(_Functor __f, _ArgTypes... __args)
1377 {
1378 typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
1379 typedef typename __maybe_type::type __functor_type;
1380 typedef _Bind_result<_Result, __functor_type(_ArgTypes...)>
1381 __result_type;
1382 return __result_type(__maybe_type::__do_wrap(__f), __args...);
1383 }
1384
1385 /**
1386 * @brief Exception class thrown when class template function's
1387 * operator() is called with an empty target.
1388 * @ingroup exceptions
1389 */
1390 class bad_function_call : public std::exception { };
1391
1392 /**
1393 * The integral constant expression 0 can be converted into a
1394 * pointer to this type. It is used by the function template to
1395 * accept NULL pointers.
1396 */
1397 struct _M_clear_type;
1398
1399 /**
1400 * Trait identifying "location-invariant" types, meaning that the
1401 * address of the object (or any of its members) will not escape.
1402 * Also implies a trivial copy constructor and assignment operator.
1403 */
1404 template<typename _Tp>
1405 struct __is_location_invariant
1406 : integral_constant<bool,
1407 (is_pointer<_Tp>::value
1408 || is_member_pointer<_Tp>::value)>
1409 {
1410 };
1411
1412 class _Undefined_class;
1413
1414 union _Nocopy_types
1415 {
1416 void* _M_object;
1417 const void* _M_const_object;
1418 void (*_M_function_pointer)();
1419 void (_Undefined_class::*_M_member_pointer)();
1420 };
1421
1422 union _Any_data
1423 {
1424 void* _M_access() { return &_M_pod_data[0]; }
1425 const void* _M_access() const { return &_M_pod_data[0]; }
1426
1427 template<typename _Tp>
1428 _Tp&
1429 _M_access()
1430 { return *static_cast<_Tp*>(_M_access()); }
1431
1432 template<typename _Tp>
1433 const _Tp&
1434 _M_access() const
1435 { return *static_cast<const _Tp*>(_M_access()); }
1436
1437 _Nocopy_types _M_unused;
1438 char _M_pod_data[sizeof(_Nocopy_types)];
1439 };
1440
1441 enum _Manager_operation
1442 {
1443 __get_type_info,
1444 __get_functor_ptr,
1445 __clone_functor,
1446 __destroy_functor
1447 };
1448
1449 // Simple type wrapper that helps avoid annoying const problems
1450 // when casting between void pointers and pointers-to-pointers.
1451 template<typename _Tp>
1452 struct _Simple_type_wrapper
1453 {
1454 _Simple_type_wrapper(_Tp __value) : __value(__value) { }
1455
1456 _Tp __value;
1457 };
1458
1459 template<typename _Tp>
1460 struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
1461 : __is_location_invariant<_Tp>
1462 {
1463 };
1464
1465 // Converts a reference to a function object into a callable
1466 // function object.
1467 template<typename _Functor>
1468 inline _Functor&
1469 __callable_functor(_Functor& __f)
1470 { return __f; }
1471
1472 template<typename _Member, typename _Class>
1473 inline _Mem_fn<_Member _Class::*>
1474 __callable_functor(_Member _Class::* &__p)
1475 { return mem_fn(__p); }
1476
1477 template<typename _Member, typename _Class>
1478 inline _Mem_fn<_Member _Class::*>
1479 __callable_functor(_Member _Class::* const &__p)
1480 { return mem_fn(__p); }
1481
1482 template<typename _Signature>
1483 class function;
1484
1485 /// Base class of all polymorphic function object wrappers.
1486 class _Function_base
1487 {
1488 public:
1489 static const std::size_t _M_max_size = sizeof(_Nocopy_types);
1490 static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
1491
1492 template<typename _Functor>
1493 class _Base_manager
1494 {
1495 protected:
1496 static const bool __stored_locally =
1497 (__is_location_invariant<_Functor>::value
1498 && sizeof(_Functor) <= _M_max_size
1499 && __alignof__(_Functor) <= _M_max_align
1500 && (_M_max_align % __alignof__(_Functor) == 0));
1501
1502 typedef integral_constant<bool, __stored_locally> _Local_storage;
1503
1504 // Retrieve a pointer to the function object
1505 static _Functor*
1506 _M_get_pointer(const _Any_data& __source)
1507 {
1508 const _Functor* __ptr =
1509 __stored_locally? &__source._M_access<_Functor>()
1510 /* have stored a pointer */ : __source._M_access<_Functor*>();
1511 return const_cast<_Functor*>(__ptr);
1512 }
1513
1514 // Clone a location-invariant function object that fits within
1515 // an _Any_data structure.
1516 static void
1517 _M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
1518 {
1519 new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
1520 }
1521
1522 // Clone a function object that is not location-invariant or
1523 // that cannot fit into an _Any_data structure.
1524 static void
1525 _M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
1526 {
1527 __dest._M_access<_Functor*>() =
1528 new _Functor(*__source._M_access<_Functor*>());
1529 }
1530
1531 // Destroying a location-invariant object may still require
1532 // destruction.
1533 static void
1534 _M_destroy(_Any_data& __victim, true_type)
1535 {
1536 __victim._M_access<_Functor>().~_Functor();
1537 }
1538
1539 // Destroying an object located on the heap.
1540 static void
1541 _M_destroy(_Any_data& __victim, false_type)
1542 {
1543 delete __victim._M_access<_Functor*>();
1544 }
1545
1546 public:
1547 static bool
1548 _M_manager(_Any_data& __dest, const _Any_data& __source,
1549 _Manager_operation __op)
1550 {
1551 switch (__op)
1552 {
1553 #ifdef __GXX_RTTI
1554 case __get_type_info:
1555 __dest._M_access<const type_info*>() = &typeid(_Functor);
1556 break;
1557 #endif
1558 case __get_functor_ptr:
1559 __dest._M_access<_Functor*>() = _M_get_pointer(__source);
1560 break;
1561
1562 case __clone_functor:
1563 _M_clone(__dest, __source, _Local_storage());
1564 break;
1565
1566 case __destroy_functor:
1567 _M_destroy(__dest, _Local_storage());
1568 break;
1569 }
1570 return false;
1571 }
1572
1573 static void
1574 _M_init_functor(_Any_data& __functor, const _Functor& __f)
1575 { _M_init_functor(__functor, __f, _Local_storage()); }
1576
1577 template<typename _Signature>
1578 static bool
1579 _M_not_empty_function(const function<_Signature>& __f)
1580 { return static_cast<bool>(__f); }
1581
1582 template<typename _Tp>
1583 static bool
1584 _M_not_empty_function(const _Tp*& __fp)
1585 { return __fp; }
1586
1587 template<typename _Class, typename _Tp>
1588 static bool
1589 _M_not_empty_function(_Tp _Class::* const& __mp)
1590 { return __mp; }
1591
1592 template<typename _Tp>
1593 static bool
1594 _M_not_empty_function(const _Tp&)
1595 { return true; }
1596
1597 private:
1598 static void
1599 _M_init_functor(_Any_data& __functor, const _Functor& __f, true_type)
1600 { new (__functor._M_access()) _Functor(__f); }
1601
1602 static void
1603 _M_init_functor(_Any_data& __functor, const _Functor& __f, false_type)
1604 { __functor._M_access<_Functor*>() = new _Functor(__f); }
1605 };
1606
1607 template<typename _Functor>
1608 class _Ref_manager : public _Base_manager<_Functor*>
1609 {
1610 typedef _Function_base::_Base_manager<_Functor*> _Base;
1611
1612 public:
1613 static bool
1614 _M_manager(_Any_data& __dest, const _Any_data& __source,
1615 _Manager_operation __op)
1616 {
1617 switch (__op)
1618 {
1619 #ifdef __GXX_RTTI
1620 case __get_type_info:
1621 __dest._M_access<const type_info*>() = &typeid(_Functor);
1622 break;
1623 #endif
1624 case __get_functor_ptr:
1625 __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
1626 return is_const<_Functor>::value;
1627 break;
1628
1629 default:
1630 _Base::_M_manager(__dest, __source, __op);
1631 }
1632 return false;
1633 }
1634
1635 static void
1636 _M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
1637 {
1638 // TBD: Use address_of function instead.
1639 _Base::_M_init_functor(__functor, &__f.get());
1640 }
1641 };
1642
1643 _Function_base() : _M_manager(0) { }
1644
1645 ~_Function_base()
1646 {
1647 if (_M_manager)
1648 _M_manager(_M_functor, _M_functor, __destroy_functor);
1649 }
1650
1651
1652 bool _M_empty() const { return !_M_manager; }
1653
1654 typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
1655 _Manager_operation);
1656
1657 _Any_data _M_functor;
1658 _Manager_type _M_manager;
1659 };
1660
1661 template<typename _Signature, typename _Functor>
1662 class _Function_handler;
1663
1664 template<typename _Res, typename _Functor, typename... _ArgTypes>
1665 class _Function_handler<_Res(_ArgTypes...), _Functor>
1666 : public _Function_base::_Base_manager<_Functor>
1667 {
1668 typedef _Function_base::_Base_manager<_Functor> _Base;
1669
1670 public:
1671 static _Res
1672 _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
1673 {
1674 return (*_Base::_M_get_pointer(__functor))(
1675 std::forward<_ArgTypes>(__args)...);
1676 }
1677 };
1678
1679 template<typename _Functor, typename... _ArgTypes>
1680 class _Function_handler<void(_ArgTypes...), _Functor>
1681 : public _Function_base::_Base_manager<_Functor>
1682 {
1683 typedef _Function_base::_Base_manager<_Functor> _Base;
1684
1685 public:
1686 static void
1687 _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
1688 {
1689 (*_Base::_M_get_pointer(__functor))(
1690 std::forward<_ArgTypes>(__args)...);
1691 }
1692 };
1693
1694 template<typename _Res, typename _Functor, typename... _ArgTypes>
1695 class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >
1696 : public _Function_base::_Ref_manager<_Functor>
1697 {
1698 typedef _Function_base::_Ref_manager<_Functor> _Base;
1699
1700 public:
1701 static _Res
1702 _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
1703 {
1704 return __callable_functor(**_Base::_M_get_pointer(__functor))(
1705 std::forward<_ArgTypes>(__args)...);
1706 }
1707 };
1708
1709 template<typename _Functor, typename... _ArgTypes>
1710 class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >
1711 : public _Function_base::_Ref_manager<_Functor>
1712 {
1713 typedef _Function_base::_Ref_manager<_Functor> _Base;
1714
1715 public:
1716 static void
1717 _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
1718 {
1719 __callable_functor(**_Base::_M_get_pointer(__functor))(
1720 std::forward<_ArgTypes>(__args)...);
1721 }
1722 };
1723
1724 template<typename _Class, typename _Member, typename _Res,
1725 typename... _ArgTypes>
1726 class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
1727 : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
1728 {
1729 typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
1730 _Base;
1731
1732 public:
1733 static _Res
1734 _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
1735 {
1736 return mem_fn(_Base::_M_get_pointer(__functor)->__value)(
1737 std::forward<_ArgTypes>(__args)...);
1738 }
1739 };
1740
1741 template<typename _Class, typename _Member, typename... _ArgTypes>
1742 class _Function_handler<void(_ArgTypes...), _Member _Class::*>
1743 : public _Function_base::_Base_manager<
1744 _Simple_type_wrapper< _Member _Class::* > >
1745 {
1746 typedef _Member _Class::* _Functor;
1747 typedef _Simple_type_wrapper<_Functor> _Wrapper;
1748 typedef _Function_base::_Base_manager<_Wrapper> _Base;
1749
1750 public:
1751 static bool
1752 _M_manager(_Any_data& __dest, const _Any_data& __source,
1753 _Manager_operation __op)
1754 {
1755 switch (__op)
1756 {
1757 #ifdef __GXX_RTTI
1758 case __get_type_info:
1759 __dest._M_access<const type_info*>() = &typeid(_Functor);
1760 break;
1761 #endif
1762 case __get_functor_ptr:
1763 __dest._M_access<_Functor*>() =
1764 &_Base::_M_get_pointer(__source)->__value;
1765 break;
1766
1767 default:
1768 _Base::_M_manager(__dest, __source, __op);
1769 }
1770 return false;
1771 }
1772
1773 static void
1774 _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
1775 {
1776 mem_fn(_Base::_M_get_pointer(__functor)->__value)(
1777 std::forward<_ArgTypes>(__args)...);
1778 }
1779 };
1780
1781 /// class function
1782 template<typename _Res, typename... _ArgTypes>
1783 class function<_Res(_ArgTypes...)>
1784 : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
1785 private _Function_base
1786 {
1787 typedef _Res _Signature_type(_ArgTypes...);
1788
1789 struct _Useless { };
1790
1791 public:
1792 typedef _Res result_type;
1793
1794 // [3.7.2.1] construct/copy/destroy
1795
1796 /**
1797 * @brief Default construct creates an empty function call wrapper.
1798 * @post @c !(bool)*this
1799 */
1800 explicit
1801 function() : _Function_base() { }
1802
1803 /**
1804 * @brief Default construct creates an empty function call wrapper.
1805 * @post @c !(bool)*this
1806 */
1807 function(_M_clear_type*) : _Function_base() { }
1808
1809 /**
1810 * @brief %Function copy constructor.
1811 * @param x A %function object with identical call signature.
1812 * @post @c (bool)*this == (bool)x
1813 *
1814 * The newly-created %function contains a copy of the target of @a
1815 * x (if it has one).
1816 */
1817 function(const function& __x);
1818
1819 /**
1820 * @brief %Function move constructor.
1821 * @param x A %function object rvalue with identical call signature.
1822 *
1823 * The newly-created %function contains the target of @a x
1824 * (if it has one).
1825 */
1826 function(function&& __x) : _Function_base()
1827 {
1828 __x.swap(*this);
1829 }
1830
1831 // TODO: needs allocator_arg_t
1832
1833 /**
1834 * @brief Builds a %function that targets a copy of the incoming
1835 * function object.
1836 * @param f A %function object that is callable with parameters of
1837 * type @c T1, @c T2, ..., @c TN and returns a value convertible
1838 * to @c Res.
1839 *
1840 * The newly-created %function object will target a copy of @a
1841 * f. If @a f is @c reference_wrapper<F>, then this function
1842 * object will contain a reference to the function object @c
1843 * f.get(). If @a f is a NULL function pointer or NULL
1844 * pointer-to-member, the newly-created object will be empty.
1845 *
1846 * If @a f is a non-NULL function pointer or an object of type @c
1847 * reference_wrapper<F>, this function will not throw.
1848 */
1849 template<typename _Functor>
1850 function(_Functor __f,
1851 typename __gnu_cxx::__enable_if<
1852 !is_integral<_Functor>::value, _Useless>::__type
1853 = _Useless());
1854
1855 /**
1856 * @brief %Function assignment operator.
1857 * @param x A %function with identical call signature.
1858 * @post @c (bool)*this == (bool)x
1859 * @returns @c *this
1860 *
1861 * The target of @a x is copied to @c *this. If @a x has no
1862 * target, then @c *this will be empty.
1863 *
1864 * If @a x targets a function pointer or a reference to a function
1865 * object, then this operation will not throw an %exception.
1866 */
1867 function&
1868 operator=(const function& __x)
1869 {
1870 function(__x).swap(*this);
1871 return *this;
1872 }
1873
1874 /**
1875 * @brief %Function move-assignment operator.
1876 * @param x A %function rvalue with identical call signature.
1877 * @returns @c *this
1878 *
1879 * The target of @a x is moved to @c *this. If @a x has no
1880 * target, then @c *this will be empty.
1881 *
1882 * If @a x targets a function pointer or a reference to a function
1883 * object, then this operation will not throw an %exception.
1884 */
1885 function&
1886 operator=(function&& __x)
1887 {
1888 function(std::move(__x)).swap(*this);
1889 return *this;
1890 }
1891
1892 /**
1893 * @brief %Function assignment to zero.
1894 * @post @c !(bool)*this
1895 * @returns @c *this
1896 *
1897 * The target of @c *this is deallocated, leaving it empty.
1898 */
1899 function&
1900 operator=(_M_clear_type*)
1901 {
1902 if (_M_manager)
1903 {
1904 _M_manager(_M_functor, _M_functor, __destroy_functor);
1905 _M_manager = 0;
1906 _M_invoker = 0;
1907 }
1908 return *this;
1909 }
1910
1911 /**
1912 * @brief %Function assignment to a new target.
1913 * @param f A %function object that is callable with parameters of
1914 * type @c T1, @c T2, ..., @c TN and returns a value convertible
1915 * to @c Res.
1916 * @return @c *this
1917 *
1918 * This %function object wrapper will target a copy of @a
1919 * f. If @a f is @c reference_wrapper<F>, then this function
1920 * object will contain a reference to the function object @c
1921 * f.get(). If @a f is a NULL function pointer or NULL
1922 * pointer-to-member, @c this object will be empty.
1923 *
1924 * If @a f is a non-NULL function pointer or an object of type @c
1925 * reference_wrapper<F>, this function will not throw.
1926 */
1927 template<typename _Functor>
1928 typename __gnu_cxx::__enable_if<!is_integral<_Functor>::value,
1929 function&>::__type
1930 operator=(_Functor __f)
1931 {
1932 function(__f).swap(*this);
1933 return *this;
1934 }
1935
1936 /// @overload
1937 template<typename _Functor>
1938 typename __gnu_cxx::__enable_if<!is_integral<_Functor>::value,
1939 function&>::__type
1940 operator=(reference_wrapper<_Functor> __f)
1941 {
1942 function(__f).swap(*this);
1943 return *this;
1944 }
1945
1946 // [3.7.2.2] function modifiers
1947
1948 /**
1949 * @brief Swap the targets of two %function objects.
1950 * @param f A %function with identical call signature.
1951 *
1952 * Swap the targets of @c this function object and @a f. This
1953 * function will not throw an %exception.
1954 */
1955 void swap(function& __x)
1956 {
1957 _Any_data __old_functor = _M_functor;
1958 _M_functor = __x._M_functor;
1959 __x._M_functor = __old_functor;
1960 _Manager_type __old_manager = _M_manager;
1961 _M_manager = __x._M_manager;
1962 __x._M_manager = __old_manager;
1963 _Invoker_type __old_invoker = _M_invoker;
1964 _M_invoker = __x._M_invoker;
1965 __x._M_invoker = __old_invoker;
1966 }
1967
1968 // TODO: needs allocator_arg_t
1969 /*
1970 template<typename _Functor, typename _Alloc>
1971 void
1972 assign(_Functor __f, const _Alloc& __a)
1973 {
1974 function(__f, __a).swap(*this);
1975 }
1976 */
1977
1978 // [3.7.2.3] function capacity
1979
1980 /**
1981 * @brief Determine if the %function wrapper has a target.
1982 *
1983 * @return @c true when this %function object contains a target,
1984 * or @c false when it is empty.
1985 *
1986 * This function will not throw an %exception.
1987 */
1988 explicit operator bool() const
1989 { return !_M_empty(); }
1990
1991 // [3.7.2.4] function invocation
1992
1993 /**
1994 * @brief Invokes the function targeted by @c *this.
1995 * @returns the result of the target.
1996 * @throws bad_function_call when @c !(bool)*this
1997 *
1998 * The function call operator invokes the target function object
1999 * stored by @c this.
2000 */
2001 _Res operator()(_ArgTypes... __args) const;
2002
2003 #ifdef __GXX_RTTI
2004 // [3.7.2.5] function target access
2005 /**
2006 * @brief Determine the type of the target of this function object
2007 * wrapper.
2008 *
2009 * @returns the type identifier of the target function object, or
2010 * @c typeid(void) if @c !(bool)*this.
2011 *
2012 * This function will not throw an %exception.
2013 */
2014 const type_info& target_type() const;
2015
2016 /**
2017 * @brief Access the stored target function object.
2018 *
2019 * @return Returns a pointer to the stored target function object,
2020 * if @c typeid(Functor).equals(target_type()); otherwise, a NULL
2021 * pointer.
2022 *
2023 * This function will not throw an %exception.
2024 */
2025 template<typename _Functor> _Functor* target();
2026
2027 /// @overload
2028 template<typename _Functor> const _Functor* target() const;
2029 #endif
2030
2031 // deleted overloads
2032 template<typename _Res2, typename... _ArgTypes2>
2033 void operator==(const function<_Res2(_ArgTypes2...)>&) const = delete;
2034 template<typename _Res2, typename... _ArgTypes2>
2035 void operator!=(const function<_Res2(_ArgTypes2...)>&) const = delete;
2036
2037 private:
2038 typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...);
2039 _Invoker_type _M_invoker;
2040 };
2041
2042 template<typename _Res, typename... _ArgTypes>
2043 function<_Res(_ArgTypes...)>::
2044 function(const function& __x)
2045 : _Function_base()
2046 {
2047 if (static_cast<bool>(__x))
2048 {
2049 _M_invoker = __x._M_invoker;
2050 _M_manager = __x._M_manager;
2051 __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
2052 }
2053 }
2054
2055 template<typename _Res, typename... _ArgTypes>
2056 template<typename _Functor>
2057 function<_Res(_ArgTypes...)>::
2058 function(_Functor __f,
2059 typename __gnu_cxx::__enable_if<
2060 !is_integral<_Functor>::value, _Useless>::__type)
2061 : _Function_base()
2062 {
2063 typedef _Function_handler<_Signature_type, _Functor> _My_handler;
2064
2065 if (_My_handler::_M_not_empty_function(__f))
2066 {
2067 _M_invoker = &_My_handler::_M_invoke;
2068 _M_manager = &_My_handler::_M_manager;
2069 _My_handler::_M_init_functor(_M_functor, __f);
2070 }
2071 }
2072
2073 template<typename _Res, typename... _ArgTypes>
2074 _Res
2075 function<_Res(_ArgTypes...)>::
2076 operator()(_ArgTypes... __args) const
2077 {
2078 if (_M_empty())
2079 {
2080 #if __EXCEPTIONS
2081 throw bad_function_call();
2082 #else
2083 __builtin_abort();
2084 #endif
2085 }
2086 return _M_invoker(_M_functor, std::forward<_ArgTypes>(__args)...);
2087 }
2088
2089 #ifdef __GXX_RTTI
2090 template<typename _Res, typename... _ArgTypes>
2091 const type_info&
2092 function<_Res(_ArgTypes...)>::
2093 target_type() const
2094 {
2095 if (_M_manager)
2096 {
2097 _Any_data __typeinfo_result;
2098 _M_manager(__typeinfo_result, _M_functor, __get_type_info);
2099 return *__typeinfo_result._M_access<const type_info*>();
2100 }
2101 else
2102 return typeid(void);
2103 }
2104
2105 template<typename _Res, typename... _ArgTypes>
2106 template<typename _Functor>
2107 _Functor*
2108 function<_Res(_ArgTypes...)>::
2109 target()
2110 {
2111 if (typeid(_Functor) == target_type() && _M_manager)
2112 {
2113 _Any_data __ptr;
2114 if (_M_manager(__ptr, _M_functor, __get_functor_ptr)
2115 && !is_const<_Functor>::value)
2116 return 0;
2117 else
2118 return __ptr._M_access<_Functor*>();
2119 }
2120 else
2121 return 0;
2122 }
2123
2124 template<typename _Res, typename... _ArgTypes>
2125 template<typename _Functor>
2126 const _Functor*
2127 function<_Res(_ArgTypes...)>::
2128 target() const
2129 {
2130 if (typeid(_Functor) == target_type() && _M_manager)
2131 {
2132 _Any_data __ptr;
2133 _M_manager(__ptr, _M_functor, __get_functor_ptr);
2134 return __ptr._M_access<const _Functor*>();
2135 }
2136 else
2137 return 0;
2138 }
2139 #endif
2140
2141 // [20.7.15.2.6] null pointer comparisons
2142
2143 /**
2144 * @brief Compares a polymorphic function object wrapper against 0
2145 * (the NULL pointer).
2146 * @returns @c true if the wrapper has no target, @c false otherwise
2147 *
2148 * This function will not throw an %exception.
2149 */
2150 template<typename _Res, typename... _Args>
2151 inline bool
2152 operator==(const function<_Res(_Args...)>& __f, _M_clear_type*)
2153 { return !static_cast<bool>(__f); }
2154
2155 /// @overload
2156 template<typename _Res, typename... _Args>
2157 inline bool
2158 operator==(_M_clear_type*, const function<_Res(_Args...)>& __f)
2159 { return !static_cast<bool>(__f); }
2160
2161 /**
2162 * @brief Compares a polymorphic function object wrapper against 0
2163 * (the NULL pointer).
2164 * @returns @c false if the wrapper has no target, @c true otherwise
2165 *
2166 * This function will not throw an %exception.
2167 */
2168 template<typename _Res, typename... _Args>
2169 inline bool
2170 operator!=(const function<_Res(_Args...)>& __f, _M_clear_type*)
2171 { return static_cast<bool>(__f); }
2172
2173 /// @overload
2174 template<typename _Res, typename... _Args>
2175 inline bool
2176 operator!=(_M_clear_type*, const function<_Res(_Args...)>& __f)
2177 { return static_cast<bool>(__f); }
2178
2179 // [20.7.15.2.7] specialized algorithms
2180
2181 /**
2182 * @brief Swap the targets of two polymorphic function object wrappers.
2183 *
2184 * This function will not throw an %exception.
2185 */
2186 template<typename _Res, typename... _Args>
2187 inline void
2188 swap(function<_Res(_Args...)>& __x, function<_Res(_Args...)>& __y)
2189 { __x.swap(__y); }
2190 }
2191
2192 #endif // __GXX_EXPERIMENTAL_CXX0X__
2193
2194 #endif // _GLIBCXX_FUNCTIONAL