Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / main / macros.h
1 /**
2 * \file macros.h
3 * A collection of useful macros.
4 */
5
6 /*
7 * Mesa 3-D graphics library
8 *
9 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice shall be included
19 * in all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
22 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
24 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
25 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
26 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 */
29
30
31 #ifndef MACROS_H
32 #define MACROS_H
33
34 #include "imports.h"
35
36
37 /**
38 * \name Integer / float conversion for colors, normals, etc.
39 */
40 /*@{*/
41
42 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
43 extern GLfloat _mesa_ubyte_to_float_color_tab[256];
44 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
45
46 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
47 #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
48
49
50 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
51 #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
52
53 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
54 #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
55
56
57 /** Convert GLbyte to GLfloat while preserving zero */
58 #define BYTE_TO_FLOATZ(B) ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B))
59
60
61 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
62 #define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
63
64 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
65 #define FLOAT_TO_BYTE_TEX(X) CLAMP( (GLint) (127.0F * (X)), -128, 127 )
66
67 /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
68 #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
69
70 /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
71 #define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F))
72
73
74 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
75 #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
76
77 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
78 #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
79
80 /** Convert GLshort to GLfloat while preserving zero */
81 #define SHORT_TO_FLOATZ(S) ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S))
82
83
84 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
85 #define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
86
87 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
88 #define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) )
89
90
91 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
92 #define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0)))
93
94 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
95 #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
96
97
98 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
99 #define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0)))
100
101 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
102 /* causes overflow:
103 #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
104 */
105 /* a close approximation: */
106 #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
107
108 /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
109 #define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) )
110
111
112 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
113 #define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
114
115 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
116 #define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) )
117
118
119 #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
120 #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
121 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
122 #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
123 #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
124
125
126 #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
127 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
128 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
129 #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
130 #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
131 #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
132 us = ( (GLushort) F_TO_I( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
133 #define CLAMPED_FLOAT_TO_USHORT(us, f) \
134 us = ( (GLushort) F_TO_I( (f) * 65535.0F) )
135
136 #define UNCLAMPED_FLOAT_TO_SHORT(s, f) \
137 s = ( (GLshort) F_TO_I( CLAMP((f), -1.0F, 1.0F) * 32767.0F) )
138
139 /***
140 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
141 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
142 ***/
143 #ifndef DEBUG
144 /* This function/macro is sensitive to precision. Test very carefully
145 * if you change it!
146 */
147 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, FLT) \
148 do { \
149 fi_type __tmp; \
150 __tmp.f = (FLT); \
151 if (__tmp.i < 0) \
152 UB = (GLubyte) 0; \
153 else if (__tmp.i >= IEEE_ONE) \
154 UB = (GLubyte) 255; \
155 else { \
156 __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
157 UB = (GLubyte) __tmp.i; \
158 } \
159 } while (0)
160 #define CLAMPED_FLOAT_TO_UBYTE(UB, FLT) \
161 do { \
162 fi_type __tmp; \
163 __tmp.f = (FLT) * (255.0F/256.0F) + 32768.0F; \
164 UB = (GLubyte) __tmp.i; \
165 } while (0)
166 #else
167 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
168 ub = ((GLubyte) F_TO_I(CLAMP((f), 0.0F, 1.0F) * 255.0F))
169 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
170 ub = ((GLubyte) F_TO_I((f) * 255.0F))
171 #endif
172
173 static inline GLfloat INT_AS_FLT(GLint i)
174 {
175 fi_type tmp;
176 tmp.i = i;
177 return tmp.f;
178 }
179
180 static inline GLfloat UINT_AS_FLT(GLuint u)
181 {
182 fi_type tmp;
183 tmp.u = u;
184 return tmp.f;
185 }
186
187 static inline unsigned FLT_AS_UINT(float f)
188 {
189 fi_type tmp;
190 tmp.f = f;
191 return tmp.u;
192 }
193
194 /**
195 * Convert a floating point value to an unsigned fixed point value.
196 *
197 * \param frac_bits The number of bits used to store the fractional part.
198 */
199 static inline uint32_t
200 U_FIXED(float value, uint32_t frac_bits)
201 {
202 value *= (1 << frac_bits);
203 return value < 0.0f ? 0 : (uint32_t) value;
204 }
205
206 /**
207 * Convert a floating point value to an signed fixed point value.
208 *
209 * \param frac_bits The number of bits used to store the fractional part.
210 */
211 static inline int32_t
212 S_FIXED(float value, uint32_t frac_bits)
213 {
214 return (int32_t) (value * (1 << frac_bits));
215 }
216 /*@}*/
217
218
219 /** Stepping a GLfloat pointer by a byte stride */
220 #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
221 /** Stepping a GLuint pointer by a byte stride */
222 #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
223 /** Stepping a GLubyte[4] pointer by a byte stride */
224 #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
225 /** Stepping a GLfloat[4] pointer by a byte stride */
226 #define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i))
227 /** Stepping a \p t pointer by a byte stride */
228 #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
229
230
231 /**********************************************************************/
232 /** \name 4-element vector operations */
233 /*@{*/
234
235 /** Zero */
236 #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
237
238 /** Test for equality */
239 #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
240 (a)[1] == (b)[1] && \
241 (a)[2] == (b)[2] && \
242 (a)[3] == (b)[3])
243
244 /** Test for equality (unsigned bytes) */
245 static inline GLboolean
246 TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4])
247 {
248 #if defined(__i386__)
249 return *((const GLuint *) a) == *((const GLuint *) b);
250 #else
251 return TEST_EQ_4V(a, b);
252 #endif
253 }
254
255
256 /** Copy a 4-element vector */
257 #define COPY_4V( DST, SRC ) \
258 do { \
259 (DST)[0] = (SRC)[0]; \
260 (DST)[1] = (SRC)[1]; \
261 (DST)[2] = (SRC)[2]; \
262 (DST)[3] = (SRC)[3]; \
263 } while (0)
264
265 /** Copy a 4-element unsigned byte vector */
266 static inline void
267 COPY_4UBV(GLubyte dst[4], const GLubyte src[4])
268 {
269 #if defined(__i386__)
270 *((GLuint *) dst) = *((GLuint *) src);
271 #else
272 /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
273 COPY_4V(dst, src);
274 #endif
275 }
276
277 /** Copy a 4-element float vector */
278 static inline void
279 COPY_4FV(GLfloat dst[4], const GLfloat src[4])
280 {
281 /* memcpy seems to be most efficient */
282 memcpy(dst, src, sizeof(GLfloat) * 4);
283 }
284
285 /** Copy \p SZ elements into a 4-element vector */
286 #define COPY_SZ_4V(DST, SZ, SRC) \
287 do { \
288 switch (SZ) { \
289 case 4: (DST)[3] = (SRC)[3]; \
290 case 3: (DST)[2] = (SRC)[2]; \
291 case 2: (DST)[1] = (SRC)[1]; \
292 case 1: (DST)[0] = (SRC)[0]; \
293 } \
294 } while(0)
295
296 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving
297 * default values to the remaining */
298 #define COPY_CLEAN_4V(DST, SZ, SRC) \
299 do { \
300 ASSIGN_4V( DST, 0, 0, 0, 1 ); \
301 COPY_SZ_4V( DST, SZ, SRC ); \
302 } while (0)
303
304 /** Subtraction */
305 #define SUB_4V( DST, SRCA, SRCB ) \
306 do { \
307 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
308 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
309 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
310 (DST)[3] = (SRCA)[3] - (SRCB)[3]; \
311 } while (0)
312
313 /** Addition */
314 #define ADD_4V( DST, SRCA, SRCB ) \
315 do { \
316 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
317 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
318 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
319 (DST)[3] = (SRCA)[3] + (SRCB)[3]; \
320 } while (0)
321
322 /** Element-wise multiplication */
323 #define SCALE_4V( DST, SRCA, SRCB ) \
324 do { \
325 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
326 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
327 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
328 (DST)[3] = (SRCA)[3] * (SRCB)[3]; \
329 } while (0)
330
331 /** In-place addition */
332 #define ACC_4V( DST, SRC ) \
333 do { \
334 (DST)[0] += (SRC)[0]; \
335 (DST)[1] += (SRC)[1]; \
336 (DST)[2] += (SRC)[2]; \
337 (DST)[3] += (SRC)[3]; \
338 } while (0)
339
340 /** Element-wise multiplication and addition */
341 #define ACC_SCALE_4V( DST, SRCA, SRCB ) \
342 do { \
343 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
344 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
345 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
346 (DST)[3] += (SRCA)[3] * (SRCB)[3]; \
347 } while (0)
348
349 /** In-place scalar multiplication and addition */
350 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
351 do { \
352 (DST)[0] += S * (SRCB)[0]; \
353 (DST)[1] += S * (SRCB)[1]; \
354 (DST)[2] += S * (SRCB)[2]; \
355 (DST)[3] += S * (SRCB)[3]; \
356 } while (0)
357
358 /** Scalar multiplication */
359 #define SCALE_SCALAR_4V( DST, S, SRCB ) \
360 do { \
361 (DST)[0] = S * (SRCB)[0]; \
362 (DST)[1] = S * (SRCB)[1]; \
363 (DST)[2] = S * (SRCB)[2]; \
364 (DST)[3] = S * (SRCB)[3]; \
365 } while (0)
366
367 /** In-place scalar multiplication */
368 #define SELF_SCALE_SCALAR_4V( DST, S ) \
369 do { \
370 (DST)[0] *= S; \
371 (DST)[1] *= S; \
372 (DST)[2] *= S; \
373 (DST)[3] *= S; \
374 } while (0)
375
376 /** Assignment */
377 #define ASSIGN_4V( V, V0, V1, V2, V3 ) \
378 do { \
379 V[0] = V0; \
380 V[1] = V1; \
381 V[2] = V2; \
382 V[3] = V3; \
383 } while(0)
384
385 /*@}*/
386
387
388 /**********************************************************************/
389 /** \name 3-element vector operations*/
390 /*@{*/
391
392 /** Zero */
393 #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
394
395 /** Test for equality */
396 #define TEST_EQ_3V(a,b) \
397 ((a)[0] == (b)[0] && \
398 (a)[1] == (b)[1] && \
399 (a)[2] == (b)[2])
400
401 /** Copy a 3-element vector */
402 #define COPY_3V( DST, SRC ) \
403 do { \
404 (DST)[0] = (SRC)[0]; \
405 (DST)[1] = (SRC)[1]; \
406 (DST)[2] = (SRC)[2]; \
407 } while (0)
408
409 /** Copy a 3-element vector with cast */
410 #define COPY_3V_CAST( DST, SRC, CAST ) \
411 do { \
412 (DST)[0] = (CAST)(SRC)[0]; \
413 (DST)[1] = (CAST)(SRC)[1]; \
414 (DST)[2] = (CAST)(SRC)[2]; \
415 } while (0)
416
417 /** Copy a 3-element float vector */
418 #define COPY_3FV( DST, SRC ) \
419 do { \
420 const GLfloat *_tmp = (SRC); \
421 (DST)[0] = _tmp[0]; \
422 (DST)[1] = _tmp[1]; \
423 (DST)[2] = _tmp[2]; \
424 } while (0)
425
426 /** Subtraction */
427 #define SUB_3V( DST, SRCA, SRCB ) \
428 do { \
429 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
430 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
431 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
432 } while (0)
433
434 /** Addition */
435 #define ADD_3V( DST, SRCA, SRCB ) \
436 do { \
437 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
438 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
439 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
440 } while (0)
441
442 /** In-place scalar multiplication */
443 #define SCALE_3V( DST, SRCA, SRCB ) \
444 do { \
445 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
446 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
447 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
448 } while (0)
449
450 /** In-place element-wise multiplication */
451 #define SELF_SCALE_3V( DST, SRC ) \
452 do { \
453 (DST)[0] *= (SRC)[0]; \
454 (DST)[1] *= (SRC)[1]; \
455 (DST)[2] *= (SRC)[2]; \
456 } while (0)
457
458 /** In-place addition */
459 #define ACC_3V( DST, SRC ) \
460 do { \
461 (DST)[0] += (SRC)[0]; \
462 (DST)[1] += (SRC)[1]; \
463 (DST)[2] += (SRC)[2]; \
464 } while (0)
465
466 /** Element-wise multiplication and addition */
467 #define ACC_SCALE_3V( DST, SRCA, SRCB ) \
468 do { \
469 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
470 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
471 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
472 } while (0)
473
474 /** Scalar multiplication */
475 #define SCALE_SCALAR_3V( DST, S, SRCB ) \
476 do { \
477 (DST)[0] = S * (SRCB)[0]; \
478 (DST)[1] = S * (SRCB)[1]; \
479 (DST)[2] = S * (SRCB)[2]; \
480 } while (0)
481
482 /** In-place scalar multiplication and addition */
483 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
484 do { \
485 (DST)[0] += S * (SRCB)[0]; \
486 (DST)[1] += S * (SRCB)[1]; \
487 (DST)[2] += S * (SRCB)[2]; \
488 } while (0)
489
490 /** In-place scalar multiplication */
491 #define SELF_SCALE_SCALAR_3V( DST, S ) \
492 do { \
493 (DST)[0] *= S; \
494 (DST)[1] *= S; \
495 (DST)[2] *= S; \
496 } while (0)
497
498 /** In-place scalar addition */
499 #define ACC_SCALAR_3V( DST, S ) \
500 do { \
501 (DST)[0] += S; \
502 (DST)[1] += S; \
503 (DST)[2] += S; \
504 } while (0)
505
506 /** Assignment */
507 #define ASSIGN_3V( V, V0, V1, V2 ) \
508 do { \
509 V[0] = V0; \
510 V[1] = V1; \
511 V[2] = V2; \
512 } while(0)
513
514 /*@}*/
515
516
517 /**********************************************************************/
518 /** \name 2-element vector operations*/
519 /*@{*/
520
521 /** Zero */
522 #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
523
524 /** Copy a 2-element vector */
525 #define COPY_2V( DST, SRC ) \
526 do { \
527 (DST)[0] = (SRC)[0]; \
528 (DST)[1] = (SRC)[1]; \
529 } while (0)
530
531 /** Copy a 2-element vector with cast */
532 #define COPY_2V_CAST( DST, SRC, CAST ) \
533 do { \
534 (DST)[0] = (CAST)(SRC)[0]; \
535 (DST)[1] = (CAST)(SRC)[1]; \
536 } while (0)
537
538 /** Copy a 2-element float vector */
539 #define COPY_2FV( DST, SRC ) \
540 do { \
541 const GLfloat *_tmp = (SRC); \
542 (DST)[0] = _tmp[0]; \
543 (DST)[1] = _tmp[1]; \
544 } while (0)
545
546 /** Subtraction */
547 #define SUB_2V( DST, SRCA, SRCB ) \
548 do { \
549 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
550 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
551 } while (0)
552
553 /** Addition */
554 #define ADD_2V( DST, SRCA, SRCB ) \
555 do { \
556 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
557 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
558 } while (0)
559
560 /** In-place scalar multiplication */
561 #define SCALE_2V( DST, SRCA, SRCB ) \
562 do { \
563 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
564 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
565 } while (0)
566
567 /** In-place addition */
568 #define ACC_2V( DST, SRC ) \
569 do { \
570 (DST)[0] += (SRC)[0]; \
571 (DST)[1] += (SRC)[1]; \
572 } while (0)
573
574 /** Element-wise multiplication and addition */
575 #define ACC_SCALE_2V( DST, SRCA, SRCB ) \
576 do { \
577 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
578 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
579 } while (0)
580
581 /** Scalar multiplication */
582 #define SCALE_SCALAR_2V( DST, S, SRCB ) \
583 do { \
584 (DST)[0] = S * (SRCB)[0]; \
585 (DST)[1] = S * (SRCB)[1]; \
586 } while (0)
587
588 /** In-place scalar multiplication and addition */
589 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
590 do { \
591 (DST)[0] += S * (SRCB)[0]; \
592 (DST)[1] += S * (SRCB)[1]; \
593 } while (0)
594
595 /** In-place scalar multiplication */
596 #define SELF_SCALE_SCALAR_2V( DST, S ) \
597 do { \
598 (DST)[0] *= S; \
599 (DST)[1] *= S; \
600 } while (0)
601
602 /** In-place scalar addition */
603 #define ACC_SCALAR_2V( DST, S ) \
604 do { \
605 (DST)[0] += S; \
606 (DST)[1] += S; \
607 } while (0)
608
609 /** Assign scalers to short vectors */
610 #define ASSIGN_2V( V, V0, V1 ) \
611 do { \
612 V[0] = V0; \
613 V[1] = V1; \
614 } while(0)
615
616 /*@}*/
617
618 /** Copy \p sz elements into a homegeneous (4-element) vector, giving
619 * default values to the remaining components.
620 * The default values are chosen based on \p type.
621 */
622 static inline void
623 COPY_CLEAN_4V_TYPE_AS_FLOAT(GLfloat dst[4], int sz, const GLfloat src[4],
624 GLenum type)
625 {
626 switch (type) {
627 case GL_FLOAT:
628 ASSIGN_4V(dst, 0, 0, 0, 1);
629 break;
630 case GL_INT:
631 ASSIGN_4V(dst, INT_AS_FLT(0), INT_AS_FLT(0),
632 INT_AS_FLT(0), INT_AS_FLT(1));
633 break;
634 case GL_UNSIGNED_INT:
635 ASSIGN_4V(dst, UINT_AS_FLT(0), UINT_AS_FLT(0),
636 UINT_AS_FLT(0), UINT_AS_FLT(1));
637 break;
638 default:
639 ASSIGN_4V(dst, 0.0f, 0.0f, 0.0f, 1.0f); /* silence warnings */
640 ASSERT(!"Unexpected type in COPY_CLEAN_4V_TYPE_AS_FLOAT macro");
641 }
642 COPY_SZ_4V(dst, sz, src);
643 }
644
645 /** \name Linear interpolation functions */
646 /*@{*/
647
648 static inline GLfloat
649 LINTERP(GLfloat t, GLfloat out, GLfloat in)
650 {
651 return out + t * (in - out);
652 }
653
654 static inline void
655 INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3])
656 {
657 dst[0] = LINTERP( t, out[0], in[0] );
658 dst[1] = LINTERP( t, out[1], in[1] );
659 dst[2] = LINTERP( t, out[2], in[2] );
660 }
661
662 static inline void
663 INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4])
664 {
665 dst[0] = LINTERP( t, out[0], in[0] );
666 dst[1] = LINTERP( t, out[1], in[1] );
667 dst[2] = LINTERP( t, out[2], in[2] );
668 dst[3] = LINTERP( t, out[3], in[3] );
669 }
670
671 /*@}*/
672
673
674
675 /** Clamp X to [MIN,MAX] */
676 #define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
677
678 /** Minimum of two values: */
679 #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
680
681 /** Maximum of two values: */
682 #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
683
684 /** Minimum and maximum of three values: */
685 #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
686 #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
687
688 static inline unsigned
689 minify(unsigned value, unsigned levels)
690 {
691 return MAX2(1, value >> levels);
692 }
693
694 /**
695 * Return true if the given value is a power of two.
696 *
697 * Note that this considers 0 a power of two.
698 */
699 static inline bool
700 is_power_of_two(unsigned value)
701 {
702 return (value & (value - 1)) == 0;
703 }
704
705 /**
706 * Align a value up to an alignment value
707 *
708 * If \c value is not already aligned to the requested alignment value, it
709 * will be rounded up.
710 *
711 * \param value Value to be rounded
712 * \param alignment Alignment value to be used. This must be a power of two.
713 *
714 * \sa ROUND_DOWN_TO()
715 */
716 #define ALIGN(value, alignment) (((value) + (alignment) - 1) & ~((alignment) - 1))
717
718 /**
719 * Align a value down to an alignment value
720 *
721 * If \c value is not already aligned to the requested alignment value, it
722 * will be rounded down.
723 *
724 * \param value Value to be rounded
725 * \param alignment Alignment value to be used. This must be a power of two.
726 *
727 * \sa ALIGN()
728 */
729 #define ROUND_DOWN_TO(value, alignment) ((value) & ~(alignment - 1))
730
731
732 /** Cross product of two 3-element vectors */
733 static inline void
734 CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3])
735 {
736 n[0] = u[1] * v[2] - u[2] * v[1];
737 n[1] = u[2] * v[0] - u[0] * v[2];
738 n[2] = u[0] * v[1] - u[1] * v[0];
739 }
740
741
742 /** Dot product of two 2-element vectors */
743 static inline GLfloat
744 DOT2(const GLfloat a[2], const GLfloat b[2])
745 {
746 return a[0] * b[0] + a[1] * b[1];
747 }
748
749 static inline GLfloat
750 DOT3(const GLfloat a[3], const GLfloat b[3])
751 {
752 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
753 }
754
755 static inline GLfloat
756 DOT4(const GLfloat a[4], const GLfloat b[4])
757 {
758 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
759 }
760
761
762 static inline GLfloat
763 LEN_SQUARED_3FV(const GLfloat v[3])
764 {
765 return DOT3(v, v);
766 }
767
768 static inline GLfloat
769 LEN_SQUARED_2FV(const GLfloat v[2])
770 {
771 return DOT2(v, v);
772 }
773
774
775 static inline GLfloat
776 LEN_3FV(const GLfloat v[3])
777 {
778 return sqrtf(LEN_SQUARED_3FV(v));
779 }
780
781 static inline GLfloat
782 LEN_2FV(const GLfloat v[2])
783 {
784 return sqrtf(LEN_SQUARED_2FV(v));
785 }
786
787
788 /* Normalize a 3-element vector to unit length. */
789 static inline void
790 NORMALIZE_3FV(GLfloat v[3])
791 {
792 GLfloat len = (GLfloat) LEN_SQUARED_3FV(v);
793 if (len) {
794 len = INV_SQRTF(len);
795 v[0] *= len;
796 v[1] *= len;
797 v[2] *= len;
798 }
799 }
800
801
802 /** Test two floats have opposite signs */
803 static inline GLboolean
804 DIFFERENT_SIGNS(GLfloat x, GLfloat y)
805 {
806 return signbit(x) != signbit(y);
807 }
808
809
810 /** Compute ceiling of integer quotient of A divided by B. */
811 #define CEILING( A, B ) ( (A) % (B) == 0 ? (A)/(B) : (A)/(B)+1 )
812
813
814 /** casts to silence warnings with some compilers */
815 #define ENUM_TO_INT(E) ((GLint)(E))
816 #define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E))
817 #define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E))
818 #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
819
820 /* Compute the size of an array */
821 #ifndef ARRAY_SIZE
822 # define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
823 #endif
824
825 /* Stringify */
826 #define STRINGIFY(x) #x
827
828 #endif