(no commit message)
[libreriscv.git] / openpower / sv / bitmanip.mdwn
1 [[!tag standards]]
2
3 # Implementation Log
4
5 * ternlogi <https://bugs.libre-soc.org/show_bug.cgi?id=745>
6 * grev <https://bugs.libre-soc.org/show_bug.cgi?id=755>
7 * GF2^M <https://bugs.libre-soc.org/show_bug.cgi?id=782>
8
9 # bitmanipulation
10
11 **DRAFT STATUS**
12
13 pseudocode: <https://libre-soc.org/openpower/isa/bitmanip/>
14
15 this extension amalgamates bitmanipulation primitives from many sources, including RISC-V bitmanip, Packed SIMD, AVX-512 and OpenPOWER VSX. Vectorisation and SIMD are removed: these are straight scalar (element) operations making them suitable for embedded applications.
16 Vectorisation Context is provided by [[openpower/sv]].
17
18 When combined with SV, scalar variants of bitmanip operations found in VSX are added so that VSX may be retired as "legacy" in the far future (10 to 20 years). Also, VSX is hundreds of opcodes, requires 128 bit pathways, and is wholly unsuited to low power or embedded scenarios.
19
20 ternlogv is experimental and is the only operation that may be considered a "Packed SIMD". It is added as a variant of the already well-justified ternlog operation (done in AVX512 as an immediate only) "because it looks fun". As it is based on the LUT4 concept it will allow accelerated emulation of FPGAs. Other vendors of ISAs are buying FPGA companies to achieve similar objectives.
21
22 general-purpose Galois Field 2^M operations are added so as to avoid huge custom opcode proliferation across many areas of Computer Science. however for convenience and also to avoid setup costs, some of the more common operations (clmul, crc32) are also added. The expectation is that these operations would all be covered by the same pipeline.
23
24 note that there are brownfield spaces below that could incorporate some of the set-before-first and other scalar operations listed in [[sv/vector_ops]], and
25 the [[sv/av_opcodes]] as well as [[sv/setvl]]
26
27 Useful resource:
28
29 * <https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders>
30 * <https://maths-people.anu.edu.au/~brent/pd/rpb232tr.pdf>
31
32 # summary
33
34 two major opcodes are needed
35
36 ternlog has its own major opcode
37
38 | 29.30 |31| name |
39 | ------ |--| --------- |
40 | 0 0 |Rc| ternlogi |
41 | 0 1 |sz| ternlogv |
42 | 1 iv | | grevlogi |
43
44 2nd major opcode for other bitmanip: minor opcode allocation
45
46 | 28.30 |31| name |
47 | ------ |--| --------- |
48 | -00 |0 | xpermi |
49 | -00 |1 | grevlog |
50 | -01 | | crternlog |
51 | 010 |Rc| bitmask |
52 | 011 | | gf/cl madd* |
53 | 110 |Rc| 1/2-op |
54 | 111 | | bmrevi |
55
56
57 1-op and variants
58
59 | dest | src1 | subop | op |
60 | ---- | ---- | ----- | -------- |
61 | RT | RA | .. | bmatflip |
62
63 2-op and variants
64
65 | dest | src1 | src2 | subop | op |
66 | ---- | ---- | ---- | ----- | -------- |
67 | RT | RA | RB | or | bmatflip |
68 | RT | RA | RB | xor | bmatflip |
69 | RT | RA | RB | | grev |
70 | RT | RA | RB | | clmul* |
71 | RT | RA | RB | | gorc |
72 | RT | RA | RB | shuf | shuffle |
73 | RT | RA | RB | unshuf| shuffle |
74 | RT | RA | RB | width | xperm |
75 | RT | RA | RB | type | av minmax |
76 | RT | RA | RB | | av abs avgadd |
77 | RT | RA | RB | type | vmask ops |
78 | RT | RA | RB | | |
79
80 3 ops
81
82 * grevlog
83 * GF mul-add
84 * bitmask-reverse
85
86 TODO: convert all instructions to use RT and not RS
87
88 | 0.5|6.8 | 9.11|12.14|15.17|18.20|21.28 | 29.30|31|name|
89 | -- | -- | --- | --- | --- |-----|----- | -----|--|----|
90 | NN | BT | BA | BB | BC |m0-2 | imm | 10 |m3|crternlog|
91
92 | 0.5|6.10|11.15|16.20 |21..25 | 26....30 |31| name |
93 | -- | -- | --- | --- | ----- | -------- |--| ------ |
94 | NN | RT | RA |itype/| im0-4 | im5-7 00 |0 | xpermi |
95 | NN | RT | RA | RB | im0-4 | im5-7 00 |1 | grevlog |
96 | NN | | | | | ..... 01 |0 | crternlog |
97 | NN | RT | RA | RB | RC | mode 010 |Rc| bitmask* |
98 | NN | RS | RA | RB | RC | 00 011 |0 | gfbmadd |
99 | NN | RS | RA | RB | RC | 00 011 |1 | gfbmaddsub |
100 | NN | RS | RA | RB | RC | 01 011 |0 | clmadd |
101 | NN | RS | RA | RB | RC | 01 011 |1 | clmaddsub |
102 | NN | RS | RA | RB | RC | 10 011 |0 | gfpmadd |
103 | NN | RS | RA | RB | RC | 10 011 |1 | gfpmaddsub |
104 | NN | RS | RA | RB | RC | 11 011 | | rsvd |
105 | NN | RT | RA | RB | sh0-4 | sh5 1 111 |Rc| bmrevi |
106
107 ops (note that av avg and abs as well as vec scalar mask
108 are included here [[sv/vector_ops]], and
109 the [[sv/av_opcodes]])
110
111 TODO: convert from RA, RB, and RC to correct field names of RT, RA, and RB, and
112 double check that instructions didn't need 3 inputs.
113
114 | 0.5|6.10|11.15|16.20| 21 | 22.23 | 24....30 |31| name |
115 | -- | -- | --- | --- | -- | ----- | -------- |--| ---- |
116 | NN | RS | me | sh | SH | ME 0 | nn00 110 |Rc| bmopsi |
117 | NN | RS | RB | sh | SH | 0 1 | nn00 110 |Rc| bmopsi |
118 | NN | RT | RA | RB | 1 | 00 | 0001 110 |Rc| cldiv |
119 | NN | RT | RA | RB | 1 | 01 | 0001 110 |Rc| clmod |
120 | NN | RT | RA | RB | 1 | 10 | 0001 110 |Rc| |
121 | NN | RT | RB | RB | 1 | 11 | 0001 110 |Rc| clinv |
122 | NN | RA | RB | RC | 0 | 00 | 0001 110 |Rc| vec sbfm |
123 | NN | RA | RB | RC | 0 | 01 | 0001 110 |Rc| vec sofm |
124 | NN | RA | RB | RC | 0 | 10 | 0001 110 |Rc| vec sifm |
125 | NN | RA | RB | RC | 0 | 11 | 0001 110 |Rc| vec cprop |
126 | NN | RT | RA | RB | 1 | itype | 0101 110 |Rc| xperm |
127 | NN | RA | RB | RC | 0 | itype | 0101 110 |Rc| av minmax |
128 | NN | RA | RB | RC | 1 | 00 | 0101 110 |Rc| av abss |
129 | NN | RA | RB | RC | 1 | 01 | 0101 110 |Rc| av absu|
130 | NN | RA | RB | | 1 | 10 | 0101 110 |Rc| av avgadd |
131 | NN | RA | RB | | 1 | 11 | 0101 110 |Rc| rsvd |
132 | NN | RA | RB | | | | 1001 110 |Rc| rsvd |
133 | NN | RA | RB | | | | 1101 110 |Rc| rsvd |
134 | NN | RA | RB | RC | 0 | 00 | 0010 110 |Rc| gorc |
135 | NN | RA | RB | sh | SH | 00 | 1010 110 |Rc| gorci |
136 | NN | RA | RB | RC | 0 | 00 | 0110 110 |Rc| gorcw |
137 | NN | RA | RB | sh | 0 | 00 | 1110 110 |Rc| gorcwi |
138 | NN | RA | RB | RC | 1 | 00 | 1110 110 |Rc| bmator |
139 | NN | RA | RB | RC | 0 | 01 | 0010 110 |Rc| grev |
140 | NN | RA | RB | RC | 1 | 01 | 0010 110 |Rc| clmul |
141 | NN | RA | RB | sh | SH | 01 | 1010 110 |Rc| grevi |
142 | NN | RA | RB | RC | 0 | 01 | 0110 110 |Rc| grevw |
143 | NN | RA | RB | sh | 0 | 01 | 1110 110 |Rc| grevwi |
144 | NN | RA | RB | RC | 1 | 01 | 1110 110 |Rc| bmatxor |
145 | NN | RA | RB | RC | | 10 | --10 110 |Rc| rsvd |
146 | NN | RA | RB | RC | 0 | 11 | 1110 110 |Rc| clmulr |
147 | NN | RA | RB | RC | 1 | 11 | 1110 110 |Rc| clmulh |
148 | NN | | | | | | --11 110 |Rc| setvl |
149
150 # ternlog bitops
151
152 Similar to FPGA LUTs: for every bit perform a lookup into a table using an 8bit immediate, or in another register.
153
154 Like the x86 AVX512F [vpternlogd/vpternlogq](https://www.felixcloutier.com/x86/vpternlogd:vpternlogq) instructions.
155
156 ## ternlogi
157
158 | 0.5|6.10|11.15|16.20| 21..28|29.30|31|
159 | -- | -- | --- | --- | ----- | --- |--|
160 | NN | RT | RA | RB | im0-7 | 00 |Rc|
161
162 lut3(imm, a, b, c):
163 idx = c << 2 | b << 1 | a
164 return imm[idx] # idx by LSB0 order
165
166 for i in range(64):
167 RT[i] = lut3(imm, RB[i], RA[i], RT[i])
168
169 ## ternlogv
170
171 also, another possible variant involving swizzle-like selection
172 and masking, this only requires 3 64 bit registers (RA, RS, RB) and
173 only 16 LUT3s.
174
175 Note however that unless XLEN matches sz, this instruction
176 is a Read-Modify-Write: RS must be read as a second operand
177 and all unmodified bits preserved. SVP64 may provide limited
178 alternative destination for RS from RS-as-source, but again
179 all unmodified bits must still be copied.
180
181 | 0.5|6.10|11.15|16.20|21.28 | 29.30 |31|
182 | -- | -- | --- | --- | ---- | ----- |--|
183 | NN | RS | RA | RB |idx0-3| 01 |sz|
184
185 SZ = (1+sz) * 8 # 8 or 16
186 raoff = MIN(XLEN, idx0 * SZ)
187 rboff = MIN(XLEN, idx1 * SZ)
188 rcoff = MIN(XLEN, idx2 * SZ)
189 rsoff = MIN(XLEN, idx3 * SZ)
190 imm = RB[0:8]
191 for i in range(MIN(XLEN, SZ)):
192 ra = RA[raoff:+i]
193 rb = RA[rboff+i]
194 rc = RA[rcoff+i]
195 res = lut3(imm, ra, rb, rc)
196 RS[rsoff+i] = res
197
198 ## ternlogcr
199
200 another mode selection would be CRs not Ints.
201
202 | 0.5|6.8 | 9.11|12.14|15.17|18.20|21.28 | 29.30|31|
203 | -- | -- | --- | --- | --- |-----|----- | -----|--|
204 | NN | BT | BA | BB | BC |m0-2 | imm | 10 |m3|
205
206 mask = m0-3,m4
207 for i in range(4):
208 if not mask[i] continue
209 crregs[BT][i] = lut3(imm,
210 crregs[BA][i],
211 crregs[BB][i],
212 crregs[BC][i])
213
214
215 # int min/max
216
217 required for
218 the [[sv/av_opcodes]]
219
220 signed and unsigned min/max for integer. this is sort-of partly synthesiseable in [[sv/svp64]] with pred-result as long as the dest reg is one of the sources, but not both signed and unsigned. when the dest is also one of the srces and the mv fails due to the CR bittest failing this will only overwrite the dest where the src is greater (or less).
221
222 signed/unsigned min/max gives more flexibility.
223
224 ```
225 uint_xlen_t min(uint_xlen_t rs1, uint_xlen_t rs2)
226 { return (int_xlen_t)rs1 < (int_xlen_t)rs2 ? rs1 : rs2;
227 }
228 uint_xlen_t max(uint_xlen_t rs1, uint_xlen_t rs2)
229 { return (int_xlen_t)rs1 > (int_xlen_t)rs2 ? rs1 : rs2;
230 }
231 uint_xlen_t minu(uint_xlen_t rs1, uint_xlen_t rs2)
232 { return rs1 < rs2 ? rs1 : rs2;
233 }
234 uint_xlen_t maxu(uint_xlen_t rs1, uint_xlen_t rs2)
235 { return rs1 > rs2 ? rs1 : rs2;
236 }
237 ```
238
239
240 ## cmix
241
242 based on RV bitmanip, covered by ternlog bitops
243
244 ```
245 uint_xlen_t cmix(uint_xlen_t RA, uint_xlen_t RB, uint_xlen_t RC) {
246 return (RA & RB) | (RC & ~RB);
247 }
248 ```
249
250
251 # bitmask set
252
253 based on RV bitmanip singlebit set, instruction format similar to shift
254 [[isa/fixedshift]]. bmext is actually covered already (shift-with-mask rldicl but only immediate version).
255 however bitmask-invert is not, and set/clr are not covered, although they can use the same Shift ALU.
256
257 bmext (RB) version is not the same as rldicl because bmext is a right shift by RC, where rldicl is a left rotate. for the immediate version this does not matter, so a bmexti is not required.
258 bmrev however there is no direct equivalent and consequently a bmrevi is required.
259
260 bmset (register for mask amount) is particularly useful for creating
261 predicate masks where the length is a dynamic runtime quantity.
262 bmset(RA=0, RB=0, RC=mask) will produce a run of ones of length "mask" in a single instruction without needing to initialise or depend on any other registers.
263
264 | 0.5|6.10|11.15|16.20|21.25| 26..30 |31| name |
265 | -- | -- | --- | --- | --- | ------- |--| ----- |
266 | NN | RS | RA | RB | RC | mode 010 |Rc| bm* |
267
268 Immediate-variant is an overwrite form:
269
270 | 0.5|6.10|11.15|16.20| 21 | 22.23 | 24....30 |31| name |
271 | -- | -- | --- | --- | -- | ----- | -------- |--| ---- |
272 | NN | RS | RB | sh | SH | itype | 1000 110 |Rc| bm*i |
273
274 ```
275 def MASK(x, y):
276 if x < y:
277 x = x+1
278 mask_a = ((1 << x) - 1) & ((1 << 64) - 1)
279 mask_b = ((1 << y) - 1) & ((1 << 64) - 1)
280 elif x == y:
281 return 1 << x
282 else:
283 x = x+1
284 mask_a = ((1 << x) - 1) & ((1 << 64) - 1)
285 mask_b = (~((1 << y) - 1)) & ((1 << 64) - 1)
286 return mask_a ^ mask_b
287
288
289 uint_xlen_t bmset(RS, RB, sh)
290 {
291 int shamt = RB & (XLEN - 1);
292 mask = (2<<sh)-1;
293 return RS | (mask << shamt);
294 }
295
296 uint_xlen_t bmclr(RS, RB, sh)
297 {
298 int shamt = RB & (XLEN - 1);
299 mask = (2<<sh)-1;
300 return RS & ~(mask << shamt);
301 }
302
303 uint_xlen_t bminv(RS, RB, sh)
304 {
305 int shamt = RB & (XLEN - 1);
306 mask = (2<<sh)-1;
307 return RS ^ (mask << shamt);
308 }
309
310 uint_xlen_t bmext(RS, RB, sh)
311 {
312 int shamt = RB & (XLEN - 1);
313 mask = (2<<sh)-1;
314 return mask & (RS >> shamt);
315 }
316 ```
317
318 bitmask extract with reverse. can be done by bit-order-inverting all of RB and getting bits of RB from the opposite end.
319
320 when RA is zero, no shift occurs. this makes bmextrev useful for
321 simply reversing all bits of a register.
322
323 ```
324 msb = ra[5:0];
325 rev[0:msb] = rb[msb:0];
326 rt = ZE(rev[msb:0]);
327
328 uint_xlen_t bmextrev(RA, RB, sh)
329 {
330 int shamt = XLEN-1;
331 if (RA != 0) shamt = (GPR(RA) & (XLEN - 1));
332 shamt = (XLEN-1)-shamt; # shift other end
333 bra = bitreverse(RB) # swap LSB-MSB
334 mask = (2<<sh)-1;
335 return mask & (bra >> shamt);
336 }
337 ```
338
339 | 0.5|6.10|11.15|16.20|21.26| 27..30 |31| name |
340 | -- | -- | --- | --- | --- | ------- |--| ------ |
341 | NN | RT | RA | RB | sh | 1 011 |Rc| bmrevi |
342
343
344 # grevlut
345
346 generalised reverse combined with a pair of LUT2s and allowing
347 a constant `0b0101...0101` when RA=0, and an option to invert
348 (including when RA=0, giving a constant 0b1010...1010 as the
349 initial value) provides a wide range of instructions
350 and a means to set regular 64 bit patterns in one
351 32 bit instruction.
352
353 the two LUT2s are applied left-half (when not swapping)
354 and right-half (when swapping) so as to allow a wider
355 range of options.
356
357 <img src="/openpower/sv/grevlut2x2.jpg" width=700 />
358
359 * A value of `0b11001010` for the immediate provides
360 the functionality of a standard "grev".
361 * `0b11101110` provides gorc
362
363 grevlut should be arranged so as to produce the constants
364 needed to put into bext (bitextract) so as in turn to
365 be able to emulate x86 pmovmask instructions <https://www.felixcloutier.com/x86/pmovmskb>.
366 This only requires 2 instructions (grevlut, bext).
367
368 Note that if the mask is required to be placed
369 directly into CR Fields (for use as CR Predicate
370 masks rather than a integer mask) then sv.ori
371 may be used instead, bearing in mind that sv.ori
372 is a 64-bit instruction, and `VL` must have been
373 set to the required length:
374
375 sv.ori./elwid=8 r10.v, r10.v, 0
376
377 The following settings provide the required mask constants:
378
379 | RA | RB | imm | iv | result |
380 | ------- | ------- | ---------- | -- | ---------- |
381 | 0x555.. | 0b10 | 0b01101100 | 0 | 0x111111... |
382 | 0x555.. | 0b110 | 0b01101100 | 0 | 0x010101... |
383 | 0x555.. | 0b1110 | 0b01101100 | 0 | 0x00010001... |
384 | 0x555.. | 0b10 | 0b11000110 | 1 | 0x88888... |
385 | 0x555.. | 0b110 | 0b11000110 | 1 | 0x808080... |
386 | 0x555.. | 0b1110 | 0b11000110 | 1 | 0x80008000... |
387
388 Better diagram showing the correct ordering of shamt (RB). A LUT2
389 is applied to all locations marked in red using the first 4
390 bits of the immediate, and a separate LUT2 applied to all
391 locations in green using the upper 4 bits of the immediate.
392
393 <img src="/openpower/sv/grevlut.png" width=700 />
394
395 demo code [[openpower/sv/grevlut.py]]
396
397 ```
398 lut2(imm, a, b):
399 idx = b << 1 | a
400 return imm[idx] # idx by LSB0 order
401
402 dorow(imm8, step_i, chunksize):
403 for j in 0 to 63:
404 if (j&chunk_size) == 0
405 imm = imm8[0..3]
406 else
407 imm = imm8[4..7]
408 step_o[j] = lut2(imm, step_i[j], step_i[j ^ chunk_size])
409 return step_o
410
411 uint64_t grevlut64(uint64_t RA, uint64_t RB, uint8 imm, bool iv)
412 {
413 uint64_t x = 0x5555_5555_5555_5555;
414 if (RA != 0) x = GPR(RA);
415 if (iv) x = ~x;
416 int shamt = RB & 63;
417 for i in 0 to 6
418 step = 1<<i
419 if (shamt & step) x = dorow(imm, x, step)
420 return x;
421 }
422
423 ```
424
425 | 0.5|6.10|11.15|16.20 |21..25 | 26....30 |31| name |
426 | -- | -- | --- | --- | ----- | -------- |--| ------ |
427 | NN | RT | RA | s0-4 | im0-4 | im5-7 1 iv |s5| grevlogi |
428 | NN | RT | RA | RB | im0-4 | im5-7 00 |1 | grevlog |
429
430
431 # grev
432
433 based on RV bitmanip, this is also known as a butterfly network. however
434 where a butterfly network allows setting of every crossbar setting in
435 every row and every column, generalised-reverse (grev) only allows
436 a per-row decision: every entry in the same row must either switch or
437 not-switch.
438
439 <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Butterfly_Network.jpg/474px-Butterfly_Network.jpg" />
440
441 ```
442 uint64_t grev64(uint64_t RA, uint64_t RB)
443 {
444 uint64_t x = RA;
445 int shamt = RB & 63;
446 if (shamt & 1) x = ((x & 0x5555555555555555LL) << 1) |
447 ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
448 if (shamt & 2) x = ((x & 0x3333333333333333LL) << 2) |
449 ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
450 if (shamt & 4) x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) |
451 ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
452 if (shamt & 8) x = ((x & 0x00FF00FF00FF00FFLL) << 8) |
453 ((x & 0xFF00FF00FF00FF00LL) >> 8);
454 if (shamt & 16) x = ((x & 0x0000FFFF0000FFFFLL) << 16) |
455 ((x & 0xFFFF0000FFFF0000LL) >> 16);
456 if (shamt & 32) x = ((x & 0x00000000FFFFFFFFLL) << 32) |
457 ((x & 0xFFFFFFFF00000000LL) >> 32);
458 return x;
459 }
460
461 ```
462
463 # xperm
464
465 based on RV bitmanip.
466
467 RA contains a vector of indices to select parts of RB to be
468 copied to RT. The immediate-variant allows up to an 8 bit
469 pattern (repeated) to be targetted at different parts of RT
470
471 ```
472 uint_xlen_t xpermi(uint8_t imm8, uint_xlen_t RB, int sz_log2)
473 {
474 uint_xlen_t r = 0;
475 uint_xlen_t sz = 1LL << sz_log2;
476 uint_xlen_t mask = (1LL << sz) - 1;
477 uint_xlen_t RA = imm8 | imm8<<8 | ... | imm8<<56;
478 for (int i = 0; i < XLEN; i += sz) {
479 uint_xlen_t pos = ((RA >> i) & mask) << sz_log2;
480 if (pos < XLEN)
481 r |= ((RB >> pos) & mask) << i;
482 }
483 return r;
484 }
485 uint_xlen_t xperm(uint_xlen_t RA, uint_xlen_t RB, int sz_log2)
486 {
487 uint_xlen_t r = 0;
488 uint_xlen_t sz = 1LL << sz_log2;
489 uint_xlen_t mask = (1LL << sz) - 1;
490 for (int i = 0; i < XLEN; i += sz) {
491 uint_xlen_t pos = ((RA >> i) & mask) << sz_log2;
492 if (pos < XLEN)
493 r |= ((RB >> pos) & mask) << i;
494 }
495 return r;
496 }
497 uint_xlen_t xperm_n (uint_xlen_t RA, uint_xlen_t RB)
498 { return xperm(RA, RB, 2); }
499 uint_xlen_t xperm_b (uint_xlen_t RA, uint_xlen_t RB)
500 { return xperm(RA, RB, 3); }
501 uint_xlen_t xperm_h (uint_xlen_t RA, uint_xlen_t RB)
502 { return xperm(RA, RB, 4); }
503 uint_xlen_t xperm_w (uint_xlen_t RA, uint_xlen_t RB)
504 { return xperm(RA, RB, 5); }
505 ```
506
507 # gorc
508
509 based on RV bitmanip
510
511 ```
512 uint32_t gorc32(uint32_t RA, uint32_t RB)
513 {
514 uint32_t x = RA;
515 int shamt = RB & 31;
516 if (shamt & 1) x |= ((x & 0x55555555) << 1) | ((x & 0xAAAAAAAA) >> 1);
517 if (shamt & 2) x |= ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2);
518 if (shamt & 4) x |= ((x & 0x0F0F0F0F) << 4) | ((x & 0xF0F0F0F0) >> 4);
519 if (shamt & 8) x |= ((x & 0x00FF00FF) << 8) | ((x & 0xFF00FF00) >> 8);
520 if (shamt & 16) x |= ((x & 0x0000FFFF) << 16) | ((x & 0xFFFF0000) >> 16);
521 return x;
522 }
523 uint64_t gorc64(uint64_t RA, uint64_t RB)
524 {
525 uint64_t x = RA;
526 int shamt = RB & 63;
527 if (shamt & 1) x |= ((x & 0x5555555555555555LL) << 1) |
528 ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
529 if (shamt & 2) x |= ((x & 0x3333333333333333LL) << 2) |
530 ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
531 if (shamt & 4) x |= ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) |
532 ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
533 if (shamt & 8) x |= ((x & 0x00FF00FF00FF00FFLL) << 8) |
534 ((x & 0xFF00FF00FF00FF00LL) >> 8);
535 if (shamt & 16) x |= ((x & 0x0000FFFF0000FFFFLL) << 16) |
536 ((x & 0xFFFF0000FFFF0000LL) >> 16);
537 if (shamt & 32) x |= ((x & 0x00000000FFFFFFFFLL) << 32) |
538 ((x & 0xFFFFFFFF00000000LL) >> 32);
539 return x;
540 }
541
542 ```
543 # Introductory Explanation for Carry-less and Galois Field arithmetic
544
545 There are three completely separate types of Galois-Field-based
546 arithmetic that we implement which are not well explained even in introductory
547 literature. These are:
548
549 * carry-less binary arithmetic. this is not actually a Galois Field,
550 but is accidentally referred to as GF(2) - see below as to why.
551 * modulo arithmetic with a Prime number, these are "proper" Galois Fields
552 * modulo arithmetic with two limits: a power-of-2 (2^N) and a second
553 "reducing" polynomial (with characteristics similar to a prime number)
554
555 further detailed explanations are provided below
556
557 ## Polynomials with coefficients in `GF(2)`
558
559 (aka. Carry-less arithmetic -- the `cl*` instructions).
560
561 This isn't actually a Galois Field, but its coefficients are. This is
562 basically binary integer addition, subtraction, and multiplication like
563 usual, except that carries aren't propagated at all, effectively turning
564 both addition and subtraction into the bitwise xor operation. Division and
565 remainder are defined to match how addition and multiplication works.
566
567 ## Galois Fields with a prime size
568
569 aka. `GF(p)` or Prime Galois Fields (the `gfp*` instructions).
570 This is basically just the integers mod `p`.
571
572 ## Galois Fields with a power-of-a-prime size
573
574 aka. `GF(p^n)` or `GF(q)` where `q == p^n` for prime `p` and integer `n > 0`.
575
576 We only implement these for `p == 2`, called Binary Galois Fields
577 (`GF(2^n)` -- the `gfb*` instructions).
578 For any prime `p`, `GF(p^n)` is implemented as polynomials with
579 coefficients in `GF(p)` and degree `< n`, where the polynomials are the
580 remainders of dividing by a specificly chosen polynomial in `GF(p)` called
581 the Reducing Polynomial (we will denote that by `red_poly`). The Reducing
582 Polynomial must be an irreducable polynomial (like primes, but for
583 polynomials), as well as have degree `n`. All `GF(p^n)` for the same `p`
584 and `n` are isomorphic to each other -- the choice of `red_poly` doesn't
585 affect `GF(p^n)`'s mathematical shape, all that changes is the specific
586 polynomials used to implement `GF(p^n)`.
587
588 # Instructions for Carry-less Operations
589
590 aka. Polynomials with coefficients in `GF(2)`
591
592 Carry-less addition/subtraction is simply XOR, so a `cladd`
593 instruction is not provided since the `xor[i]` instruction can be used instead.
594
595 These are operations on polynomials with coefficients in `GF(2)`, with the
596 polynomial's coefficients packed into integers with the following algorithm:
597
598 [[!inline pagenames="openpower/sv/bitmanip/pack_poly.py" raw="true" feeds="no" actions="yes"]]
599
600 ## Carry-less Multiply Instructions
601
602 based on RV bitmanip
603 see <https://en.wikipedia.org/wiki/CLMUL_instruction_set> and
604 <https://www.felixcloutier.com/x86/pclmulqdq> and
605 <https://en.m.wikipedia.org/wiki/Carry-less_product>
606
607 They are worth adding as their own non-overwrite operations
608 (in the same pipeline).
609
610 ### `clmul` Carry-less Multiply
611
612 [[!inline pagenames="openpower/sv/bitmanip/clmul.py" raw="true" feeds="no" actions="yes"]]
613
614 ### `clmulh` Carry-less Multiply High
615
616 [[!inline pagenames="openpower/sv/bitmanip/clmulh.py" raw="true" feeds="no" actions="yes"]]
617
618 ### `clmulr` Carry-less Multiply (Reversed)
619
620 Useful for CRCs. Equivalent to bit-reversing the result of `clmul` on
621 bit-reversed inputs.
622
623 [[!inline pagenames="openpower/sv/bitmanip/clmulr.py" raw="true" feeds="no" actions="yes"]]
624
625 ## `clmadd` Carry-less Multiply-Add
626
627 ```
628 clmadd RT, RA, RB, RC
629 ```
630
631 ```
632 (RT) = clmul((RA), (RB)) ^ (RC)
633 ```
634
635 ## `cltmadd` Twin Carry-less Multiply-Add (for FFTs)
636
637 Used in combination with SV FFT REMAP to perform a full Discrete Fourier
638 Transform of Polynomials over GF(2) in-place. Possible by having 3-in 2-out,
639 to avoid the need for a temp register. RS is written to as well as RT.
640
641 Note: Polynomials over GF(2) are a Ring rather than a Field, so, because the
642 definition of the Inverse Discrete Fourier Transform involves calculating a
643 multiplicative inverse, which may not exist in every Ring, therefore the
644 Inverse Discrete Fourier Transform may not exist. (AFAICT the number of inputs
645 to the IDFT must be odd for the IDFT to be defined for Polynomials over GF(2).
646 TODO: check with someone who knows for sure if that's correct.)
647
648 ```
649 cltmadd RT, RA, RB, RC
650 ```
651
652 TODO: add link to explanation for where `RS` comes from.
653
654 ```
655 a = (RA)
656 c = (RC)
657 # read all inputs before writing to any outputs in case
658 # an input overlaps with an output register.
659 (RT) = clmul(a, (RB)) ^ c
660 (RS) = a ^ c
661 ```
662
663 ## `cldivrem` Carry-less Division and Remainder
664
665 `cldivrem` isn't an actual instruction, but is just used in the pseudo-code
666 for other instructions.
667
668 [[!inline pagenames="openpower/sv/bitmanip/cldivrem.py" raw="true" feeds="no" actions="yes"]]
669
670 ## `cldiv` Carry-less Division
671
672 ```
673 cldiv RT, RA, RB
674 ```
675
676 ```
677 n = (RA)
678 d = (RB)
679 q, r = cldivrem(n, d, width=XLEN)
680 (RT) = q
681 ```
682
683 ## `clrem` Carry-less Remainder
684
685 ```
686 clrem RT, RA, RB
687 ```
688
689 ```
690 n = (RA)
691 d = (RB)
692 q, r = cldivrem(n, d, width=XLEN)
693 (RT) = r
694 ```
695
696 # Instructions for Binary Galois Fields `GF(2^m)`
697
698 see:
699
700 * <https://courses.csail.mit.edu/6.857/2016/files/ffield.py>
701 * <https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture7.pdf>
702 * <https://foss.heptapod.net/math/libgf2/-/blob/branch/default/src/libgf2/gf2.py>
703
704 Binary Galois Field addition/subtraction is simply XOR, so a `gfbadd`
705 instruction is not provided since the `xor[i]` instruction can be used instead.
706
707 ## `GFBREDPOLY` SPR -- Reducing Polynomial
708
709 In order to save registers and to make operations orthogonal with standard
710 arithmetic, the reducing polynomial is stored in a dedicated SPR `GFBREDPOLY`.
711 This also allows hardware to pre-compute useful parameters (such as the
712 degree, or look-up tables) based on the reducing polynomial, and store them
713 alongside the SPR in hidden registers, only recomputing them whenever the SPR
714 is written to, rather than having to recompute those values for every
715 instruction.
716
717 Because Galois Fields require the reducing polynomial to be an irreducible
718 polynomial, that guarantees that any polynomial of `degree > 1` must have
719 the LSB set, since otherwise it would be divisible by the polynomial `x`,
720 making it reducible, making whatever we're working on no longer a Field.
721 Therefore, we can reuse the LSB to indicate `degree == XLEN`.
722
723 [[!inline pagenames="openpower/sv/bitmanip/decode_reducing_polynomial.py" raw="true" feeds="no" actions="yes"]]
724
725 ## `gfbredpoly` -- Set the Reducing Polynomial SPR `GFBREDPOLY`
726
727 unless this is an immediate op, `mtspr` is completely sufficient.
728
729 [[!inline pagenames="openpower/sv/bitmanip/gfbredpoly.py" raw="true" feeds="no" actions="yes"]]
730
731 ## `gfbmul` -- Binary Galois Field `GF(2^m)` Multiplication
732
733 ```
734 gfbmul RT, RA, RB
735 ```
736
737 [[!inline pagenames="openpower/sv/bitmanip/gfbmul.py" raw="true" feeds="no" actions="yes"]]
738
739 ## `gfbmadd` -- Binary Galois Field `GF(2^m)` Multiply-Add
740
741 ```
742 gfbmadd RT, RA, RB, RC
743 ```
744
745 [[!inline pagenames="openpower/sv/bitmanip/gfbmadd.py" raw="true" feeds="no" actions="yes"]]
746
747 ## `gfbtmadd` -- Binary Galois Field `GF(2^m)` Twin Multiply-Add (for FFT)
748
749 Used in combination with SV FFT REMAP to perform a full `GF(2^m)` Discrete
750 Fourier Transform in-place. Possible by having 3-in 2-out, to avoid the need
751 for a temp register. RS is written to as well as RT.
752
753 ```
754 gfbtmadd RT, RA, RB, RC
755 ```
756
757 TODO: add link to explanation for where `RS` comes from.
758
759 ```
760 a = (RA)
761 c = (RC)
762 # read all inputs before writing to any outputs in case
763 # an input overlaps with an output register.
764 (RT) = gfbmadd(a, (RB), c)
765 # use gfbmadd again since it reduces the result
766 (RS) = gfbmadd(a, 1, c) # "a * 1 + c"
767 ```
768
769 ## `gfbinv` -- Binary Galois Field `GF(2^m)` Inverse
770
771 ```
772 gfbinv RT, RA
773 ```
774
775 [[!inline pagenames="openpower/sv/bitmanip/gfbinv.py" raw="true" feeds="no" actions="yes"]]
776
777 # Instructions for Prime Galois Fields `GF(p)`
778
779 ## `GFPRIME` SPR -- Prime Modulus For `gfp*` Instructions
780
781 ## `gfpadd` Prime Galois Field `GF(p)` Addition
782
783 ```
784 gfpadd RT, RA, RB
785 ```
786
787 [[!inline pagenames="openpower/sv/bitmanip/gfpadd.py" raw="true" feeds="no" actions="yes"]]
788
789 the addition happens on infinite-precision integers
790
791 ## `gfpsub` Prime Galois Field `GF(p)` Subtraction
792
793 ```
794 gfpsub RT, RA, RB
795 ```
796
797 [[!inline pagenames="openpower/sv/bitmanip/gfpsub.py" raw="true" feeds="no" actions="yes"]]
798
799 the subtraction happens on infinite-precision integers
800
801 ## `gfpmul` Prime Galois Field `GF(p)` Multiplication
802
803 ```
804 gfpmul RT, RA, RB
805 ```
806
807 [[!inline pagenames="openpower/sv/bitmanip/gfpmul.py" raw="true" feeds="no" actions="yes"]]
808
809 the multiplication happens on infinite-precision integers
810
811 ## `gfpinv` Prime Galois Field `GF(p)` Invert
812
813 ```
814 gfpinv RT, RA
815 ```
816
817 Some potential hardware implementations are found in:
818 <https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.5233&rep=rep1&type=pdf>
819
820 [[!inline pagenames="openpower/sv/bitmanip/gfpinv.py" raw="true" feeds="no" actions="yes"]]
821
822 ## `gfpmadd` Prime Galois Field `GF(p)` Multiply-Add
823
824 ```
825 gfpmadd RT, RA, RB, RC
826 ```
827
828 [[!inline pagenames="openpower/sv/bitmanip/gfpmadd.py" raw="true" feeds="no" actions="yes"]]
829
830 the multiplication and addition happens on infinite-precision integers
831
832 ## `gfpmsub` Prime Galois Field `GF(p)` Multiply-Subtract
833
834 ```
835 gfpmsub RT, RA, RB, RC
836 ```
837
838 [[!inline pagenames="openpower/sv/bitmanip/gfpmsub.py" raw="true" feeds="no" actions="yes"]]
839
840 the multiplication and subtraction happens on infinite-precision integers
841
842 ## `gfpmsubr` Prime Galois Field `GF(p)` Multiply-Subtract-Reversed
843
844 ```
845 gfpmsubr RT, RA, RB, RC
846 ```
847
848 [[!inline pagenames="openpower/sv/bitmanip/gfpmsubr.py" raw="true" feeds="no" actions="yes"]]
849
850 the multiplication and subtraction happens on infinite-precision integers
851
852 ## `gfpmaddsubr` Prime Galois Field `GF(p)` Multiply-Add and Multiply-Sub-Reversed (for FFT)
853
854 Used in combination with SV FFT REMAP to perform
855 a full Number-Theoretic-Transform in-place. Possible by having 3-in 2-out,
856 to avoid the need for a temp register. RS is written
857 to as well as RT.
858
859 ```
860 gfpmaddsubr RT, RA, RB, RC
861 ```
862
863 TODO: add link to explanation for where `RS` comes from.
864
865 ```
866 factor1 = (RA)
867 factor2 = (RB)
868 term = (RC)
869 # read all inputs before writing to any outputs in case
870 # an input overlaps with an output register.
871 (RT) = gfpmadd(factor1, factor2, term)
872 (RS) = gfpmsubr(factor1, factor2, term)
873 ```
874
875 # bitmatrix
876
877 ```
878 uint64_t bmatflip(uint64_t RA)
879 {
880 uint64_t x = RA;
881 x = shfl64(x, 31);
882 x = shfl64(x, 31);
883 x = shfl64(x, 31);
884 return x;
885 }
886 uint64_t bmatxor(uint64_t RA, uint64_t RB)
887 {
888 // transpose of RB
889 uint64_t RBt = bmatflip(RB);
890 uint8_t u[8]; // rows of RA
891 uint8_t v[8]; // cols of RB
892 for (int i = 0; i < 8; i++) {
893 u[i] = RA >> (i*8);
894 v[i] = RBt >> (i*8);
895 }
896 uint64_t x = 0;
897 for (int i = 0; i < 64; i++) {
898 if (pcnt(u[i / 8] & v[i % 8]) & 1)
899 x |= 1LL << i;
900 }
901 return x;
902 }
903 uint64_t bmator(uint64_t RA, uint64_t RB)
904 {
905 // transpose of RB
906 uint64_t RBt = bmatflip(RB);
907 uint8_t u[8]; // rows of RA
908 uint8_t v[8]; // cols of RB
909 for (int i = 0; i < 8; i++) {
910 u[i] = RA >> (i*8);
911 v[i] = RBt >> (i*8);
912 }
913 uint64_t x = 0;
914 for (int i = 0; i < 64; i++) {
915 if ((u[i / 8] & v[i % 8]) != 0)
916 x |= 1LL << i;
917 }
918 return x;
919 }
920
921 ```
922
923 # Already in POWER ISA
924
925 ## count leading/trailing zeros with mask
926
927 in v3.1 p105
928
929 ```
930 count = 0
931 do i = 0 to 63 if((RB)i=1) then do
932 if((RS)i=1) then break end end count ← count + 1
933 RA ← EXTZ64(count)
934 ```
935
936 ## bit deposit
937
938 vpdepd VRT,VRA,VRB, identical to RV bitmamip bdep, found already in v3.1 p106
939
940 do while(m < 64)
941 if VSR[VRB+32].dword[i].bit[63-m]=1 then do
942 result = VSR[VRA+32].dword[i].bit[63-k]
943 VSR[VRT+32].dword[i].bit[63-m] = result
944 k = k + 1
945 m = m + 1
946
947 ```
948
949 uint_xlen_t bdep(uint_xlen_t RA, uint_xlen_t RB)
950 {
951 uint_xlen_t r = 0;
952 for (int i = 0, j = 0; i < XLEN; i++)
953 if ((RB >> i) & 1) {
954 if ((RA >> j) & 1)
955 r |= uint_xlen_t(1) << i;
956 j++;
957 }
958 return r;
959 }
960
961 ```
962
963 # bit extract
964
965 other way round: identical to RV bext, found in v3.1 p196
966
967 ```
968 uint_xlen_t bext(uint_xlen_t RA, uint_xlen_t RB)
969 {
970 uint_xlen_t r = 0;
971 for (int i = 0, j = 0; i < XLEN; i++)
972 if ((RB >> i) & 1) {
973 if ((RA >> i) & 1)
974 r |= uint_xlen_t(1) << j;
975 j++;
976 }
977 return r;
978 }
979 ```
980
981 # centrifuge
982
983 found in v3.1 p106 so not to be added here
984
985 ```
986 ptr0 = 0
987 ptr1 = 0
988 do i = 0 to 63
989 if((RB)i=0) then do
990 resultptr0 = (RS)i
991 end
992 ptr0 = ptr0 + 1
993 if((RB)63-i==1) then do
994 result63-ptr1 = (RS)63-i
995 end
996 ptr1 = ptr1 + 1
997 RA = result
998 ```
999
1000 # bit to byte permute
1001
1002 similar to matrix permute in RV bitmanip, which has XOR and OR variants,
1003 these perform a transpose.
1004
1005 do j = 0 to 7
1006 do k = 0 to 7
1007 b = VSR[VRB+32].dword[i].byte[k].bit[j]
1008 VSR[VRT+32].dword[i].byte[j].bit[k] = b
1009