77705be5b8a513f92e201325bed546f74e0868c1
[libreriscv.git] / openpower / sv / rfc / ls002 / discussion.mdwn
1 # Links
2
3 * [[sv/int_fp_mv]]
4
5 # v3.1 Prefixed instructions
6
7 **PREFIXED INSTRUCTIONS ARE 100% OUT OF SCOPE OF THIS RFC**.
8
9 please do not extend the scope of this RFC beyond the two
10 32-bit instructions.
11
12 # Questions (09 oct 2022)
13
14 **Substantive or semi-substantive:**
15
16 **
17 1. What is "BF16"? It seems not to be mentioned in the architecture spec.
18 The architecture spec (VSX chapter) defines two 16-bit binary FP formats.
19 Judging by the way the RFC uses "BF16", I think it means what the VSX
20 chapter calls "bfloat16", which has the exponent in the same bits as
21 single format. This should be clarified, and the corresponding format
22 will need to be defined in Section 4.3.1 (Data Format).
23 **
24
25 BF16 seems to be an equally commonly used term for bfloat16, yes.
26 done, added.
27
28 **
29 2. For fishmv, what happens if the value supplied in the FPR is not
30 representable in single format?
31 **
32
33 I'm assuming you're asking what happens if something like `f3 = 0x0080_0000_0000_0001` and `fishmv f3, 0xABCD` is executed:
34 Exactly the same thing as if the FPR value isn't representable in f32 format for stfs -- the value stored is defined by the `SINGLE` pseudo-code function, no fp status bits are set. Likewise, the input f32 value for fishmv is determined by the `SINGLE` pseudo-code function, no fp status bits are set, fishmv then replaces the lower 16 bits of the f32 value with the immediate, then converts the resulting f32 back to f64 using `DOUBLE` and stores it in FRT.
35
36 Ultimately, these are immediates, statically-compiled. if the developer
37 wants "invalid" data, statically-compiled into a binary, it is reasonable
38 to assume they have good reasons for doing so.
39
40 **
41 3. The first clause of the verbal description of fishmv seems to assume
42 that the contents of the specified register were produced by fmvis.
43 Is there any other use of fishmv? If yes, the verbal description should
44 be generalized. If no, the wording should be explicit about this use.
45 **
46
47 given that the bits are spread out in `DOUBLE()` format it seems unlikely.
48 if the bits were placed contiguously (sequentially) then it would indeed
49 be a different matter: temporary storage for constants to be transferred
50 directly (unmodified) to GPRs for example. but DOUBLE() formatting
51 makes that not possible unfortunately.
52
53 however alternative uses by programmers cannot be ruled out. it may
54 be the case that despite the format being DOUBLE() there is in fact
55 an FPR->GPR transfer instruction that can at least get the 32-bits
56 of immediate back out as a contiguous undamaged block. thus adding
57 notes that may turn out to be restrictive is inadviseable.
58
59 additional note: DOUBLE() has been noted to perform normalisation.
60 this would make alternative uses even more unlikely.
61
62 **
63 4. The instruction names and mnemonics should be more consistent with the
64 architecture spec. In particular, the architecture spec tends to use
65 "Move" for instructions that transfer data between registers. Here are
66 two approaches.
67 **
68
69 ```
70 a. Model the instructions on li (Load Immediate), an extended mnemonic for
71 addi.
72 fmvis --> Floating Load Immediate Single (flis)
73 fishmv --> Floating Load Immediate Single Lower (flisl)
74 Under this approach the new instructions would belong in their own
75 3-level section, after Section 4.6.4 (Floating-Point Load and Store
76 Double Pair Instructions).
77
78 b. Model the instructions on lxvkq (and the existing FP Load instructions)
79 fmvis --> Load Floating-Point Single Immediate (lfsi)
80 fishmv --> Load Floating-Point Single Immediate Lower (lfsil)
81 Under this approach the new instructions would belong in Section 4.6.2
82 (Floating-Point Load Instructions), with the Load Floating-Point
83 Single instructions.
84
85 I prefer (a), because I think it's confusing to treat these instructions,
86 which don't access storage, like instructions that do access storage.
87 ```
88
89 the fact that they bypass D-Cache and correspondingly raise no flags or
90 exceptions is the connection to `ld`. despite that i like (a) as well
91 although for purely non-technical reasons (more "memorable") i (Luke) do love
92 the two mnemonics `flis fishmv` :)
93
94 we picked "s" on the end of `fmvis` (`flis`) because it is "shifted"
95 (like `oris`), not "single".
96
97 **Other:**
98
99 **
100 1. The RFC should be based on the current version of the architecture,
101 which is V. 3.1B. I believe this has no effect on the substance of the
102 RFC. But it affects the identities of the instruction-list appendices,
103 which in V. 3.1B are E, F, G, and H.
104 **
105
106 acknowledged. will edit. done v3.1B, done EFGH.
107
108 **
109 2. Additional affected sections are 1.6.1.6 (additional line for DX-form),
110 1.6.2 (additional use for d0,d1,d2), and Appendix D (Opcode Maps).
111 **
112
113 ditto. done 1.6.2 (FRS)
114
115 missed the addition to 1.6.1.6 (DX-Form). done
116
117 **
118 3. Does the last line of the Summary apply to both instructions or just to
119 fishmv? I can see why you would want a prefixed version of fmvis, which
120 would supply the entire 32-bit FP single format value and avoid the need
121 for fishmv. Why would you want a prefixed version of fishmv?
122 **
123
124 the more interesting initial question is, "why no `pflis`?" and
125 the answer to that is "because flis and fishmv do exactly the same
126 job in exactly the same amount of bits" (64).
127 `flis` fills in a BF16, `fishmv` extends to an FP32,
128 and `pflis` would fill in an FP32 in exactly the same amount
129 of space, making it a redundant encoding. this just leaves the
130 purpose of `pfishmv` to be to extend (fill) an FP32 out to an FP64.
131
132 that said: the next phase of whether it is worthwhile is to count the
133 I/D-Cache usage.
134 the analysis counting instructions and D-Cache Loads actually shows
135 that whilst the initial idea for `pfishmv` would be to fill in the
136 remaining mantissa and high exponent bits to complete a full FP64,
137 the cost of doing so is:
138
139 * 1x32 flis
140 * 1x32 fishmv
141 * 1x64 pfishmv
142
143 which totals QTY 4of 32-bits (across I-Cache) which is actually *more* than just `lfd`,
144 which is only QTY 3of 32-bits (across both I-Cache and D-Cache).
145 the only technical reason therefore is
146 to avoid D-Cache entirely, just like the 5-instruction sequence
147 that writes a 64-bit GPR only from immediates
148 (li, oris, rldicl, li, oris) although that is justifiable
149 as a critical means of bootstrapping (constructing 64 bit addresses)
150
151 **
152 4. The Motivation says "Even clearing an FPR to zero presently requires Load".
153 What about fsub FRT,FRA,FRA?
154 **
155
156 That doesn't actually clear FRT to zero because `NaN - NaN` and
157 `Inf - Inf` both equal `NaN`, not zero. Also, with "round to -inf",
158 0 - 0 produces -0, not 0. Thus use of `fsub` is critically
159 dependent on the contents of registers and status flags, and
160 would require more instructions, where `flis` is not.
161
162 **
163 5. "FRS" for both instructions should be changed to "FRT". ("FRS" normally
164 specifies a source register; see Section 1.6.2. I understand that for
165 fishmv the specified register is both source and target. But "TX,T"
166 provides precedent for using the "target form" of register specification
167 for such cases.)
168 6. The RTL for fmvis should use left arrow for assignment.
169 **
170
171 RTL error corrected. ack on FRT. done.
172
173 **
174 7. The architecture spec (VSX chapter) uses "BFP32" and "BFP64", and the
175 lower-case versions thereof, for the 32-bit and 64-bit binary FP formats.
176 The RFC's "FP32" and "FP64" (and lower case of same) should be made
177 consistent with this usage.
178 **
179
180 acknowledged. done.
181
182 **
183 8. More generally, the style of the verbal description for both instructions
184 should be made more consistent with the style used in the architecture
185 spec.
186 **
187
188 yes Paul kindly gave advice on that. done.
189
190 **
191 9. In the first clause of the verbal description of fishmv I think "inserted
192 into FRS" should be "inserted into the low-order half of the single-
193 format value corresponding to the contents of FRT".
194 A similar change should be made in the second sentence of the next
195 paragraph.
196 **
197
198 ack. done. (actually, removed the duplicate sentence/phrase)
199
200 **
201 10. The paragraph before the Programming Note in the fishmv description
202 says "This is strategically similar to how li combined with oris is used
203 to construct 32-bit Integers". li combined with oris works only if bit 16
204 of the desired 32-bit integer is 0. (A better way to construct a 32-bit
205 integer is to use pli (extended mnemonic for paddi).)
206 **
207
208 it is unlikely that we (Libre-SOC) will initially implement any of v3.1
209 64-bit prefixing (it cannot be Vectorised, resulting unacceptably in
210 96-bit instructions which we decided is too much). that said, the LD
211 addressing immediate extended range is extremely useful
212 (along with the PC-relative modes and also other instructions
213 such as paddi).
214
215 bottom line we have not yet given much thought to using any v3.1 Scalar
216 Prefixed instructions, at all, so don't even know most of what they do.
217
218 that said: if `paddi` puts 32-bits into a GPR, and does so in 64 bits,
219 is it not similarly redundant i.e. exactly the same amount of space
220 used as two 32-bit instructions? if `paddi` puts *more* than 32 bits
221 into a GPR then it is not the same and would not make a suitable
222 comparative analogy as a Programmer's Note.
223
224 # Questions (11 Oct)
225
226 **Should the use of DOUBLE() be bypassed?**
227
228 No, because we specifically want to be able to express all possible f32 values,
229 including denormal values. those denormal values require normalization to get
230 the corresponding f64 values.