Add some variable declaration qualifier tests
[mesa.git] / list.h
1 /*
2 * Copyright © 2008, 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file list.h
26 * \brief Doubly-linked list abstract container type.
27 *
28 * Each doubly-linked list has a sentinal head and tail node. These nodes
29 * contain no data. The head sentinal can be identified by its \c prev
30 * pointer being \c NULL. The tail sentinal can be identified by its
31 * \c next pointer being \c NULL.
32 *
33 * A list is empty if either the head sentinal's \c next pointer points to the
34 * tail sentinal or the tail sentinal's \c prev poiner points to the head
35 * sentinal.
36 *
37 * Instead of tracking two separate \c node structures and a \c list structure
38 * that points to them, the sentinal nodes are in a single structure. Noting
39 * that each sentinal node always has one \c NULL pointer, the \c NULL
40 * pointers occupy the same memory location. In the \c list structure
41 * contains a the following:
42 *
43 * - A \c head pointer that represents the \c next pointer of the
44 * head sentinal node.
45 * - A \c tail pointer that represents the \c prev pointer of the head
46 * sentinal node and the \c next pointer of the tail sentinal node. This
47 * pointer is \b always \c NULL.
48 * - A \c tail_prev pointer that represents the \c prev pointer of the
49 * tail sentinal node.
50 *
51 * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL,
52 * the list is empty.
53 *
54 * To anyone familiar with "exec lists" on the Amiga, this structure should
55 * be immediately recognizable. See the following link for the original Amiga
56 * operating system documentation on the subject.
57 *
58 * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html
59 *
60 * \author Ian Romanick <ian.d.romanick@intel.com>
61 */
62
63 #pragma once
64 #ifndef LIST_CONTAINER_H
65 #define LIST_CONTAINER_H
66
67 #include <assert.h>
68
69 struct exec_node {
70 struct exec_node *next;
71 struct exec_node *prev;
72
73 #ifdef __cplusplus
74 exec_node() : next(NULL), prev(NULL)
75 {
76 /* empty */
77 }
78
79 const exec_node *get_next() const
80 {
81 return next;
82 }
83
84 exec_node *get_next()
85 {
86 return next;
87 }
88
89 const exec_node *get_prev() const
90 {
91 return prev;
92 }
93
94 exec_node *get_prev()
95 {
96 return prev;
97 }
98
99 void remove()
100 {
101 next->prev = prev;
102 prev->next = next;
103 next = NULL;
104 prev = NULL;
105 }
106
107 /**
108 * Link a node with itself
109 *
110 * This creates a sort of degenerate list that is occasionally useful.
111 */
112 void self_link()
113 {
114 next = this;
115 prev = this;
116 }
117
118 /**
119 * Insert a node in the list after the current node
120 */
121 void insert_after(exec_node *after)
122 {
123 after->next = this->next;
124 after->prev = this;
125
126 this->next->prev = after;
127 this->next = after;
128 }
129 #endif
130 };
131
132 #ifdef __cplusplus
133 struct exec_node;
134
135 class iterator {
136 public:
137 void next()
138 {
139 }
140
141 void *get()
142 {
143 return NULL;
144 }
145
146 bool has_next() const
147 {
148 return false;
149 }
150 };
151
152 class exec_list_iterator : public iterator {
153 public:
154 exec_list_iterator(exec_node *n) : node(n), _next(n->next)
155 {
156 /* empty */
157 }
158
159 void next()
160 {
161 node = _next;
162 _next = node->next;
163 }
164
165 void remove()
166 {
167 node->remove();
168 }
169
170 exec_node *get()
171 {
172 return node;
173 }
174
175 bool has_next() const
176 {
177 return _next != NULL;
178 }
179
180 private:
181 exec_node *node;
182 exec_node *_next;
183 };
184
185 #define foreach_iter(iter_type, iter, container) \
186 for (iter_type iter = (container) . iterator(); iter.has_next(); iter.next())
187 #endif
188
189
190 struct exec_list {
191 struct exec_node *head;
192 struct exec_node *tail;
193 struct exec_node *tail_pred;
194
195 #ifdef __cplusplus
196 exec_list()
197 {
198 make_empty();
199 }
200
201 void make_empty()
202 {
203 head = (exec_node *) & tail;
204 tail = NULL;
205 tail_pred = (exec_node *) & head;
206 }
207
208 bool is_empty() const
209 {
210 /* There are three ways to test whether a list is empty or not.
211 *
212 * - Check to see if the \c head points to the \c tail.
213 * - Check to see if the \c tail_pred points to the \c head.
214 * - Check to see if the \c head is the sentinal node by test whether its
215 * \c next pointer is \c NULL.
216 *
217 * The first two methods tend to generate better code on modern systems
218 * because they save a pointer dereference.
219 */
220 return head == (exec_node *) &tail;
221 }
222
223 const exec_node *get_head() const
224 {
225 return !is_empty() ? head : NULL;
226 }
227
228 exec_node *get_head()
229 {
230 return !is_empty() ? head : NULL;
231 }
232
233 const exec_node *get_tail() const
234 {
235 return !is_empty() ? tail_pred : NULL;
236 }
237
238 exec_node *get_tail()
239 {
240 return !is_empty() ? tail_pred : NULL;
241 }
242
243 void push_head(exec_node *n)
244 {
245 n->next = head;
246 n->prev = (exec_node *) &head;
247
248 n->next->prev = n;
249 head = n;
250 }
251
252 void push_tail(exec_node *n)
253 {
254 n->next = (exec_node *) &tail;
255 n->prev = tail_pred;
256
257 n->prev->next = n;
258 tail_pred = n;
259 }
260
261 void push_degenerate_list_at_head(exec_node *n)
262 {
263 assert(n->prev->next == n);
264
265 n->prev->next = head;
266 head->prev = n->prev;
267 n->prev = (exec_node *) &head;
268 head = n;
269 }
270
271 /**
272 * Move all of the nodes from this list to the target list
273 */
274 void move_nodes_to(exec_list *target)
275 {
276 target->head = head;
277 target->tail = NULL;
278 target->tail_pred = tail_pred;
279
280 target->head->prev = (exec_node *) &target->head;
281 target->tail_pred->next = (exec_node *) &target->tail;
282
283 make_empty();
284 }
285
286 exec_list_iterator iterator()
287 {
288 return exec_list_iterator(head);
289 }
290
291 exec_list_iterator iterator() const
292 {
293 return exec_list_iterator((exec_node *) head);
294 }
295 #endif
296 };
297
298 #endif /* LIST_CONTAINER_H */