Added $equiv cell type
[yosys.git] / manual / CHAPTER_CellLib.tex
1
2 \chapter{Internal Cell Library}
3 \label{chapter:celllib}
4
5 Most of the passes in Yosys operate on netlists, i.e.~they only care about the RTLIL::Wire and RTLIL::Cell
6 objects in an RTLIL::Module. This chapter discusses the cell types used by Yosys to represent a behavioural
7 design internally.
8
9 This chapter is split in two parts. In the first part the internal RTL cells are covered. These cells
10 are used to represent the design on a coarse grain level. Like in the original HDL code on this level the
11 cells operate on vectors of signals and complex cells like adders exist. In the second part the internal
12 gate cells are covered. These cells are used to represent the design on a fine-grain gate-level. All cells
13 from this category operate on single bit signals.
14
15 \section{RTL Cells}
16
17 Most of the RTL cells closely resemble the operators available in HDLs such as
18 Verilog or VHDL. Therefore Verilog operators are used in the following sections
19 to define the behaviour of the RTL cells.
20
21 Note that all RTL cells have parameters indicating the size of inputs and outputs. When
22 passes modify RTL cells they must always keep the values of these parameters in sync with
23 the size of the signals connected to the inputs and outputs.
24
25 Simulation models for the RTL cells can be found in the file {\tt techlibs/common/simlib.v} in the Yosys
26 source tree.
27
28 \subsection{Unary Operators}
29
30 All unary RTL cells have one input port \B{A} and one output port \B{Y}. They also
31 have the following parameters:
32
33 \begin{itemize}
34 \item \B{A\_SIGNED} \\
35 Set to a non-zero value if the input \B{A} is signed and therefore should be sign-extended
36 when needed.
37
38 \item \B{A\_WIDTH} \\
39 The width of the input port \B{A}.
40
41 \item \B{Y\_WIDTH} \\
42 The width of the output port \B{Y}.
43 \end{itemize}
44
45 Table~\ref{tab:CellLib_unary} lists all cells for unary RTL operators.
46
47 \begin{table}[t!]
48 \hfil
49 \begin{tabular}{ll}
50 Verilog & Cell Type \\
51 \hline
52 \lstinline[language=Verilog]; Y = ~A ; & {\tt \$not} \\
53 \lstinline[language=Verilog]; Y = +A ; & {\tt \$pos} \\
54 \lstinline[language=Verilog]; Y = -A ; & {\tt \$neg} \\
55 \hline
56 \lstinline[language=Verilog]; Y = &A ; & {\tt \$reduce\_and} \\
57 \lstinline[language=Verilog]; Y = |A ; & {\tt \$reduce\_or} \\
58 \lstinline[language=Verilog]; Y = ^A ; & {\tt \$reduce\_xor} \\
59 \lstinline[language=Verilog]; Y = ~^A ; & {\tt \$reduce\_xnor} \\
60 \hline
61 \lstinline[language=Verilog]; Y = |A ; & {\tt \$reduce\_bool} \\
62 \lstinline[language=Verilog]; Y = !A ; & {\tt \$logic\_not}
63 \end{tabular}
64 \caption{Cell types for unary operators with their corresponding Verilog expressions.}
65 \label{tab:CellLib_unary}
66 \end{table}
67
68 Note that {\tt \$reduce\_or} and {\tt \$reduce\_bool} actually represent the same
69 logic function. But the HDL frontends generate them in different situations. A
70 {\tt \$reduce\_or} cell is generated when the prefix {\tt |} operator is being used. A
71 {\tt \$reduce\_bool} cell is generated when a bit vector is used as a condition in
72 an {\tt if}-statement or {\tt ?:}-expression.
73
74 \subsection{Binary Operators}
75
76 All binary RTL cells have two input ports \B{A} and \B{B} and one output port \B{Y}. They
77 also have the following parameters:
78
79 \begin{itemize}
80 \item \B{A\_SIGNED} \\
81 Set to a non-zero value if the input \B{A} is signed and therefore should be sign-extended
82 when needed.
83
84 \item \B{A\_WIDTH} \\
85 The width of the input port \B{A}.
86
87 \item \B{B\_SIGNED} \\
88 Set to a non-zero value if the input \B{B} is signed and therefore should be sign-extended
89 when needed.
90
91 \item \B{B\_WIDTH} \\
92 The width of the input port \B{B}.
93
94 \item \B{Y\_WIDTH} \\
95 The width of the output port \B{Y}.
96 \end{itemize}
97
98 Table~\ref{tab:CellLib_binary} lists all cells for binary RTL operators.
99
100 \subsection{Multiplexers}
101
102 Multiplexers are generated by the Verilog HDL frontend for {\tt
103 ?:}-expressions. Multiplexers are also generated by the {\tt proc} pass to map the decision trees
104 from RTLIL::Process objects to logic.
105
106 The simplest multiplexer cell type is {\tt \$mux}. Cells of this type have a \B{WIDTH} parameter
107 and data inputs \B{A} and \B{B} and a data ouput \B{Y}, all of the specified width. This cell also
108 has a single bit control input \B{S}. If \B{S} is 0 the value from the \B{A} input is sent to
109 the output, if it is 1 the value from the \B{B} input is sent to the output. So the {\tt \$mux}
110 cell implements the function \lstinline[language=Verilog]; Y = S ? B : A;.
111
112 The {\tt \$pmux} cell is used to multiplex between many inputs using a one-hot select signal. Cells
113 of this type have a \B{WIDTH} and a \B{S\_WIDTH} parameter and inputs \B{A}, \B{B}, and \B{S} and
114 an output \B{Y}. The \B{S} input is \B{S\_WIDTH} bits wide. The \B{A} input and the output are both
115 \B{WIDTH} bits wide and the \B{B} input is \B{WIDTH}*\B{S\_WIDTH} bits wide. When all bits of
116 \B{S} are zero, the value from \B{A} input is sent to the output. If the $n$'th bit from \B{S} is
117 set, the value $n$'th \B{WIDTH} bits wide slice of the \B{B} input is sent to the output. When more
118 than one bit from \B{S} is set the output is undefined. Cells of this type are used to model
119 ``parallel cases'' (defined by using the {\tt parallel\_case} attribute or detected by
120 an optimization).
121
122 Behavioural code with cascaded {\tt if-then-else}- and {\tt case}-statements
123 usually results in trees of multiplexer cells. Many passes (from various
124 optimizations to FSM extraction) heavily depend on these multiplexer trees to
125 understand dependencies between signals. Therefore optimizations should not
126 break these multiplexer trees (e.g.~by replacing a multiplexer between a
127 calculated signal and a constant zero with an {\tt \$and} gate).
128
129 \begin{table}[t!]
130 \hfil
131 \begin{tabular}[t]{ll}
132 Verilog & Cell Type \\
133 \hline
134 \lstinline[language=Verilog]; Y = A & B; & {\tt \$and} \\
135 \lstinline[language=Verilog]; Y = A | B; & {\tt \$or} \\
136 \lstinline[language=Verilog]; Y = A ^ B; & {\tt \$xor} \\
137 \lstinline[language=Verilog]; Y = A ~^ B; & {\tt \$xnor} \\
138 \hline
139 \lstinline[language=Verilog]; Y = A << B; & {\tt \$shl} \\
140 \lstinline[language=Verilog]; Y = A >> B; & {\tt \$shr} \\
141 \lstinline[language=Verilog]; Y = A <<< B; & {\tt \$sshl} \\
142 \lstinline[language=Verilog]; Y = A >>> B; & {\tt \$sshr} \\
143 \hline
144 \lstinline[language=Verilog]; Y = A && B; & {\tt \$logic\_and} \\
145 \lstinline[language=Verilog]; Y = A || B; & {\tt \$logic\_or} \\
146 \hline
147 \lstinline[language=Verilog]; Y = A === B; & {\tt \$eqx} \\
148 \lstinline[language=Verilog]; Y = A !== B; & {\tt \$nex} \\
149 \end{tabular}
150 \hfil
151 \begin{tabular}[t]{ll}
152 Verilog & Cell Type \\
153 \hline
154 \lstinline[language=Verilog]; Y = A < B; & {\tt \$lt} \\
155 \lstinline[language=Verilog]; Y = A <= B; & {\tt \$le} \\
156 \lstinline[language=Verilog]; Y = A == B; & {\tt \$eq} \\
157 \lstinline[language=Verilog]; Y = A != B; & {\tt \$ne} \\
158 \lstinline[language=Verilog]; Y = A >= B; & {\tt \$ge} \\
159 \lstinline[language=Verilog]; Y = A > B; & {\tt \$gt} \\
160 \hline
161 \lstinline[language=Verilog]; Y = A + B; & {\tt \$add} \\
162 \lstinline[language=Verilog]; Y = A - B; & {\tt \$sub} \\
163 \lstinline[language=Verilog]; Y = A * B; & {\tt \$mul} \\
164 \lstinline[language=Verilog]; Y = A / B; & {\tt \$div} \\
165 \lstinline[language=Verilog]; Y = A % B; & {\tt \$mod} \\
166 \lstinline[language=Verilog]; Y = A ** B; & {\tt \$pow} \\
167 \end{tabular}
168 \caption{Cell types for binary operators with their corresponding Verilog expressions.}
169 \label{tab:CellLib_binary}
170 \end{table}
171
172 \subsection{Registers}
173
174 D-Type Flip-Flops are represented by {\tt \$dff} cells. These cells have a clock port \B{CLK},
175 an input port \B{D} and an output port \B{Q}. The following parameters are available for \$dff
176 cells:
177
178 \begin{itemize}
179 \item \B{WIDTH} \\
180 The width of input \B{D} and output \B{Q}.
181
182 \item \B{CLK\_POLARITY} \\
183 Clock is active on the positive edge if this parameter has the value {\tt 1'b1} and on the negative
184 edge if this parameter is {\tt 1'b0}.
185 \end{itemize}
186
187 D-Type Flip-Flops with asynchronous resets are represented by {\tt \$adff} cells. As the {\tt \$dff}
188 cells they have \B{CLK}, \B{D} and \B{Q} ports. In addition they also have a single-bit \B{ARST}
189 input port for the reset pin and the following additional two parameters:
190
191 \begin{itemize}
192 \item \B{ARST\_POLARITY} \\
193 The asynchronous reset is high-active if this parameter has the value {\tt 1'b1} and low-active
194 if this parameter is {\tt 1'b0}.
195
196 \item \B{ARST\_VALUE} \\
197 The state of \B{Q} will be set to this value when the reset is active.
198 \end{itemize}
199
200 Note that the {\tt \$adff} cell can only be used when the reset value is constant.
201
202 \begin{sloppypar}
203 Usually these cells are generated by the {\tt proc} pass using the information
204 in the designs RTLIL::Process objects.
205 \end{sloppypar}
206
207 \begin{fixme}
208 Add information about {\tt \$sr} cells (set-reset flip-flops) and d-type latches.
209 \end{fixme}
210
211 \subsection{Memories}
212 \label{sec:memcells}
213
214 Memories are either represented using RTLIL::Memory objects and {\tt \$memrd} and {\tt \$memwr} cells
215 or simply by using {\tt \$mem} cells.
216
217 In the first alternative the RTLIL::Memory objects hold the general metadata for the memory (bit width,
218 size in number of words, etc.) and for each port a {\tt \$memrd} (read port) or {\tt \$memwr} (write port)
219 cell is created. Having individual cells for read and write ports has the advantage that they can be
220 consolidated using resource sharing passes. In some cases this drastically reduces the number of required
221 ports on the memory cell.
222
223 The {\tt \$memrd} cells have a clock input \B{CLK}, an address input \B{ADDR} and a data output
224 \B{DATA}. They also have the following parameters:
225
226 \begin{itemize}
227 \item \B{MEMID} \\
228 The name of the RTLIL::Memory object that is associated with this read port.
229
230 \item \B{ABITS} \\
231 The number of address bits (width of the \B{ADDR} input port).
232
233 \item \B{WIDTH} \\
234 The number of data bits (width of the \B{DATA} output port).
235
236 \item \B{CLK\_ENABLE} \\
237 When this parameter is non-zero, the clock is used. Otherwise this read port is asynchronous and
238 the \B{CLK} input is not used.
239
240 \item \B{CLK\_POLARITY} \\
241 Clock is active on the positive edge if this parameter has the value {\tt 1'b1} and on the negative
242 edge if this parameter is {\tt 1'b0}.
243
244 \item \B{TRANSPARENT} \\
245 If this parameter is set to {\tt 1'b1}, a read and write to the same address in the same cycle will
246 return the new value. Otherwise the old value is returned.
247 \end{itemize}
248
249 The {\tt \$memwr} cells have a clock input \B{CLK}, an enable input \B{EN} (one
250 enable bit for each data bit), an address input \B{ADDR} and a data input
251 \B{DATA}. They also have the following parameters:
252
253 \begin{itemize}
254 \item \B{MEMID} \\
255 The name of the RTLIL::Memory object that is associated with this read port.
256
257 \item \B{ABITS} \\
258 The number of address bits (width of the \B{ADDR} input port).
259
260 \item \B{WIDTH} \\
261 The number of data bits (width of the \B{DATA} output port).
262
263 \item \B{CLK\_ENABLE} \\
264 When this parameter is non-zero, the clock is used. Otherwise this read port is asynchronous and
265 the \B{CLK} input is not used.
266
267 \item \B{CLK\_POLARITY} \\
268 Clock is active on positive edge if this parameter has the value {\tt 1'b1} and on the negative
269 edge if this parameter is {\tt 1'b0}.
270
271 \item \B{PRIORITY} \\
272 The cell with the higher integer value in this parameter wins a write conflict.
273 \end{itemize}
274
275 The HDL frontend models a memory using RTLIL::Memory objects and asynchronous
276 {\tt \$memrd} and {\tt \$memwr} cells. The {\tt memory} pass (i.e.~its various sub-passes) migrates
277 {\tt \$dff} cells into the {\tt \$memrd} and {\tt \$memwr} cells making them synchronous, then
278 converts them to a single {\tt \$mem} cell and (optionally) maps this cell type
279 to {\tt \$dff} cells for the individual words and multiplexer-based address decoders for the read and
280 write interfaces. When the last step is disabled or not possible, a {\tt \$mem} cell is left in the design.
281
282 The {\tt \$mem} cell provides the following parameters:
283
284 \begin{itemize}
285 \item \B{MEMID} \\
286 The name of the original RTLIL::Memory object that became this {\tt \$mem} cell.
287
288 \item \B{SIZE} \\
289 The number of words in the memory.
290
291 \item \B{ABITS} \\
292 The number of address bits.
293
294 \item \B{WIDTH} \\
295 The number of data bits per word.
296
297 \item \B{RD\_PORTS} \\
298 The number of read ports on this memory cell.
299
300 \item \B{RD\_CLK\_ENABLE} \\
301 This parameter is \B{RD\_PORTS} bits wide, containing a clock enable bit for each read port.
302
303 \item \B{RD\_CLK\_POLARITY} \\
304 This parameter is \B{RD\_PORTS} bits wide, containing a clock polarity bit for each read port.
305
306 \item \B{RD\_TRANSPARENT} \\
307 This parameter is \B{RD\_PORTS} bits wide, containing a transparent bit for each read port.
308
309 \item \B{WR\_PORTS} \\
310 The number of write ports on this memory cell.
311
312 \item \B{WR\_CLK\_ENABLE} \\
313 This parameter is \B{WR\_PORTS} bits wide, containing a clock enable bit for each write port.
314
315 \item \B{WR\_CLK\_POLARITY} \\
316 This parameter is \B{WR\_PORTS} bits wide, containing a clock polarity bit for each write port.
317 \end{itemize}
318
319 The {\tt \$mem} cell has the following ports:
320
321 \begin{itemize}
322 \item \B{RD\_CLK} \\
323 This input is \B{RD\_PORTS} bits wide, containing all clock signals for the read ports.
324
325 \item \B{RD\_ADDR} \\
326 This input is \B{RD\_PORTS}*\B{ABITS} bits wide, containing all address signals for the read ports.
327
328 \item \B{RD\_DATA} \\
329 This input is \B{RD\_PORTS}*\B{WIDTH} bits wide, containing all data signals for the read ports.
330
331 \item \B{WR\_CLK} \\
332 This input is \B{WR\_PORTS} bits wide, containing all clock signals for the write ports.
333
334 \item \B{WR\_EN} \\
335 This input is \B{WR\_PORTS}*\B{WIDTH} bits wide, containing all enable signals for the write ports.
336
337 \item \B{WR\_ADDR} \\
338 This input is \B{WR\_PORTS}*\B{ABITS} bits wide, containing all address signals for the write ports.
339
340 \item \B{WR\_DATA} \\
341 This input is \B{WR\_PORTS}*\B{WIDTH} bits wide, containing all data signals for the write ports.
342 \end{itemize}
343
344 The {\tt techmap} pass can be used to manually map {\tt \$mem} cells to
345 specialized memory cells on the target architecture, such as block ram resources
346 on an FPGA.
347
348 \subsection{Finite State Machines}
349
350 \begin{fixme}
351 Add a brief description of the {\tt \$fsm} cell type.
352 \end{fixme}
353
354 \section{Gates}
355 \label{sec:celllib_gates}
356
357 For gate level logic networks, fixed function single bit cells are used that do
358 not provide any parameters.
359
360 Simulation models for these cells can be found in the file {\tt techlibs/common/simcells.v} in the Yosys
361 source tree.
362
363 \begin{table}[t]
364 \hfil
365 \begin{tabular}[t]{ll}
366 Verilog & Cell Type \\
367 \hline
368 \lstinline[language=Verilog]; Y = ~A; & {\tt \$\_NOT\_} \\
369 \lstinline[language=Verilog]; Y = A & B; & {\tt \$\_AND\_} \\
370 \lstinline[language=Verilog]; Y = A | B; & {\tt \$\_OR\_} \\
371 \lstinline[language=Verilog]; Y = A ^ B; & {\tt \$\_XOR\_} \\
372 \lstinline[language=Verilog]; Y = S ? B : A; & {\tt \$\_MUX\_} \\
373 \hline
374 \lstinline[language=Verilog]; always @(negedge C) Q <= D; & {\tt \$\_DFF\_N\_} \\
375 \lstinline[language=Verilog]; always @(posedge C) Q <= D; & {\tt \$\_DFF\_P\_} \\
376 \end{tabular}
377 \hfil
378 \begin{tabular}[t]{llll}
379 $ClkEdge$ & $RstLvl$ & $RstVal$ & Cell Type \\
380 \hline
381 \lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFF\_NN0\_} \\
382 \lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFF\_NN1\_} \\
383 \lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFF\_NP0\_} \\
384 \lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFF\_NP1\_} \\
385 \lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFF\_PN0\_} \\
386 \lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFF\_PN1\_} \\
387 \lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFF\_PP0\_} \\
388 \lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFF\_PP1\_} \\
389 \end{tabular}
390 \caption{Cell types for gate level logic networks}
391 \label{tab:CellLib_gates}
392 \end{table}
393
394 Table~\ref{tab:CellLib_gates} lists all cell types used for gate level logic. The cell types
395 {\tt \$\_NOT\_}, {\tt \$\_AND\_}, {\tt \$\_OR\_}, {\tt \$\_XOR\_} and {\tt \$\_MUX\_}
396 are used to model combinatorial logic. The cell types {\tt \$\_DFF\_N\_} and {\tt \$\_DFF\_P\_}
397 represent d-type flip-flops.
398
399 The cell types {\tt \$\_DFF\_NN0\_}, {\tt \$\_DFF\_NN1\_}, {\tt \$\_DFF\_NP0\_}, {\tt \$\_DFF\_NP1\_},
400 {\tt \$\_DFF\_PN0\_}, {\tt \$\_DFF\_PN1\_}, {\tt \$\_DFF\_PP0\_} and {\tt \$\_DFF\_PP1\_} implement
401 d-type flip-flops with asynchronous resets. The values in the table for these cell types relate to the
402 following verilog code template, where \lstinline[mathescape,language=Verilog];$RstEdge$; is \lstinline[language=Verilog];posedge;
403 if \lstinline[mathescape,language=Verilog];$RstLvl$; if \lstinline[language=Verilog];1;, and \lstinline[language=Verilog];negedge;
404 otherwise.
405
406 \begin{lstlisting}[mathescape,language=Verilog]
407 always @($ClkEdge$ C, $RstEdge$ R)
408 if (R == $RstLvl$)
409 Q <= $RstVa$l;
410 else
411 Q <= D;
412 \end{lstlisting}
413
414 In most cases gate level logic networks are created from RTL networks using the {\tt techmap} pass. The flip-flop cells
415 from the gate level logic network can be mapped to physical flip-flop cells from a Liberty file using the {\tt dfflibmap}
416 pass. The combinatorial logic cells can be mapped to physical cells from a Liberty file via ABC \citeweblink{ABC}
417 using the {\tt abc} pass.
418
419 \begin{fixme}
420 Add information about {\tt \$assert} and {\tt \$equiv} cells.
421 \end{fixme}
422
423 \begin{fixme}
424 Add information about {\tt \$slice} and {\tt \$concat} cells.
425 \end{fixme}
426
427 \begin{fixme}
428 Add information about {\tt \$alu}, {\tt \$macc}, {\tt \$fa}, and {\tt \$lcu} cells.
429 \end{fixme}
430
431 \begin{fixme}
432 Add information about {\tt \$dffe}, {\tt \$dffsr}, {\tt \$dlatch}, and {\tt \$dlatchsr} cells.
433 \end{fixme}
434
435 \begin{fixme}
436 Add information about {\tt \$\_DFFE\_??\_}, {\tt \$\_DFFSR\_???\_}, {\tt \$\_DLATCH\_?\_}, and {\tt \$\_DLATCHSR\_???\_} cells.
437 \end{fixme}
438
439 \begin{fixme}
440 Add information about {\tt \$\_NAND\_}, {\tt \$\_NOR\_}, {\tt \$\_XNOR\_}, {\tt \$\_AOI3\_}, {\tt \$\_OAI3\_}, {\tt \$\_AOI4\_}, and {\tt \$\_OAI4\_} cells.
441 \end{fixme}
442