f05bfc9f41bf3b97ad573986e276e2d1e3a2ed3c
[libreriscv.git] / openpower / sv / bitmanip.mdwn
1 [[!tag standards]]
2
3 # Implementation Log
4
5 * ternlogi <https://bugs.libre-soc.org/show_bug.cgi?id=745>
6 * grev <https://bugs.libre-soc.org/show_bug.cgi?id=755>
7 * GF2^M <https://bugs.libre-soc.org/show_bug.cgi?id=782>
8
9 # bitmanipulation
10
11 **DRAFT STATUS**
12
13 pseudocode: <https://libre-soc.org/openpower/isa/bitmanip/>
14
15 this extension amalgamates bitmanipulation primitives from many sources, including RISC-V bitmanip, Packed SIMD, AVX-512 and OpenPOWER VSX. Vectorisation and SIMD are removed: these are straight scalar (element) operations making them suitable for embedded applications.
16 Vectorisation Context is provided by [[openpower/sv]].
17
18 When combined with SV, scalar variants of bitmanip operations found in VSX are added so that VSX may be retired as "legacy" in the far future (10 to 20 years). Also, VSX is hundreds of opcodes, requires 128 bit pathways, and is wholly unsuited to low power or embedded scenarios.
19
20 ternlogv is experimental and is the only operation that may be considered a "Packed SIMD". It is added as a variant of the already well-justified ternlog operation (done in AVX512 as an immediate only) "because it looks fun". As it is based on the LUT4 concept it will allow accelerated emulation of FPGAs. Other vendors of ISAs are buying FPGA companies to achieve similar objectives.
21
22 general-purpose Galois Field 2^M operations are added so as to avoid huge custom opcode proliferation across many areas of Computer Science. however for convenience and also to avoid setup costs, some of the more common operations (clmul, crc32) are also added. The expectation is that these operations would all be covered by the same pipeline.
23
24 note that there are brownfield spaces below that could incorporate some of the set-before-first and other scalar operations listed in [[sv/vector_ops]], and
25 the [[sv/av_opcodes]] as well as [[sv/setvl]]
26
27 Useful resource:
28
29 * <https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders>
30 * <https://maths-people.anu.edu.au/~brent/pd/rpb232tr.pdf>
31
32 # summary
33
34 two major opcodes are needed
35
36 ternlog has its own major opcode
37
38 | 29.30 |31| name |
39 | ------ |--| --------- |
40 | 0 0 |Rc| ternlogi |
41 | 0 1 |sz| ternlogv |
42 | 1 iv | | grevlogi |
43
44 2nd major opcode for other bitmanip: minor opcode allocation
45
46 | 28.30 |31| name |
47 | ------ |--| --------- |
48 | -00 |0 | xpermi |
49 | -00 |1 | grevlog |
50 | -01 | | crternlog |
51 | 010 |Rc| bitmask |
52 | 011 | | gf/cl madd* |
53 | 110 |Rc| 1/2-op |
54 | 111 | | bmrevi |
55
56
57 1-op and variants
58
59 | dest | src1 | subop | op |
60 | ---- | ---- | ----- | -------- |
61 | RT | RA | .. | bmatflip |
62
63 2-op and variants
64
65 | dest | src1 | src2 | subop | op |
66 | ---- | ---- | ---- | ----- | -------- |
67 | RT | RA | RB | or | bmatflip |
68 | RT | RA | RB | xor | bmatflip |
69 | RT | RA | RB | | grev |
70 | RT | RA | RB | | clmul* |
71 | RT | RA | RB | | gorc |
72 | RT | RA | RB | shuf | shuffle |
73 | RT | RA | RB | unshuf| shuffle |
74 | RT | RA | RB | width | xperm |
75 | RT | RA | RB | type | av minmax |
76 | RT | RA | RB | | av abs avgadd |
77 | RT | RA | RB | type | vmask ops |
78 | RT | RA | RB | | |
79
80 3 ops
81
82 * grevlog
83 * GF mul-add
84 * bitmask-reverse
85
86 TODO: convert all instructions to use RT and not RS
87
88 | 0.5|6.8 | 9.11|12.14|15.17|18.20|21.28 | 29.30|31|name|
89 | -- | -- | --- | --- | --- |-----|----- | -----|--|----|
90 | NN | BT | BA | BB | BC |m0-2 | imm | 10 |m3|crternlog|
91
92 | 0.5|6.10|11.15|16.20 |21..25 | 26....30 |31| name |
93 | -- | -- | --- | --- | ----- | -------- |--| ------ |
94 | NN | RT | RA |itype/| im0-4 | im5-7 00 |0 | xpermi |
95 | NN | RT | RA | RB | im0-4 | im5-7 00 |1 | grevlog |
96 | NN | | | | | ..... 01 |0 | crternlog |
97 | NN | RT | RA | RB | RC | mode 010 |Rc| bitmask* |
98 | NN | RS | RA | RB | RC | 00 011 |0 | gfbmadd |
99 | NN | RS | RA | RB | RC | 00 011 |1 | gfbmaddsub |
100 | NN | RS | RA | RB | RC | 01 011 |0 | clmadd |
101 | NN | RS | RA | RB | RC | 01 011 |1 | clmaddsub |
102 | NN | RS | RA | RB | RC | 10 011 |0 | gfpmadd |
103 | NN | RS | RA | RB | RC | 10 011 |1 | gfpmaddsub |
104 | NN | RS | RA | RB | RC | 11 011 | | rsvd |
105 | NN | RT | RA | RB | sh0-4 | sh5 1 111 |Rc| bmrevi |
106
107 ops (note that av avg and abs as well as vec scalar mask
108 are included here [[sv/vector_ops]], and
109 the [[sv/av_opcodes]])
110
111 TODO: convert from RA, RB, and RC to correct field names of RT, RA, and RB, and
112 double check that instructions didn't need 3 inputs.
113
114 | 0.5|6.10|11.15|16.20| 21 | 22.23 | 24....30 |31| name |
115 | -- | -- | --- | --- | -- | ----- | -------- |--| ---- |
116 | NN | RS | me | sh | SH | ME 0 | nn00 110 |Rc| bmopsi |
117 | NN | RS | RB | sh | SH | 0 1 | nn00 110 |Rc| bmopsi |
118 | NN | RT | RA | RB | 1 | 00 | 0001 110 |Rc| cldiv |
119 | NN | RT | RA | RB | 1 | 01 | 0001 110 |Rc| clmod |
120 | NN | RT | RA | RB | 1 | 10 | 0001 110 |Rc| |
121 | NN | RT | RB | RB | 1 | 11 | 0001 110 |Rc| clinv |
122 | NN | RA | RB | RC | 0 | 00 | 0001 110 |Rc| vec sbfm |
123 | NN | RA | RB | RC | 0 | 01 | 0001 110 |Rc| vec sofm |
124 | NN | RA | RB | RC | 0 | 10 | 0001 110 |Rc| vec sifm |
125 | NN | RA | RB | RC | 0 | 11 | 0001 110 |Rc| vec cprop |
126 | NN | RT | RA | RB | 1 | itype | 0101 110 |Rc| xperm |
127 | NN | RA | RB | RC | 0 | itype | 0101 110 |Rc| av minmax |
128 | NN | RA | RB | RC | 1 | 00 | 0101 110 |Rc| av abss |
129 | NN | RA | RB | RC | 1 | 01 | 0101 110 |Rc| av absu|
130 | NN | RA | RB | | 1 | 10 | 0101 110 |Rc| av avgadd |
131 | NN | RA | RB | | 1 | 11 | 0101 110 |Rc| rsvd |
132 | NN | RA | RB | | | | 1001 110 |Rc| rsvd |
133 | NN | RA | RB | | | | 1101 110 |Rc| rsvd |
134 | NN | RA | RB | RC | 0 | 00 | 0010 110 |Rc| gorc |
135 | NN | RA | RB | sh | SH | 00 | 1010 110 |Rc| gorci |
136 | NN | RA | RB | RC | 0 | 00 | 0110 110 |Rc| gorcw |
137 | NN | RA | RB | sh | 0 | 00 | 1110 110 |Rc| gorcwi |
138 | NN | RA | RB | RC | 1 | 00 | 1110 110 |Rc| bmator |
139 | NN | RA | RB | RC | 0 | 01 | 0010 110 |Rc| grev |
140 | NN | RA | RB | RC | 1 | 01 | 0010 110 |Rc| clmul |
141 | NN | RA | RB | sh | SH | 01 | 1010 110 |Rc| grevi |
142 | NN | RA | RB | RC | 0 | 01 | 0110 110 |Rc| grevw |
143 | NN | RA | RB | sh | 0 | 01 | 1110 110 |Rc| grevwi |
144 | NN | RA | RB | RC | 1 | 01 | 1110 110 |Rc| bmatxor |
145 | NN | RA | RB | RC | | 10 | --10 110 |Rc| rsvd |
146 | NN | RA | RB | RC | 0 | 11 | 1110 110 |Rc| clmulr |
147 | NN | RA | RB | RC | 1 | 11 | 1110 110 |Rc| clmulh |
148 | NN | | | | | | --11 110 |Rc| setvl |
149
150 # ternlog bitops
151
152 Similar to FPGA LUTs: for every bit perform a lookup into a table using an 8bit immediate, or in another register.
153
154 Like the x86 AVX512F [vpternlogd/vpternlogq](https://www.felixcloutier.com/x86/vpternlogd:vpternlogq) instructions.
155
156 ## ternlogi
157
158 | 0.5|6.10|11.15|16.20| 21..28|29.30|31|
159 | -- | -- | --- | --- | ----- | --- |--|
160 | NN | RT | RA | RB | im0-7 | 00 |Rc|
161
162 lut3(imm, a, b, c):
163 idx = c << 2 | b << 1 | a
164 return imm[idx] # idx by LSB0 order
165
166 for i in range(64):
167 RT[i] = lut3(imm, RB[i], RA[i], RT[i])
168
169 ## ternlogv
170
171 also, another possible variant involving swizzle-like selection
172 and masking, this only requires 3 64 bit registers (RA, RS, RB) and
173 only 16 LUT3s.
174
175 Note however that unless XLEN matches sz, this instruction
176 is a Read-Modify-Write: RS must be read as a second operand
177 and all unmodified bits preserved. SVP64 may provide limited
178 alternative destination for RS from RS-as-source, but again
179 all unmodified bits must still be copied.
180
181 | 0.5|6.10|11.15|16.20|21.28 | 29.30 |31|
182 | -- | -- | --- | --- | ---- | ----- |--|
183 | NN | RS | RA | RB |idx0-3| 01 |sz|
184
185 SZ = (1+sz) * 8 # 8 or 16
186 raoff = MIN(XLEN, idx0 * SZ)
187 rboff = MIN(XLEN, idx1 * SZ)
188 rcoff = MIN(XLEN, idx2 * SZ)
189 rsoff = MIN(XLEN, idx3 * SZ)
190 imm = RB[0:8]
191 for i in range(MIN(XLEN, SZ)):
192 ra = RA[raoff:+i]
193 rb = RA[rboff+i]
194 rc = RA[rcoff+i]
195 res = lut3(imm, ra, rb, rc)
196 RS[rsoff+i] = res
197
198 ## ternlogcr
199
200 another mode selection would be CRs not Ints.
201
202 | 0.5|6.8 | 9.11|12.14|15.17|18.20|21.28 | 29.30|31|
203 | -- | -- | --- | --- | --- |-----|----- | -----|--|
204 | NN | BT | BA | BB | BC |m0-2 | imm | 10 |m3|
205
206 mask = m0-3,m4
207 for i in range(4):
208 if not mask[i] continue
209 crregs[BT][i] = lut3(imm,
210 crregs[BA][i],
211 crregs[BB][i],
212 crregs[BC][i])
213
214
215 # int min/max
216
217 required for
218 the [[sv/av_opcodes]]
219
220 signed and unsigned min/max for integer. this is sort-of partly synthesiseable in [[sv/svp64]] with pred-result as long as the dest reg is one of the sources, but not both signed and unsigned. when the dest is also one of the srces and the mv fails due to the CR bittest failing this will only overwrite the dest where the src is greater (or less).
221
222 signed/unsigned min/max gives more flexibility.
223
224 ```
225 uint_xlen_t min(uint_xlen_t rs1, uint_xlen_t rs2)
226 { return (int_xlen_t)rs1 < (int_xlen_t)rs2 ? rs1 : rs2;
227 }
228 uint_xlen_t max(uint_xlen_t rs1, uint_xlen_t rs2)
229 { return (int_xlen_t)rs1 > (int_xlen_t)rs2 ? rs1 : rs2;
230 }
231 uint_xlen_t minu(uint_xlen_t rs1, uint_xlen_t rs2)
232 { return rs1 < rs2 ? rs1 : rs2;
233 }
234 uint_xlen_t maxu(uint_xlen_t rs1, uint_xlen_t rs2)
235 { return rs1 > rs2 ? rs1 : rs2;
236 }
237 ```
238
239
240 ## cmix
241
242 based on RV bitmanip, covered by ternlog bitops
243
244 ```
245 uint_xlen_t cmix(uint_xlen_t RA, uint_xlen_t RB, uint_xlen_t RC) {
246 return (RA & RB) | (RC & ~RB);
247 }
248 ```
249
250
251 # bitmask set
252
253 based on RV bitmanip singlebit set, instruction format similar to shift
254 [[isa/fixedshift]]. bmext is actually covered already (shift-with-mask rldicl but only immediate version).
255 however bitmask-invert is not, and set/clr are not covered, although they can use the same Shift ALU.
256
257 bmext (RB) version is not the same as rldicl because bmext is a right shift by RC, where rldicl is a left rotate. for the immediate version this does not matter, so a bmexti is not required.
258 bmrev however there is no direct equivalent and consequently a bmrevi is required.
259
260 bmset (register for mask amount) is particularly useful for creating
261 predicate masks where the length is a dynamic runtime quantity.
262 bmset(RA=0, RB=0, RC=mask) will produce a run of ones of length "mask" in a single instruction without needing to initialise or depend on any other registers.
263
264 | 0.5|6.10|11.15|16.20|21.25| 26..30 |31| name |
265 | -- | -- | --- | --- | --- | ------- |--| ----- |
266 | NN | RS | RA | RB | RC | mode 010 |Rc| bm* |
267
268 Immediate-variant is an overwrite form:
269
270 | 0.5|6.10|11.15|16.20| 21 | 22.23 | 24....30 |31| name |
271 | -- | -- | --- | --- | -- | ----- | -------- |--| ---- |
272 | NN | RS | RB | sh | SH | itype | 1000 110 |Rc| bm*i |
273
274 ```
275 def MASK(x, y):
276 if x < y:
277 x = x+1
278 mask_a = ((1 << x) - 1) & ((1 << 64) - 1)
279 mask_b = ((1 << y) - 1) & ((1 << 64) - 1)
280 elif x == y:
281 return 1 << x
282 else:
283 x = x+1
284 mask_a = ((1 << x) - 1) & ((1 << 64) - 1)
285 mask_b = (~((1 << y) - 1)) & ((1 << 64) - 1)
286 return mask_a ^ mask_b
287
288
289 uint_xlen_t bmset(RS, RB, sh)
290 {
291 int shamt = RB & (XLEN - 1);
292 mask = (2<<sh)-1;
293 return RS | (mask << shamt);
294 }
295
296 uint_xlen_t bmclr(RS, RB, sh)
297 {
298 int shamt = RB & (XLEN - 1);
299 mask = (2<<sh)-1;
300 return RS & ~(mask << shamt);
301 }
302
303 uint_xlen_t bminv(RS, RB, sh)
304 {
305 int shamt = RB & (XLEN - 1);
306 mask = (2<<sh)-1;
307 return RS ^ (mask << shamt);
308 }
309
310 uint_xlen_t bmext(RS, RB, sh)
311 {
312 int shamt = RB & (XLEN - 1);
313 mask = (2<<sh)-1;
314 return mask & (RS >> shamt);
315 }
316 ```
317
318 bitmask extract with reverse. can be done by bit-order-inverting all of RB and getting bits of RB from the opposite end.
319
320 when RA is zero, no shift occurs. this makes bmextrev useful for
321 simply reversing all bits of a register.
322
323 ```
324 msb = ra[5:0];
325 rev[0:msb] = rb[msb:0];
326 rt = ZE(rev[msb:0]);
327
328 uint_xlen_t bmextrev(RA, RB, sh)
329 {
330 int shamt = XLEN-1;
331 if (RA != 0) shamt = (GPR(RA) & (XLEN - 1));
332 shamt = (XLEN-1)-shamt; # shift other end
333 bra = bitreverse(RB) # swap LSB-MSB
334 mask = (2<<sh)-1;
335 return mask & (bra >> shamt);
336 }
337 ```
338
339 | 0.5|6.10|11.15|16.20|21.26| 27..30 |31| name |
340 | -- | -- | --- | --- | --- | ------- |--| ------ |
341 | NN | RT | RA | RB | sh | 1 011 |Rc| bmrevi |
342
343
344 # grevlut
345
346 generalised reverse combined with a pair of LUT2s and allowing
347 a constant `0b0101...0101` when RA=0, and an option to invert
348 (including when RA=0, giving a constant 0b1010...1010 as the
349 initial value) provides a wide range of instructions
350 and a means to set regular 64 bit patterns in one
351 32 bit instruction.
352
353 the two LUT2s are applied left-half (when not swapping)
354 and right-half (when swapping) so as to allow a wider
355 range of options.
356
357 <img src="/openpower/sv/grevlut2x2.jpg" width=700 />
358
359 * A value of `0b11001010` for the immediate provides
360 the functionality of a standard "grev".
361 * `0b11101110` provides gorc
362
363 grevlut should be arranged so as to produce the constants
364 needed to put into bext (bitextract) so as in turn to
365 be able to emulate x86 pmovmask instructions <https://www.felixcloutier.com/x86/pmovmskb>.
366 This only requires 2 instructions (grevlut, bext).
367
368 Note that if the mask is required to be placed
369 directly into CR Fields (for use as CR Predicate
370 masks rather than a integer mask) then sv.ori
371 may be used instead, bearing in mind that sv.ori
372 is a 64-bit instruction, and `VL` must have been
373 set to the required length:
374
375 sv.ori./elwid=8 r10.v, r10.v, 0
376
377 The following settings provide the required mask constants:
378
379 | RA | RB | imm | iv | result |
380 | ------- | ------- | ---------- | -- | ---------- |
381 | 0x555.. | 0b10 | 0b01101100 | 0 | 0x111111... |
382 | 0x555.. | 0b110 | 0b01101100 | 0 | 0x010101... |
383 | 0x555.. | 0b1110 | 0b01101100 | 0 | 0x00010001... |
384 | 0x555.. | 0b10 | 0b11000110 | 1 | 0x88888... |
385 | 0x555.. | 0b110 | 0b11000110 | 1 | 0x808080... |
386 | 0x555.. | 0b1110 | 0b11000110 | 1 | 0x80008000... |
387
388 Better diagram showing the correct ordering of shamt (RB). A LUT2
389 is applied to all locations marked in red using the first 4
390 bits of the immediate, and a separate LUT2 applied to all
391 locations in green using the upper 4 bits of the immediate.
392
393 <img src="/openpower/sv/grevlut.png" width=700 />
394
395 demo code [[openpower/sv/grevlut.py]]
396
397 ```
398 lut2(imm, a, b):
399 idx = b << 1 | a
400 return imm[idx] # idx by LSB0 order
401
402 dorow(imm8, step_i, chunksize):
403 for j in 0 to 63:
404 if (j&chunk_size) == 0
405 imm = imm8[0..3]
406 else
407 imm = imm8[4..7]
408 step_o[j] = lut2(imm, step_i[j], step_i[j ^ chunk_size])
409 return step_o
410
411 uint64_t grevlut64(uint64_t RA, uint64_t RB, uint8 imm, bool iv)
412 {
413 uint64_t x = 0x5555_5555_5555_5555;
414 if (RA != 0) x = GPR(RA);
415 if (iv) x = ~x;
416 int shamt = RB & 63;
417 for i in 0 to 6
418 step = 1<<i
419 if (shamt & step) x = dorow(imm, x, step)
420 return x;
421 }
422
423 ```
424
425 | 0.5|6.10|11.15|16.20 |21..25 | 26....30 |31| name |
426 | -- | -- | --- | --- | ----- | -------- |--| ------ |
427 | NN | RT | RA | s0-4 | im0-4 | im5-7 1 iv |s5| grevlogi |
428 | NN | RT | RA | RB | im0-4 | im5-7 00 |1 | grevlog |
429
430
431 # grev
432
433 based on RV bitmanip, this is also known as a butterfly network. however
434 where a butterfly network allows setting of every crossbar setting in
435 every row and every column, generalised-reverse (grev) only allows
436 a per-row decision: every entry in the same row must either switch or
437 not-switch.
438
439 <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Butterfly_Network.jpg/474px-Butterfly_Network.jpg" />
440
441 ```
442 uint64_t grev64(uint64_t RA, uint64_t RB)
443 {
444 uint64_t x = RA;
445 int shamt = RB & 63;
446 if (shamt & 1) x = ((x & 0x5555555555555555LL) << 1) |
447 ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
448 if (shamt & 2) x = ((x & 0x3333333333333333LL) << 2) |
449 ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
450 if (shamt & 4) x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) |
451 ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
452 if (shamt & 8) x = ((x & 0x00FF00FF00FF00FFLL) << 8) |
453 ((x & 0xFF00FF00FF00FF00LL) >> 8);
454 if (shamt & 16) x = ((x & 0x0000FFFF0000FFFFLL) << 16) |
455 ((x & 0xFFFF0000FFFF0000LL) >> 16);
456 if (shamt & 32) x = ((x & 0x00000000FFFFFFFFLL) << 32) |
457 ((x & 0xFFFFFFFF00000000LL) >> 32);
458 return x;
459 }
460
461 ```
462
463 # xperm
464
465 based on RV bitmanip.
466
467 RA contains a vector of indices to select parts of RB to be
468 copied to RT. The immediate-variant allows up to an 8 bit
469 pattern (repeated) to be targetted at different parts of RT
470
471 ```
472 uint_xlen_t xpermi(uint8_t imm8, uint_xlen_t RB, int sz_log2)
473 {
474 uint_xlen_t r = 0;
475 uint_xlen_t sz = 1LL << sz_log2;
476 uint_xlen_t mask = (1LL << sz) - 1;
477 uint_xlen_t RA = imm8 | imm8<<8 | ... | imm8<<56;
478 for (int i = 0; i < XLEN; i += sz) {
479 uint_xlen_t pos = ((RA >> i) & mask) << sz_log2;
480 if (pos < XLEN)
481 r |= ((RB >> pos) & mask) << i;
482 }
483 return r;
484 }
485 uint_xlen_t xperm(uint_xlen_t RA, uint_xlen_t RB, int sz_log2)
486 {
487 uint_xlen_t r = 0;
488 uint_xlen_t sz = 1LL << sz_log2;
489 uint_xlen_t mask = (1LL << sz) - 1;
490 for (int i = 0; i < XLEN; i += sz) {
491 uint_xlen_t pos = ((RA >> i) & mask) << sz_log2;
492 if (pos < XLEN)
493 r |= ((RB >> pos) & mask) << i;
494 }
495 return r;
496 }
497 uint_xlen_t xperm_n (uint_xlen_t RA, uint_xlen_t RB)
498 { return xperm(RA, RB, 2); }
499 uint_xlen_t xperm_b (uint_xlen_t RA, uint_xlen_t RB)
500 { return xperm(RA, RB, 3); }
501 uint_xlen_t xperm_h (uint_xlen_t RA, uint_xlen_t RB)
502 { return xperm(RA, RB, 4); }
503 uint_xlen_t xperm_w (uint_xlen_t RA, uint_xlen_t RB)
504 { return xperm(RA, RB, 5); }
505 ```
506
507 # gorc
508
509 based on RV bitmanip
510
511 ```
512 uint32_t gorc32(uint32_t RA, uint32_t RB)
513 {
514 uint32_t x = RA;
515 int shamt = RB & 31;
516 if (shamt & 1) x |= ((x & 0x55555555) << 1) | ((x & 0xAAAAAAAA) >> 1);
517 if (shamt & 2) x |= ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2);
518 if (shamt & 4) x |= ((x & 0x0F0F0F0F) << 4) | ((x & 0xF0F0F0F0) >> 4);
519 if (shamt & 8) x |= ((x & 0x00FF00FF) << 8) | ((x & 0xFF00FF00) >> 8);
520 if (shamt & 16) x |= ((x & 0x0000FFFF) << 16) | ((x & 0xFFFF0000) >> 16);
521 return x;
522 }
523 uint64_t gorc64(uint64_t RA, uint64_t RB)
524 {
525 uint64_t x = RA;
526 int shamt = RB & 63;
527 if (shamt & 1) x |= ((x & 0x5555555555555555LL) << 1) |
528 ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
529 if (shamt & 2) x |= ((x & 0x3333333333333333LL) << 2) |
530 ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
531 if (shamt & 4) x |= ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) |
532 ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
533 if (shamt & 8) x |= ((x & 0x00FF00FF00FF00FFLL) << 8) |
534 ((x & 0xFF00FF00FF00FF00LL) >> 8);
535 if (shamt & 16) x |= ((x & 0x0000FFFF0000FFFFLL) << 16) |
536 ((x & 0xFFFF0000FFFF0000LL) >> 16);
537 if (shamt & 32) x |= ((x & 0x00000000FFFFFFFFLL) << 32) |
538 ((x & 0xFFFFFFFF00000000LL) >> 32);
539 return x;
540 }
541
542 ```
543 # Introductory Explanation for Carry-less and Gallois Field
544
545 There are three completely separate types of Galois Field
546 arithmetic which are not well explained even in introductory
547 literature.
548
549 * GF(2) which is covered by bibary XOR
550
551 # Instructions for Carry-less Operations aka. Polynomials with coefficients in `GF(2)`
552
553 Carry-less addition/subtraction is simply XOR, so a `cladd`
554 instruction is not provided since the `xor[i]` instruction can be used instead.
555
556 These are operations on polynomials with coefficients in `GF(2)`, with the
557 polynomial's coefficients packed into integers with the following algorithm:
558
559 [[!inline pagenames="openpower/sv/bitmanip/pack_poly.py" raw="true" feeds="no" actions="yes"]]
560
561 ## Carry-less Multiply Instructions
562
563 based on RV bitmanip
564 see <https://en.wikipedia.org/wiki/CLMUL_instruction_set> and
565 <https://www.felixcloutier.com/x86/pclmulqdq> and
566 <https://en.m.wikipedia.org/wiki/Carry-less_product>
567
568 They are worth adding as their own non-overwrite operations
569 (in the same pipeline).
570
571 ### `clmul` Carry-less Multiply
572
573 [[!inline pagenames="openpower/sv/bitmanip/clmul.py" raw="true" feeds="no" actions="yes"]]
574
575 ### `clmulh` Carry-less Multiply High
576
577 [[!inline pagenames="openpower/sv/bitmanip/clmulh.py" raw="true" feeds="no" actions="yes"]]
578
579 ### `clmulr` Carry-less Multiply (Reversed)
580
581 Useful for CRCs. Equivalent to bit-reversing the result of `clmul` on
582 bit-reversed inputs.
583
584 [[!inline pagenames="openpower/sv/bitmanip/clmulr.py" raw="true" feeds="no" actions="yes"]]
585
586 ## `clmadd` Carry-less Multiply-Add
587
588 ```
589 clmadd RT, RA, RB, RC
590 ```
591
592 ```
593 (RT) = clmul((RA), (RB)) ^ (RC)
594 ```
595
596 ## `cltmadd` Twin Carry-less Multiply-Add (for FFTs)
597
598 Used in combination with SV FFT REMAP to perform a full Discrete Fourier
599 Transform of Polynomials over GF(2) in-place. Possible by having 3-in 2-out,
600 to avoid the need for a temp register. RS is written to as well as RT.
601
602 Note: Polynomials over GF(2) are a Ring rather than a Field, so, because the
603 definition of the Inverse Discrete Fourier Transform involves calculating a
604 multiplicative inverse, which may not exist in every Ring, therefore the
605 Inverse Discrete Fourier Transform may not exist. (AFAICT the number of inputs
606 to the IDFT must be odd for the IDFT to be defined for Polynomials over GF(2).
607 TODO: check with someone who knows for sure if that's correct.)
608
609 ```
610 cltmadd RT, RA, RB, RC
611 ```
612
613 TODO: add link to explanation for where `RS` comes from.
614
615 ```
616 a = (RA)
617 c = (RC)
618 # read all inputs before writing to any outputs in case
619 # an input overlaps with an output register.
620 (RT) = clmul(a, (RB)) ^ c
621 (RS) = a ^ c
622 ```
623
624 ## `cldivrem` Carry-less Division and Remainder
625
626 `cldivrem` isn't an actual instruction, but is just used in the pseudo-code
627 for other instructions.
628
629 [[!inline pagenames="openpower/sv/bitmanip/cldivrem.py" raw="true" feeds="no" actions="yes"]]
630
631 ## `cldiv` Carry-less Division
632
633 ```
634 cldiv RT, RA, RB
635 ```
636
637 ```
638 n = (RA)
639 d = (RB)
640 q, r = cldivrem(n, d, width=XLEN)
641 (RT) = q
642 ```
643
644 ## `clrem` Carry-less Remainder
645
646 ```
647 clrem RT, RA, RB
648 ```
649
650 ```
651 n = (RA)
652 d = (RB)
653 q, r = cldivrem(n, d, width=XLEN)
654 (RT) = r
655 ```
656
657 # Instructions for Binary Galois Fields `GF(2^m)`
658
659 see:
660
661 * <https://courses.csail.mit.edu/6.857/2016/files/ffield.py>
662 * <https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture7.pdf>
663 * <https://foss.heptapod.net/math/libgf2/-/blob/branch/default/src/libgf2/gf2.py>
664
665 Binary Galois Field addition/subtraction is simply XOR, so a `gfbadd`
666 instruction is not provided since the `xor[i]` instruction can be used instead.
667
668 ## `GFBREDPOLY` SPR -- Reducing Polynomial
669
670 In order to save registers and to make operations orthogonal with standard
671 arithmetic, the reducing polynomial is stored in a dedicated SPR `GFBREDPOLY`.
672 This also allows hardware to pre-compute useful parameters (such as the
673 degree, or look-up tables) based on the reducing polynomial, and store them
674 alongside the SPR in hidden registers, only recomputing them whenever the SPR
675 is written to, rather than having to recompute those values for every
676 instruction.
677
678 Because Galois Fields require the reducing polynomial to be an irreducible
679 polynomial, that guarantees that any polynomial of `degree > 1` must have
680 the LSB set, since otherwise it would be divisible by the polynomial `x`,
681 making it reducible, making whatever we're working on no longer a Field.
682 Therefore, we can reuse the LSB to indicate `degree == XLEN`.
683
684 [[!inline pagenames="openpower/sv/bitmanip/decode_reducing_polynomial.py" raw="true" feeds="no" actions="yes"]]
685
686 ## `gfbredpoly` -- Set the Reducing Polynomial SPR `GFBREDPOLY`
687
688 unless this is an immediate op, `mtspr` is completely sufficient.
689
690 [[!inline pagenames="openpower/sv/bitmanip/gfbredpoly.py" raw="true" feeds="no" actions="yes"]]
691
692 ## `gfbmul` -- Binary Galois Field `GF(2^m)` Multiplication
693
694 ```
695 gfbmul RT, RA, RB
696 ```
697
698 [[!inline pagenames="openpower/sv/bitmanip/gfbmul.py" raw="true" feeds="no" actions="yes"]]
699
700 ## `gfbmadd` -- Binary Galois Field `GF(2^m)` Multiply-Add
701
702 ```
703 gfbmadd RT, RA, RB, RC
704 ```
705
706 [[!inline pagenames="openpower/sv/bitmanip/gfbmadd.py" raw="true" feeds="no" actions="yes"]]
707
708 ## `gfbtmadd` -- Binary Galois Field `GF(2^m)` Twin Multiply-Add (for FFT)
709
710 Used in combination with SV FFT REMAP to perform a full `GF(2^m)` Discrete
711 Fourier Transform in-place. Possible by having 3-in 2-out, to avoid the need
712 for a temp register. RS is written to as well as RT.
713
714 ```
715 gfbtmadd RT, RA, RB, RC
716 ```
717
718 TODO: add link to explanation for where `RS` comes from.
719
720 ```
721 a = (RA)
722 c = (RC)
723 # read all inputs before writing to any outputs in case
724 # an input overlaps with an output register.
725 (RT) = gfbmadd(a, (RB), c)
726 # use gfbmadd again since it reduces the result
727 (RS) = gfbmadd(a, 1, c) # "a * 1 + c"
728 ```
729
730 ## `gfbinv` -- Binary Galois Field `GF(2^m)` Inverse
731
732 ```
733 gfbinv RT, RA
734 ```
735
736 [[!inline pagenames="openpower/sv/bitmanip/gfbinv.py" raw="true" feeds="no" actions="yes"]]
737
738 # Instructions for Prime Galois Fields `GF(p)`
739
740 ## `GFPRIME` SPR -- Prime Modulus For `gfp*` Instructions
741
742 ## `gfpadd` Prime Galois Field `GF(p)` Addition
743
744 ```
745 gfpadd RT, RA, RB
746 ```
747
748 [[!inline pagenames="openpower/sv/bitmanip/gfpadd.py" raw="true" feeds="no" actions="yes"]]
749
750 the addition happens on infinite-precision integers
751
752 ## `gfpsub` Prime Galois Field `GF(p)` Subtraction
753
754 ```
755 gfpsub RT, RA, RB
756 ```
757
758 [[!inline pagenames="openpower/sv/bitmanip/gfpsub.py" raw="true" feeds="no" actions="yes"]]
759
760 the subtraction happens on infinite-precision integers
761
762 ## `gfpmul` Prime Galois Field `GF(p)` Multiplication
763
764 ```
765 gfpmul RT, RA, RB
766 ```
767
768 [[!inline pagenames="openpower/sv/bitmanip/gfpmul.py" raw="true" feeds="no" actions="yes"]]
769
770 the multiplication happens on infinite-precision integers
771
772 ## `gfpinv` Prime Galois Field `GF(p)` Invert
773
774 ```
775 gfpinv RT, RA
776 ```
777
778 Some potential hardware implementations are found in:
779 <https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.5233&rep=rep1&type=pdf>
780
781 [[!inline pagenames="openpower/sv/bitmanip/gfpinv.py" raw="true" feeds="no" actions="yes"]]
782
783 ## `gfpmadd` Prime Galois Field `GF(p)` Multiply-Add
784
785 ```
786 gfpmadd RT, RA, RB, RC
787 ```
788
789 [[!inline pagenames="openpower/sv/bitmanip/gfpmadd.py" raw="true" feeds="no" actions="yes"]]
790
791 the multiplication and addition happens on infinite-precision integers
792
793 ## `gfpmsub` Prime Galois Field `GF(p)` Multiply-Subtract
794
795 ```
796 gfpmsub RT, RA, RB, RC
797 ```
798
799 [[!inline pagenames="openpower/sv/bitmanip/gfpmsub.py" raw="true" feeds="no" actions="yes"]]
800
801 the multiplication and subtraction happens on infinite-precision integers
802
803 ## `gfpmsubr` Prime Galois Field `GF(p)` Multiply-Subtract-Reversed
804
805 ```
806 gfpmsubr RT, RA, RB, RC
807 ```
808
809 [[!inline pagenames="openpower/sv/bitmanip/gfpmsubr.py" raw="true" feeds="no" actions="yes"]]
810
811 the multiplication and subtraction happens on infinite-precision integers
812
813 ## `gfpmaddsubr` Prime Galois Field `GF(p)` Multiply-Add and Multiply-Sub-Reversed (for FFT)
814
815 Used in combination with SV FFT REMAP to perform
816 a full Number-Theoretic-Transform in-place. Possible by having 3-in 2-out,
817 to avoid the need for a temp register. RS is written
818 to as well as RT.
819
820 ```
821 gfpmaddsubr RT, RA, RB, RC
822 ```
823
824 TODO: add link to explanation for where `RS` comes from.
825
826 ```
827 factor1 = (RA)
828 factor2 = (RB)
829 term = (RC)
830 # read all inputs before writing to any outputs in case
831 # an input overlaps with an output register.
832 (RT) = gfpmadd(factor1, factor2, term)
833 (RS) = gfpmsubr(factor1, factor2, term)
834 ```
835
836 # bitmatrix
837
838 ```
839 uint64_t bmatflip(uint64_t RA)
840 {
841 uint64_t x = RA;
842 x = shfl64(x, 31);
843 x = shfl64(x, 31);
844 x = shfl64(x, 31);
845 return x;
846 }
847 uint64_t bmatxor(uint64_t RA, uint64_t RB)
848 {
849 // transpose of RB
850 uint64_t RBt = bmatflip(RB);
851 uint8_t u[8]; // rows of RA
852 uint8_t v[8]; // cols of RB
853 for (int i = 0; i < 8; i++) {
854 u[i] = RA >> (i*8);
855 v[i] = RBt >> (i*8);
856 }
857 uint64_t x = 0;
858 for (int i = 0; i < 64; i++) {
859 if (pcnt(u[i / 8] & v[i % 8]) & 1)
860 x |= 1LL << i;
861 }
862 return x;
863 }
864 uint64_t bmator(uint64_t RA, uint64_t RB)
865 {
866 // transpose of RB
867 uint64_t RBt = bmatflip(RB);
868 uint8_t u[8]; // rows of RA
869 uint8_t v[8]; // cols of RB
870 for (int i = 0; i < 8; i++) {
871 u[i] = RA >> (i*8);
872 v[i] = RBt >> (i*8);
873 }
874 uint64_t x = 0;
875 for (int i = 0; i < 64; i++) {
876 if ((u[i / 8] & v[i % 8]) != 0)
877 x |= 1LL << i;
878 }
879 return x;
880 }
881
882 ```
883
884 # Already in POWER ISA
885
886 ## count leading/trailing zeros with mask
887
888 in v3.1 p105
889
890 ```
891 count = 0
892 do i = 0 to 63 if((RB)i=1) then do
893 if((RS)i=1) then break end end count ← count + 1
894 RA ← EXTZ64(count)
895 ```
896
897 ## bit deposit
898
899 vpdepd VRT,VRA,VRB, identical to RV bitmamip bdep, found already in v3.1 p106
900
901 do while(m < 64)
902 if VSR[VRB+32].dword[i].bit[63-m]=1 then do
903 result = VSR[VRA+32].dword[i].bit[63-k]
904 VSR[VRT+32].dword[i].bit[63-m] = result
905 k = k + 1
906 m = m + 1
907
908 ```
909
910 uint_xlen_t bdep(uint_xlen_t RA, uint_xlen_t RB)
911 {
912 uint_xlen_t r = 0;
913 for (int i = 0, j = 0; i < XLEN; i++)
914 if ((RB >> i) & 1) {
915 if ((RA >> j) & 1)
916 r |= uint_xlen_t(1) << i;
917 j++;
918 }
919 return r;
920 }
921
922 ```
923
924 # bit extract
925
926 other way round: identical to RV bext, found in v3.1 p196
927
928 ```
929 uint_xlen_t bext(uint_xlen_t RA, uint_xlen_t RB)
930 {
931 uint_xlen_t r = 0;
932 for (int i = 0, j = 0; i < XLEN; i++)
933 if ((RB >> i) & 1) {
934 if ((RA >> i) & 1)
935 r |= uint_xlen_t(1) << j;
936 j++;
937 }
938 return r;
939 }
940 ```
941
942 # centrifuge
943
944 found in v3.1 p106 so not to be added here
945
946 ```
947 ptr0 = 0
948 ptr1 = 0
949 do i = 0 to 63
950 if((RB)i=0) then do
951 resultptr0 = (RS)i
952 end
953 ptr0 = ptr0 + 1
954 if((RB)63-i==1) then do
955 result63-ptr1 = (RS)63-i
956 end
957 ptr1 = ptr1 + 1
958 RA = result
959 ```
960
961 # bit to byte permute
962
963 similar to matrix permute in RV bitmanip, which has XOR and OR variants,
964 these perform a transpose.
965
966 do j = 0 to 7
967 do k = 0 to 7
968 b = VSR[VRB+32].dword[i].byte[k].bit[j]
969 VSR[VRT+32].dword[i].byte[j].bit[k] = b
970