streambuf_iterator.h: Use noexcept per the FDIS.
[gcc.git] / libstdc++-v3 / src / mt_allocator.cc
1 // Allocator details.
2
3 // Copyright (C) 2004, 2005, 2006, 2009, 2010 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 //
26 // ISO C++ 14882:
27 //
28
29 #include <bits/c++config.h>
30 #include <ext/concurrence.h>
31 #include <ext/mt_allocator.h>
32 #include <cstring>
33
34 namespace
35 {
36 #ifdef __GTHREADS
37 struct __freelist
38 {
39 typedef __gnu_cxx::__pool<true>::_Thread_record _Thread_record;
40 _Thread_record* _M_thread_freelist;
41 _Thread_record* _M_thread_freelist_array;
42 size_t _M_max_threads;
43 __gthread_key_t _M_key;
44
45 ~__freelist()
46 {
47 if (_M_thread_freelist_array)
48 {
49 __gthread_key_delete(_M_key);
50 ::operator delete(static_cast<void*>(_M_thread_freelist_array));
51 }
52 }
53 };
54
55 __freelist&
56 get_freelist()
57 {
58 static __freelist freelist;
59 return freelist;
60 }
61
62 __gnu_cxx::__mutex&
63 get_freelist_mutex()
64 {
65 static __gnu_cxx::__mutex freelist_mutex;
66 return freelist_mutex;
67 }
68
69 static void
70 _M_destroy_thread_key(void* __id)
71 {
72 // Return this thread id record to the front of thread_freelist.
73 __freelist& freelist = get_freelist();
74 {
75 __gnu_cxx::__scoped_lock sentry(get_freelist_mutex());
76 size_t _M_id = reinterpret_cast<size_t>(__id);
77
78 typedef __gnu_cxx::__pool<true>::_Thread_record _Thread_record;
79 _Thread_record* __tr = &freelist._M_thread_freelist_array[_M_id - 1];
80 __tr->_M_next = freelist._M_thread_freelist;
81 freelist._M_thread_freelist = __tr;
82 }
83 }
84 #endif
85 } // anonymous namespace
86
87 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
88 {
89 _GLIBCXX_BEGIN_NAMESPACE_VERSION
90
91 void
92 __pool<false>::_M_destroy() throw()
93 {
94 if (_M_init && !_M_options._M_force_new)
95 {
96 for (size_t __n = 0; __n < _M_bin_size; ++__n)
97 {
98 _Bin_record& __bin = _M_bin[__n];
99 while (__bin._M_address)
100 {
101 _Block_address* __tmp = __bin._M_address->_M_next;
102 ::operator delete(__bin._M_address->_M_initial);
103 __bin._M_address = __tmp;
104 }
105 ::operator delete(__bin._M_first);
106 }
107 ::operator delete(_M_bin);
108 ::operator delete(_M_binmap);
109 }
110 }
111
112 void
113 __pool<false>::_M_reclaim_block(char* __p, size_t __bytes) throw ()
114 {
115 // Round up to power of 2 and figure out which bin to use.
116 const size_t __which = _M_binmap[__bytes];
117 _Bin_record& __bin = _M_bin[__which];
118
119 char* __c = __p - _M_get_align();
120 _Block_record* __block = reinterpret_cast<_Block_record*>(__c);
121
122 // Single threaded application - return to global pool.
123 __block->_M_next = __bin._M_first[0];
124 __bin._M_first[0] = __block;
125 }
126
127 char*
128 __pool<false>::_M_reserve_block(size_t __bytes, const size_t __thread_id)
129 {
130 // Round up to power of 2 and figure out which bin to use.
131 const size_t __which = _M_binmap[__bytes];
132 _Bin_record& __bin = _M_bin[__which];
133 const _Tune& __options = _M_get_options();
134 const size_t __bin_size = (__options._M_min_bin << __which)
135 + __options._M_align;
136 size_t __block_count = __options._M_chunk_size - sizeof(_Block_address);
137 __block_count /= __bin_size;
138
139 // Get a new block dynamically, set it up for use.
140 void* __v = ::operator new(__options._M_chunk_size);
141 _Block_address* __address = static_cast<_Block_address*>(__v);
142 __address->_M_initial = __v;
143 __address->_M_next = __bin._M_address;
144 __bin._M_address = __address;
145
146 char* __c = static_cast<char*>(__v) + sizeof(_Block_address);
147 _Block_record* __block = reinterpret_cast<_Block_record*>(__c);
148 __bin._M_first[__thread_id] = __block;
149 while (--__block_count > 0)
150 {
151 __c += __bin_size;
152 __block->_M_next = reinterpret_cast<_Block_record*>(__c);
153 __block = __block->_M_next;
154 }
155 __block->_M_next = 0;
156
157 __block = __bin._M_first[__thread_id];
158 __bin._M_first[__thread_id] = __block->_M_next;
159
160 // NB: For alignment reasons, we can't use the first _M_align
161 // bytes, even when sizeof(_Block_record) < _M_align.
162 return reinterpret_cast<char*>(__block) + __options._M_align;
163 }
164
165 void
166 __pool<false>::_M_initialize()
167 {
168 // _M_force_new must not change after the first allocate(), which
169 // in turn calls this method, so if it's false, it's false forever
170 // and we don't need to return here ever again.
171 if (_M_options._M_force_new)
172 {
173 _M_init = true;
174 return;
175 }
176
177 // Create the bins.
178 // Calculate the number of bins required based on _M_max_bytes.
179 // _M_bin_size is statically-initialized to one.
180 size_t __bin_size = _M_options._M_min_bin;
181 while (_M_options._M_max_bytes > __bin_size)
182 {
183 __bin_size <<= 1;
184 ++_M_bin_size;
185 }
186
187 // Setup the bin map for quick lookup of the relevant bin.
188 const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type);
189 _M_binmap = static_cast<_Binmap_type*>(::operator new(__j));
190 _Binmap_type* __bp = _M_binmap;
191 _Binmap_type __bin_max = _M_options._M_min_bin;
192 _Binmap_type __bint = 0;
193 for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct)
194 {
195 if (__ct > __bin_max)
196 {
197 __bin_max <<= 1;
198 ++__bint;
199 }
200 *__bp++ = __bint;
201 }
202
203 // Initialize _M_bin and its members.
204 void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size);
205 _M_bin = static_cast<_Bin_record*>(__v);
206 for (size_t __n = 0; __n < _M_bin_size; ++__n)
207 {
208 _Bin_record& __bin = _M_bin[__n];
209 __v = ::operator new(sizeof(_Block_record*));
210 __bin._M_first = static_cast<_Block_record**>(__v);
211 __bin._M_first[0] = 0;
212 __bin._M_address = 0;
213 }
214 _M_init = true;
215 }
216
217
218 #ifdef __GTHREADS
219 void
220 __pool<true>::_M_destroy() throw()
221 {
222 if (_M_init && !_M_options._M_force_new)
223 {
224 if (__gthread_active_p())
225 {
226 for (size_t __n = 0; __n < _M_bin_size; ++__n)
227 {
228 _Bin_record& __bin = _M_bin[__n];
229 while (__bin._M_address)
230 {
231 _Block_address* __tmp = __bin._M_address->_M_next;
232 ::operator delete(__bin._M_address->_M_initial);
233 __bin._M_address = __tmp;
234 }
235 ::operator delete(__bin._M_first);
236 ::operator delete(__bin._M_free);
237 ::operator delete(__bin._M_used);
238 ::operator delete(__bin._M_mutex);
239 }
240 }
241 else
242 {
243 for (size_t __n = 0; __n < _M_bin_size; ++__n)
244 {
245 _Bin_record& __bin = _M_bin[__n];
246 while (__bin._M_address)
247 {
248 _Block_address* __tmp = __bin._M_address->_M_next;
249 ::operator delete(__bin._M_address->_M_initial);
250 __bin._M_address = __tmp;
251 }
252 ::operator delete(__bin._M_first);
253 }
254 }
255 ::operator delete(_M_bin);
256 ::operator delete(_M_binmap);
257 }
258 }
259
260 void
261 __pool<true>::_M_reclaim_block(char* __p, size_t __bytes) throw ()
262 {
263 // Round up to power of 2 and figure out which bin to use.
264 const size_t __which = _M_binmap[__bytes];
265 const _Bin_record& __bin = _M_bin[__which];
266
267 // Know __p not null, assume valid block.
268 char* __c = __p - _M_get_align();
269 _Block_record* __block = reinterpret_cast<_Block_record*>(__c);
270 if (__gthread_active_p())
271 {
272 // Calculate the number of records to remove from our freelist:
273 // in order to avoid too much contention we wait until the
274 // number of records is "high enough".
275 const size_t __thread_id = _M_get_thread_id();
276 const _Tune& __options = _M_get_options();
277 const size_t __limit = (100 * (_M_bin_size - __which)
278 * __options._M_freelist_headroom);
279
280 size_t __remove = __bin._M_free[__thread_id];
281 __remove *= __options._M_freelist_headroom;
282
283 // NB: We assume that reads of _Atomic_words are atomic.
284 const size_t __max_threads = __options._M_max_threads + 1;
285 _Atomic_word* const __reclaimed_base =
286 reinterpret_cast<_Atomic_word*>(__bin._M_used + __max_threads);
287 const _Atomic_word __reclaimed = __reclaimed_base[__thread_id];
288 const size_t __net_used = __bin._M_used[__thread_id] - __reclaimed;
289
290 // NB: For performance sake we don't resync every time, in order
291 // to spare atomic ops. Note that if __reclaimed increased by,
292 // say, 1024, since the last sync, it means that the other
293 // threads executed the atomic in the else below at least the
294 // same number of times (at least, because _M_reserve_block may
295 // have decreased the counter), therefore one more cannot hurt.
296 if (__reclaimed > 1024)
297 {
298 __bin._M_used[__thread_id] -= __reclaimed;
299 __atomic_add(&__reclaimed_base[__thread_id], -__reclaimed);
300 }
301
302 if (__remove >= __net_used)
303 __remove -= __net_used;
304 else
305 __remove = 0;
306 if (__remove > __limit && __remove > __bin._M_free[__thread_id])
307 {
308 _Block_record* __first = __bin._M_first[__thread_id];
309 _Block_record* __tmp = __first;
310 __remove /= __options._M_freelist_headroom;
311 const size_t __removed = __remove;
312 while (--__remove > 0)
313 __tmp = __tmp->_M_next;
314 __bin._M_first[__thread_id] = __tmp->_M_next;
315 __bin._M_free[__thread_id] -= __removed;
316
317 __gthread_mutex_lock(__bin._M_mutex);
318 __tmp->_M_next = __bin._M_first[0];
319 __bin._M_first[0] = __first;
320 __bin._M_free[0] += __removed;
321 __gthread_mutex_unlock(__bin._M_mutex);
322 }
323
324 // Return this block to our list and update counters and
325 // owner id as needed.
326 if (__block->_M_thread_id == __thread_id)
327 --__bin._M_used[__thread_id];
328 else
329 __atomic_add(&__reclaimed_base[__block->_M_thread_id], 1);
330
331 __block->_M_next = __bin._M_first[__thread_id];
332 __bin._M_first[__thread_id] = __block;
333
334 ++__bin._M_free[__thread_id];
335 }
336 else
337 {
338 // Not using threads, so single threaded application - return
339 // to global pool.
340 __block->_M_next = __bin._M_first[0];
341 __bin._M_first[0] = __block;
342 }
343 }
344
345 char*
346 __pool<true>::_M_reserve_block(size_t __bytes, const size_t __thread_id)
347 {
348 // Round up to power of 2 and figure out which bin to use.
349 const size_t __which = _M_binmap[__bytes];
350 const _Tune& __options = _M_get_options();
351 const size_t __bin_size = ((__options._M_min_bin << __which)
352 + __options._M_align);
353 size_t __block_count = __options._M_chunk_size - sizeof(_Block_address);
354 __block_count /= __bin_size;
355
356 // Are we using threads?
357 // - Yes, check if there are free blocks on the global
358 // list. If so, grab up to __block_count blocks in one
359 // lock and change ownership. If the global list is
360 // empty, we allocate a new chunk and add those blocks
361 // directly to our own freelist (with us as owner).
362 // - No, all operations are made directly to global pool 0
363 // no need to lock or change ownership but check for free
364 // blocks on global list (and if not add new ones) and
365 // get the first one.
366 _Bin_record& __bin = _M_bin[__which];
367 _Block_record* __block = 0;
368 if (__gthread_active_p())
369 {
370 // Resync the _M_used counters.
371 const size_t __max_threads = __options._M_max_threads + 1;
372 _Atomic_word* const __reclaimed_base =
373 reinterpret_cast<_Atomic_word*>(__bin._M_used + __max_threads);
374 const _Atomic_word __reclaimed = __reclaimed_base[__thread_id];
375 __bin._M_used[__thread_id] -= __reclaimed;
376 __atomic_add(&__reclaimed_base[__thread_id], -__reclaimed);
377
378 __gthread_mutex_lock(__bin._M_mutex);
379 if (__bin._M_first[0] == 0)
380 {
381 void* __v = ::operator new(__options._M_chunk_size);
382 _Block_address* __address = static_cast<_Block_address*>(__v);
383 __address->_M_initial = __v;
384 __address->_M_next = __bin._M_address;
385 __bin._M_address = __address;
386 __gthread_mutex_unlock(__bin._M_mutex);
387
388 // No need to hold the lock when we are adding a whole
389 // chunk to our own list.
390 char* __c = static_cast<char*>(__v) + sizeof(_Block_address);
391 __block = reinterpret_cast<_Block_record*>(__c);
392 __bin._M_free[__thread_id] = __block_count;
393 __bin._M_first[__thread_id] = __block;
394 while (--__block_count > 0)
395 {
396 __c += __bin_size;
397 __block->_M_next = reinterpret_cast<_Block_record*>(__c);
398 __block = __block->_M_next;
399 }
400 __block->_M_next = 0;
401 }
402 else
403 {
404 // Is the number of required blocks greater than or equal
405 // to the number that can be provided by the global free
406 // list?
407 __bin._M_first[__thread_id] = __bin._M_first[0];
408 if (__block_count >= __bin._M_free[0])
409 {
410 __bin._M_free[__thread_id] = __bin._M_free[0];
411 __bin._M_free[0] = 0;
412 __bin._M_first[0] = 0;
413 }
414 else
415 {
416 __bin._M_free[__thread_id] = __block_count;
417 __bin._M_free[0] -= __block_count;
418 __block = __bin._M_first[0];
419 while (--__block_count > 0)
420 __block = __block->_M_next;
421 __bin._M_first[0] = __block->_M_next;
422 __block->_M_next = 0;
423 }
424 __gthread_mutex_unlock(__bin._M_mutex);
425 }
426 }
427 else
428 {
429 void* __v = ::operator new(__options._M_chunk_size);
430 _Block_address* __address = static_cast<_Block_address*>(__v);
431 __address->_M_initial = __v;
432 __address->_M_next = __bin._M_address;
433 __bin._M_address = __address;
434
435 char* __c = static_cast<char*>(__v) + sizeof(_Block_address);
436 __block = reinterpret_cast<_Block_record*>(__c);
437 __bin._M_first[0] = __block;
438 while (--__block_count > 0)
439 {
440 __c += __bin_size;
441 __block->_M_next = reinterpret_cast<_Block_record*>(__c);
442 __block = __block->_M_next;
443 }
444 __block->_M_next = 0;
445 }
446
447 __block = __bin._M_first[__thread_id];
448 __bin._M_first[__thread_id] = __block->_M_next;
449
450 if (__gthread_active_p())
451 {
452 __block->_M_thread_id = __thread_id;
453 --__bin._M_free[__thread_id];
454 ++__bin._M_used[__thread_id];
455 }
456
457 // NB: For alignment reasons, we can't use the first _M_align
458 // bytes, even when sizeof(_Block_record) < _M_align.
459 return reinterpret_cast<char*>(__block) + __options._M_align;
460 }
461
462 void
463 __pool<true>::_M_initialize()
464 {
465 // _M_force_new must not change after the first allocate(),
466 // which in turn calls this method, so if it's false, it's false
467 // forever and we don't need to return here ever again.
468 if (_M_options._M_force_new)
469 {
470 _M_init = true;
471 return;
472 }
473
474 // Create the bins.
475 // Calculate the number of bins required based on _M_max_bytes.
476 // _M_bin_size is statically-initialized to one.
477 size_t __bin_size = _M_options._M_min_bin;
478 while (_M_options._M_max_bytes > __bin_size)
479 {
480 __bin_size <<= 1;
481 ++_M_bin_size;
482 }
483
484 // Setup the bin map for quick lookup of the relevant bin.
485 const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type);
486 _M_binmap = static_cast<_Binmap_type*>(::operator new(__j));
487 _Binmap_type* __bp = _M_binmap;
488 _Binmap_type __bin_max = _M_options._M_min_bin;
489 _Binmap_type __bint = 0;
490 for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct)
491 {
492 if (__ct > __bin_max)
493 {
494 __bin_max <<= 1;
495 ++__bint;
496 }
497 *__bp++ = __bint;
498 }
499
500 // Initialize _M_bin and its members.
501 void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size);
502 _M_bin = static_cast<_Bin_record*>(__v);
503
504 // If __gthread_active_p() create and initialize the list of
505 // free thread ids. Single threaded applications use thread id 0
506 // directly and have no need for this.
507 if (__gthread_active_p())
508 {
509 __freelist& freelist = get_freelist();
510 {
511 __gnu_cxx::__scoped_lock sentry(get_freelist_mutex());
512
513 if (!freelist._M_thread_freelist_array
514 || freelist._M_max_threads < _M_options._M_max_threads)
515 {
516 const size_t __k = sizeof(_Thread_record)
517 * _M_options._M_max_threads;
518 __v = ::operator new(__k);
519 _M_thread_freelist = static_cast<_Thread_record*>(__v);
520
521 // NOTE! The first assignable thread id is 1 since the
522 // global pool uses id 0
523 size_t __i;
524 for (__i = 1; __i < _M_options._M_max_threads; ++__i)
525 {
526 _Thread_record& __tr = _M_thread_freelist[__i - 1];
527 __tr._M_next = &_M_thread_freelist[__i];
528 __tr._M_id = __i;
529 }
530
531 // Set last record.
532 _M_thread_freelist[__i - 1]._M_next = 0;
533 _M_thread_freelist[__i - 1]._M_id = __i;
534
535 if (!freelist._M_thread_freelist_array)
536 {
537 // Initialize per thread key to hold pointer to
538 // _M_thread_freelist.
539 __gthread_key_create(&freelist._M_key,
540 ::_M_destroy_thread_key);
541 freelist._M_thread_freelist = _M_thread_freelist;
542 }
543 else
544 {
545 _Thread_record* _M_old_freelist
546 = freelist._M_thread_freelist;
547 _Thread_record* _M_old_array
548 = freelist._M_thread_freelist_array;
549 freelist._M_thread_freelist
550 = &_M_thread_freelist[_M_old_freelist - _M_old_array];
551 while (_M_old_freelist)
552 {
553 size_t next_id;
554 if (_M_old_freelist->_M_next)
555 next_id = _M_old_freelist->_M_next - _M_old_array;
556 else
557 next_id = freelist._M_max_threads;
558 _M_thread_freelist[_M_old_freelist->_M_id - 1]._M_next
559 = &_M_thread_freelist[next_id];
560 _M_old_freelist = _M_old_freelist->_M_next;
561 }
562 ::operator delete(static_cast<void*>(_M_old_array));
563 }
564 freelist._M_thread_freelist_array = _M_thread_freelist;
565 freelist._M_max_threads = _M_options._M_max_threads;
566 }
567 }
568
569 const size_t __max_threads = _M_options._M_max_threads + 1;
570 for (size_t __n = 0; __n < _M_bin_size; ++__n)
571 {
572 _Bin_record& __bin = _M_bin[__n];
573 __v = ::operator new(sizeof(_Block_record*) * __max_threads);
574 std::memset(__v, 0, sizeof(_Block_record*) * __max_threads);
575 __bin._M_first = static_cast<_Block_record**>(__v);
576
577 __bin._M_address = 0;
578
579 __v = ::operator new(sizeof(size_t) * __max_threads);
580 std::memset(__v, 0, sizeof(size_t) * __max_threads);
581
582 __bin._M_free = static_cast<size_t*>(__v);
583
584 __v = ::operator new(sizeof(size_t) * __max_threads
585 + sizeof(_Atomic_word) * __max_threads);
586 std::memset(__v, 0, (sizeof(size_t) * __max_threads
587 + sizeof(_Atomic_word) * __max_threads));
588 __bin._M_used = static_cast<size_t*>(__v);
589
590 __v = ::operator new(sizeof(__gthread_mutex_t));
591 __bin._M_mutex = static_cast<__gthread_mutex_t*>(__v);
592
593 #ifdef __GTHREAD_MUTEX_INIT
594 {
595 // Do not copy a POSIX/gthr mutex once in use.
596 __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
597 *__bin._M_mutex = __tmp;
598 }
599 #else
600 { __GTHREAD_MUTEX_INIT_FUNCTION(__bin._M_mutex); }
601 #endif
602 }
603 }
604 else
605 {
606 for (size_t __n = 0; __n < _M_bin_size; ++__n)
607 {
608 _Bin_record& __bin = _M_bin[__n];
609 __v = ::operator new(sizeof(_Block_record*));
610 __bin._M_first = static_cast<_Block_record**>(__v);
611 __bin._M_first[0] = 0;
612 __bin._M_address = 0;
613 }
614 }
615 _M_init = true;
616 }
617
618 size_t
619 __pool<true>::_M_get_thread_id()
620 {
621 // If we have thread support and it's active we check the thread
622 // key value and return its id or if it's not set we take the
623 // first record from _M_thread_freelist and sets the key and
624 // returns its id.
625 if (__gthread_active_p())
626 {
627 __freelist& freelist = get_freelist();
628 void* v = __gthread_getspecific(freelist._M_key);
629 size_t _M_id = (size_t)v;
630 if (_M_id == 0)
631 {
632 {
633 __gnu_cxx::__scoped_lock sentry(get_freelist_mutex());
634 if (freelist._M_thread_freelist)
635 {
636 _M_id = freelist._M_thread_freelist->_M_id;
637 freelist._M_thread_freelist
638 = freelist._M_thread_freelist->_M_next;
639 }
640 }
641
642 __gthread_setspecific(freelist._M_key, (void*)_M_id);
643 }
644 return _M_id >= _M_options._M_max_threads ? 0 : _M_id;
645 }
646
647 // Otherwise (no thread support or inactive) all requests are
648 // served from the global pool 0.
649 return 0;
650 }
651
652 // XXX GLIBCXX_ABI Deprecated
653 void
654 __pool<true>::_M_destroy_thread_key(void*) throw () { }
655
656 // XXX GLIBCXX_ABI Deprecated
657 void
658 __pool<true>::_M_initialize(__destroy_handler)
659 {
660 // _M_force_new must not change after the first allocate(),
661 // which in turn calls this method, so if it's false, it's false
662 // forever and we don't need to return here ever again.
663 if (_M_options._M_force_new)
664 {
665 _M_init = true;
666 return;
667 }
668
669 // Create the bins.
670 // Calculate the number of bins required based on _M_max_bytes.
671 // _M_bin_size is statically-initialized to one.
672 size_t __bin_size = _M_options._M_min_bin;
673 while (_M_options._M_max_bytes > __bin_size)
674 {
675 __bin_size <<= 1;
676 ++_M_bin_size;
677 }
678
679 // Setup the bin map for quick lookup of the relevant bin.
680 const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type);
681 _M_binmap = static_cast<_Binmap_type*>(::operator new(__j));
682 _Binmap_type* __bp = _M_binmap;
683 _Binmap_type __bin_max = _M_options._M_min_bin;
684 _Binmap_type __bint = 0;
685 for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct)
686 {
687 if (__ct > __bin_max)
688 {
689 __bin_max <<= 1;
690 ++__bint;
691 }
692 *__bp++ = __bint;
693 }
694
695 // Initialize _M_bin and its members.
696 void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size);
697 _M_bin = static_cast<_Bin_record*>(__v);
698
699 // If __gthread_active_p() create and initialize the list of
700 // free thread ids. Single threaded applications use thread id 0
701 // directly and have no need for this.
702 if (__gthread_active_p())
703 {
704 __freelist& freelist = get_freelist();
705 {
706 __gnu_cxx::__scoped_lock sentry(get_freelist_mutex());
707
708 if (!freelist._M_thread_freelist_array
709 || freelist._M_max_threads < _M_options._M_max_threads)
710 {
711 const size_t __k = sizeof(_Thread_record)
712 * _M_options._M_max_threads;
713 __v = ::operator new(__k);
714 _M_thread_freelist = static_cast<_Thread_record*>(__v);
715
716 // NOTE! The first assignable thread id is 1 since the
717 // global pool uses id 0
718 size_t __i;
719 for (__i = 1; __i < _M_options._M_max_threads; ++__i)
720 {
721 _Thread_record& __tr = _M_thread_freelist[__i - 1];
722 __tr._M_next = &_M_thread_freelist[__i];
723 __tr._M_id = __i;
724 }
725
726 // Set last record.
727 _M_thread_freelist[__i - 1]._M_next = 0;
728 _M_thread_freelist[__i - 1]._M_id = __i;
729
730 if (!freelist._M_thread_freelist_array)
731 {
732 // Initialize per thread key to hold pointer to
733 // _M_thread_freelist.
734 __gthread_key_create(&freelist._M_key,
735 ::_M_destroy_thread_key);
736 freelist._M_thread_freelist = _M_thread_freelist;
737 }
738 else
739 {
740 _Thread_record* _M_old_freelist
741 = freelist._M_thread_freelist;
742 _Thread_record* _M_old_array
743 = freelist._M_thread_freelist_array;
744 freelist._M_thread_freelist
745 = &_M_thread_freelist[_M_old_freelist - _M_old_array];
746 while (_M_old_freelist)
747 {
748 size_t next_id;
749 if (_M_old_freelist->_M_next)
750 next_id = _M_old_freelist->_M_next - _M_old_array;
751 else
752 next_id = freelist._M_max_threads;
753 _M_thread_freelist[_M_old_freelist->_M_id - 1]._M_next
754 = &_M_thread_freelist[next_id];
755 _M_old_freelist = _M_old_freelist->_M_next;
756 }
757 ::operator delete(static_cast<void*>(_M_old_array));
758 }
759 freelist._M_thread_freelist_array = _M_thread_freelist;
760 freelist._M_max_threads = _M_options._M_max_threads;
761 }
762 }
763
764 const size_t __max_threads = _M_options._M_max_threads + 1;
765 for (size_t __n = 0; __n < _M_bin_size; ++__n)
766 {
767 _Bin_record& __bin = _M_bin[__n];
768 __v = ::operator new(sizeof(_Block_record*) * __max_threads);
769 std::memset(__v, 0, sizeof(_Block_record*) * __max_threads);
770 __bin._M_first = static_cast<_Block_record**>(__v);
771
772 __bin._M_address = 0;
773
774 __v = ::operator new(sizeof(size_t) * __max_threads);
775 std::memset(__v, 0, sizeof(size_t) * __max_threads);
776 __bin._M_free = static_cast<size_t*>(__v);
777
778 __v = ::operator new(sizeof(size_t) * __max_threads +
779 sizeof(_Atomic_word) * __max_threads);
780 std::memset(__v, 0, (sizeof(size_t) * __max_threads
781 + sizeof(_Atomic_word) * __max_threads));
782 __bin._M_used = static_cast<size_t*>(__v);
783
784 __v = ::operator new(sizeof(__gthread_mutex_t));
785 __bin._M_mutex = static_cast<__gthread_mutex_t*>(__v);
786
787 #ifdef __GTHREAD_MUTEX_INIT
788 {
789 // Do not copy a POSIX/gthr mutex once in use.
790 __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
791 *__bin._M_mutex = __tmp;
792 }
793 #else
794 { __GTHREAD_MUTEX_INIT_FUNCTION(__bin._M_mutex); }
795 #endif
796 }
797 }
798 else
799 {
800 for (size_t __n = 0; __n < _M_bin_size; ++__n)
801 {
802 _Bin_record& __bin = _M_bin[__n];
803 __v = ::operator new(sizeof(_Block_record*));
804 __bin._M_first = static_cast<_Block_record**>(__v);
805 __bin._M_first[0] = 0;
806 __bin._M_address = 0;
807 }
808 }
809 _M_init = true;
810 }
811 #endif
812
813 // Instantiations.
814 template class __mt_alloc<char>;
815 template class __mt_alloc<wchar_t>;
816
817 _GLIBCXX_END_NAMESPACE_VERSION
818 } // namespace