Import gl_program_parameter and gl_program_parameter_list types from Mesa
[mesa.git] / list.h
1 /*
2 * Copyright © 2008, 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file list.h
26 * \brief Doubly-linked list abstract container type.
27 *
28 * Each doubly-linked list has a sentinal head and tail node. These nodes
29 * contain no data. The head sentinal can be identified by its \c prev
30 * pointer being \c NULL. The tail sentinal can be identified by its
31 * \c next pointer being \c NULL.
32 *
33 * A list is empty if either the head sentinal's \c next pointer points to the
34 * tail sentinal or the tail sentinal's \c prev poiner points to the head
35 * sentinal.
36 *
37 * Instead of tracking two separate \c node structures and a \c list structure
38 * that points to them, the sentinal nodes are in a single structure. Noting
39 * that each sentinal node always has one \c NULL pointer, the \c NULL
40 * pointers occupy the same memory location. In the \c list structure
41 * contains a the following:
42 *
43 * - A \c head pointer that represents the \c next pointer of the
44 * head sentinal node.
45 * - A \c tail pointer that represents the \c prev pointer of the head
46 * sentinal node and the \c next pointer of the tail sentinal node. This
47 * pointer is \b always \c NULL.
48 * - A \c tail_prev pointer that represents the \c prev pointer of the
49 * tail sentinal node.
50 *
51 * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL,
52 * the list is empty.
53 *
54 * To anyone familiar with "exec lists" on the Amiga, this structure should
55 * be immediately recognizable. See the following link for the original Amiga
56 * operating system documentation on the subject.
57 *
58 * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html
59 *
60 * \author Ian Romanick <ian.d.romanick@intel.com>
61 */
62
63 #pragma once
64 #ifndef LIST_CONTAINER_H
65 #define LIST_CONTAINER_H
66
67 #ifndef __cplusplus
68 #include <stddef.h>
69 #endif
70 #include <assert.h>
71
72 struct exec_node {
73 struct exec_node *next;
74 struct exec_node *prev;
75
76 #ifdef __cplusplus
77 exec_node() : next(NULL), prev(NULL)
78 {
79 /* empty */
80 }
81
82 const exec_node *get_next() const
83 {
84 return next;
85 }
86
87 exec_node *get_next()
88 {
89 return next;
90 }
91
92 const exec_node *get_prev() const
93 {
94 return prev;
95 }
96
97 exec_node *get_prev()
98 {
99 return prev;
100 }
101
102 void remove()
103 {
104 next->prev = prev;
105 prev->next = next;
106 next = NULL;
107 prev = NULL;
108 }
109
110 /**
111 * Link a node with itself
112 *
113 * This creates a sort of degenerate list that is occasionally useful.
114 */
115 void self_link()
116 {
117 next = this;
118 prev = this;
119 }
120
121 /**
122 * Insert a node in the list after the current node
123 */
124 void insert_after(exec_node *after)
125 {
126 after->next = this->next;
127 after->prev = this;
128
129 this->next->prev = after;
130 this->next = after;
131 }
132 /**
133 * Insert a node in the list before the current node
134 */
135 void insert_before(exec_node *before)
136 {
137 before->next = this;
138 before->prev = this->prev;
139
140 this->prev->next = before;
141 this->prev = before;
142 }
143
144 /**
145 * Is this the sentinal at the tail of the list?
146 */
147 bool is_tail_sentinal() const
148 {
149 return this->next == NULL;
150 }
151
152 /**
153 * Is this the sentinal at the head of the list?
154 */
155 bool is_head_sentinal() const
156 {
157 return this->prev == NULL;
158 }
159 #endif
160 };
161
162
163 #ifdef __cplusplus
164 /* This macro will not work correctly if `t' uses virtual inheritance. If you
165 * are using virtual inheritance, you deserve a slow and painful death. Enjoy!
166 */
167 #define exec_list_offsetof(t, f, p) \
168 (((char *) &((t *) p)->f) - ((char *) p))
169 #else
170 #define exec_list_offsetof(t, f, p) offsetof(t, f)
171 #endif
172
173 /**
174 * Get a pointer to the structure containing an exec_node
175 *
176 * Given a pointer to an \c exec_node embedded in a structure, get a pointer to
177 * the containing structure.
178 *
179 * \param type Base type of the structure containing the node
180 * \param node Pointer to the \c exec_node
181 * \param field Name of the field in \c type that is the embedded \c exec_node
182 */
183 #define exec_node_data(type, node, field) \
184 ((type *) (((char *) node) - exec_list_offsetof(type, field, node)))
185
186 #ifdef __cplusplus
187 struct exec_node;
188
189 class iterator {
190 public:
191 void next()
192 {
193 }
194
195 void *get()
196 {
197 return NULL;
198 }
199
200 bool has_next() const
201 {
202 return false;
203 }
204 };
205
206 class exec_list_iterator : public iterator {
207 public:
208 exec_list_iterator(exec_node *n) : node(n), _next(n->next)
209 {
210 /* empty */
211 }
212
213 void next()
214 {
215 node = _next;
216 _next = node->next;
217 }
218
219 void remove()
220 {
221 node->remove();
222 }
223
224 exec_node *get()
225 {
226 return node;
227 }
228
229 bool has_next() const
230 {
231 return _next != NULL;
232 }
233
234 private:
235 exec_node *node;
236 exec_node *_next;
237 };
238
239 #define foreach_iter(iter_type, iter, container) \
240 for (iter_type iter = (container) . iterator(); iter.has_next(); iter.next())
241 #endif
242
243
244 struct exec_list {
245 struct exec_node *head;
246 struct exec_node *tail;
247 struct exec_node *tail_pred;
248
249 #ifdef __cplusplus
250 exec_list()
251 {
252 make_empty();
253 }
254
255 void make_empty()
256 {
257 head = (exec_node *) & tail;
258 tail = NULL;
259 tail_pred = (exec_node *) & head;
260 }
261
262 bool is_empty() const
263 {
264 /* There are three ways to test whether a list is empty or not.
265 *
266 * - Check to see if the \c head points to the \c tail.
267 * - Check to see if the \c tail_pred points to the \c head.
268 * - Check to see if the \c head is the sentinal node by test whether its
269 * \c next pointer is \c NULL.
270 *
271 * The first two methods tend to generate better code on modern systems
272 * because they save a pointer dereference.
273 */
274 return head == (exec_node *) &tail;
275 }
276
277 const exec_node *get_head() const
278 {
279 return !is_empty() ? head : NULL;
280 }
281
282 exec_node *get_head()
283 {
284 return !is_empty() ? head : NULL;
285 }
286
287 const exec_node *get_tail() const
288 {
289 return !is_empty() ? tail_pred : NULL;
290 }
291
292 exec_node *get_tail()
293 {
294 return !is_empty() ? tail_pred : NULL;
295 }
296
297 void push_head(exec_node *n)
298 {
299 n->next = head;
300 n->prev = (exec_node *) &head;
301
302 n->next->prev = n;
303 head = n;
304 }
305
306 void push_tail(exec_node *n)
307 {
308 n->next = (exec_node *) &tail;
309 n->prev = tail_pred;
310
311 n->prev->next = n;
312 tail_pred = n;
313 }
314
315 void push_degenerate_list_at_head(exec_node *n)
316 {
317 assert(n->prev->next == n);
318
319 n->prev->next = head;
320 head->prev = n->prev;
321 n->prev = (exec_node *) &head;
322 head = n;
323 }
324
325 /**
326 * Move all of the nodes from this list to the target list
327 */
328 void move_nodes_to(exec_list *target)
329 {
330 if (is_empty()) {
331 target->make_empty();
332 } else {
333 target->head = head;
334 target->tail = NULL;
335 target->tail_pred = tail_pred;
336
337 target->head->prev = (exec_node *) &target->head;
338 target->tail_pred->next = (exec_node *) &target->tail;
339
340 make_empty();
341 }
342 }
343
344 exec_list_iterator iterator()
345 {
346 return exec_list_iterator(head);
347 }
348
349 exec_list_iterator iterator() const
350 {
351 return exec_list_iterator((exec_node *) head);
352 }
353 #endif
354 };
355
356 #define foreach_list(__node, __list) \
357 for (exec_node * __node = (__list)->head \
358 ; (__node)->next != NULL \
359 ; (__node) = (__node)->next)
360
361 #define foreach_list_const(__node, __list) \
362 for (const exec_node * __node = (__list)->head \
363 ; (__node)->next != NULL \
364 ; (__node) = (__node)->next)
365
366 #define foreach_list_typed(__type, __node, __field, __list) \
367 for (__type * __node = \
368 exec_node_data(__type, (__list)->head, __field); \
369 (__node)->__field.next != NULL; \
370 (__node) = exec_node_data(__type, (__node)->__field.next, __field))
371
372 #define foreach_list_typed_const(__type, __node, __field, __list) \
373 for (const __type * __node = \
374 exec_node_data(__type, (__list)->head, __field); \
375 (__node)->__field.next != NULL; \
376 (__node) = exec_node_data(__type, (__node)->__field.next, __field))
377
378 #endif /* LIST_CONTAINER_H */