(no commit message)
[libreriscv.git] / openpower / sv / svp64.mdwn
1 [[!tag standards]]
2
3 # DRAFT SVP64 for OpenPOWER ISA v3.0B
4
5 * **DRAFT STATUS v0.1 18sep2021** Release notes <https://bugs.libre-soc.org/show_bug.cgi?id=699>
6
7 This document describes [[SV|sv]] augmentation of the [[OpenPOWER|openpower]] v3.0B [[ISA|openpower/isa/]]. It is in Draft Status and
8 will be submitted to the [[!wikipedia OpenPOWER_Foundation]] ISA WG
9 via the External RFC Process.
10
11 Credits and acknowledgements:
12
13 * Luke Leighton
14 * Jacob Lifshay
15 * Hendrik Boom
16 * Richard Wilbur
17 * Alexandre Oliva
18 * Cesar Strauss
19 * NLnet Foundation, for funding
20 * OpenPOWER Foundation
21 * Paul Mackerras
22 * Toshaan Bharvani
23 * IBM for the Power ISA itself
24
25 Links:
26
27 * <http://lists.libre-soc.org/pipermail/libre-soc-dev/2020-December/001498.html>>
28 * [[svp64/discussion]]
29 * [[svp64/appendix]]
30 * <http://lists.libre-soc.org/pipermail/libre-soc-dev/2020-December/001650.html>
31 * <https://bugs.libre-soc.org/show_bug.cgi?id=550>
32 * <https://bugs.libre-soc.org/show_bug.cgi?id=573> TODO elwidth "infinite" discussion
33 * <https://bugs.libre-soc.org/show_bug.cgi?id=574> Saturating description.
34
35 Table of contents
36
37 [[!toc]]
38
39 # Introduction
40
41 This document focuses on the encoding of [[SV|sv]], and assumes familiarity with the same. It does not cover how SV works (merely the instruction encoding), and is therefore best read in conjunction with the [[sv/overview]].
42
43 All bit numbers are in MSB0 form (the bits are numbered from 0 at the MSB
44 and counting up as you move to the LSB end). All bit ranges are inclusive
45 (so `4:6` means bits 4, 5, and 6).
46
47 64-bit instructions are split into two 32-bit words, the prefix and the
48 suffix. The prefix always comes before the suffix in PC order.
49
50 | 0:5 | 6:31 | 0:31 |
51 |--------|--------------|--------------|
52 | EXT01 | v3.1 Prefix | v3.1 Suffix |
53
54 svp64 fits into the "reserved" portions of the v3.1 prefix, making it possible for svp64, v3.0B (or v3.1 including 64 bit prefixed) instructions to co-exist in the same binary without conflict.
55
56 Subset implementations in hardware are permitted, as long as certain
57 rules are followed, allowing for full soft-emulation including future
58 revisions. Details in the [[svp64/appendix]].
59
60 ## SVP64 encoding features
61
62 A number of features need to be compacted into a very small space of only 24 bits:
63
64 * Independent per-register Scalar/Vector tagging and range extension on every register
65 * Element width overrides on both source and destination
66 * Predication on both source and destination
67 * Two different sources of predication: INT and CR Fields
68 * SV Modes including saturation (for Audio, Video and DSP), mapreduce, fail-first and
69 predicate-result mode.
70
71 This document focusses specifically on how that fits into available space. The [[svp64/appendix]] explains more of the details, whilst the [[sv/overview]] gives the basics.
72
73 # Definition of Reserved in this spec.
74
75 For the new fields added in SVP64, instructions that have any of their
76 fields set to a reserved value must cause an illegal instruction trap,
77 to allow emulation of future instruction sets, or for subsets of SVP64
78 to be implemented in hardware and the rest emulated.
79 This includes SVP64 SPRs: reading or writing values which are not
80 supported in hardware must also raise illegal instruction traps
81 in order to allow emulation.
82 Unless otherwise stated, reserved values are always all zeros.
83
84 This is unlike OpenPower ISA v3.1, which in many instances does not require a trap if reserved fields are nonzero. Where the standard OpenPOWER definition
85 is intended the red keyword `RESERVED` is used.
86
87 # Scalar Identity Behaviour
88
89 SVP64 is designed so that when the prefix is all zeros, and
90 VL=1, no effect or
91 influence occurs (no augmentation) such that all standard OpenPOWER
92 v3.0/v3 1 instructions covered by the prefix are "unaltered". This is termed `scalar identity behaviour` (based on the mathematical definition for "identity", as in, "identity matrix" or better "identity transformation").
93
94 Note that this is completely different from when VL=0. VL=0 turns all operations under its influence into `nops` (regardless of the prefix)
95 whereas when VL=1 and the SV prefix is all zeros, the operation simply acts as if SV had not been applied at all to the instruction (an "identity transformation").
96
97 # Register Naming and size
98
99 SV Registers are simply the INT, FP and CR register files extended
100 linearly to larger sizes; SV Vectorisation iterates sequentially through these registers.
101
102 Where the integer regfile in standard scalar
103 OpenPOWER v3.0B/v3.1B is r0 to r31, SV extends this as r0 to r127.
104 Likewise FP registers are extended to 128 (fp0 to fp127), and CRs are
105 extended to 128 entries, CR0 thru CR127.
106
107 The names of the registers therefore reflects a simple linear extension
108 of the OpenPOWER v3.0B / v3.1B register naming, and in hardware this
109 would be reflected by a linear increase in the size of the underlying
110 SRAM used for the regfiles.
111
112 Note: when an EXTRA field (defined below) is zero, SV is deliberately designed
113 so that the register fields are identical to as if SV was not in effect
114 i.e. under these circumstances (EXTRA=0) the register field names RA,
115 RB etc. are interpreted and treated as v3.0B / v3.1B scalar registers. This is part of
116 `scalar identity behaviour` described above.
117
118 ## Future expansion.
119
120 With the way that EXTRA fields are defined and applied to register fields,
121 future versions of SV may involve 256 or greater registers. To accommodate 256 registers, numbering of Vectors will simply shift up by one bit, without
122 requiring additional prefix bits. Backwards binary compatibility may be achieved with a PCR bit (Program Compatibility Register). Beyond this, further discussion is out of scope for this version of svp64.
123
124 # Remapped Encoding (`RM[0:23]`)
125
126 To allow relatively easy remapping of which portions of the Prefix Opcode
127 Map are used for SVP64 without needing to rewrite a large portion of the
128 SVP64 spec, a mapping is defined from the OpenPower v3.1 prefix bits to
129 a new 24-bit Remapped Encoding denoted `RM[0]` at the MSB to `RM[23]`
130 at the LSB.
131
132 The mapping from the OpenPower v3.1 prefix bits to the Remapped Encoding
133 is defined in the Prefix Fields section.
134
135 ## Prefix Opcode Map (64-bit instruction encoding)
136
137 In the original table in the v3.1B OpenPOWER ISA Spec on p1350, Table 12, prefix bits 6:11 are shown, with their allocations to different v3.1B pregix "modes".
138
139 The table below hows both PowerISA v3.1 instructions as well as new SVP instructions fit;
140 empty spaces are yet-to-be-allocated Illegal Instructions.
141
142 | 6:11 | ---000 | ---001 | ---010 | ---011 | ---100 | ---101 | ---110 | ---111 |
143 |------|--------|--------|--------|--------|--------|--------|--------|--------|
144 |000---| 8LS | 8LS | 8LS | 8LS | 8LS | 8LS | 8LS | 8LS |
145 |001---| | | | | | | | |
146 |010---| 8RR | | | | `SVP64`| `SVP64`| `SVP64`| `SVP64`|
147 |011---| | | | | `SVP64`| `SVP64`| `SVP64`| `SVP64`|
148 |100---| MLS | MLS | MLS | MLS | MLS | MLS | MLS | MLS |
149 |101---| | | | | | | | |
150 |110---| MRR | | | | `SVP64`| `SVP64`| `SVP64`| `SVP64`|
151 |111---| | MMIRR | | | `SVP64`| `SVP64`| `SVP64`| `SVP64`|
152
153 Note that by taking up a block of 16, where in every case bits 7 and 9 are set, this allows svp64 to utilise four bits of the v3.1B Prefix space and "allocate" them to svp64's Remapped Encoding field, instead.
154
155 ## Prefix Fields
156
157 To "activate" svp64 (in a way that does not conflict with v3.1B 64 bit Prefix mode), fields within the v3.1B Prefix Opcode Map are set
158 (see Prefix Opcode Map, above), leaving 24 bits "free" for use by SV.
159 This is achieved by setting bits 7 and 9 to 1:
160
161 | Name | Bits | Value | Description |
162 |------------|---------|-------|--------------------------------|
163 | EXT01 | `0:5` | `1` | Indicates Prefixed 64-bit |
164 | `RM[0]` | `6` | | Bit 0 of Remapped Encoding |
165 | SVP64_7 | `7` | `1` | Indicates this is SVP64 |
166 | `RM[1]` | `8` | | Bit 1 of Remapped Encoding |
167 | SVP64_9 | `9` | `1` | Indicates this is SVP64 |
168 | `RM[2:23]` | `10:31` | | Bits 2-23 of Remapped Encoding |
169
170 Laid out bitwise, this is as follows, showing how the 32-bits of the prefix
171 are constructed:
172
173 | 0:5 | 6 | 7 | 8 | 9 | 10:31 |
174 |--------|-------|---|-------|---|----------|
175 | EXT01 | RM | 1 | RM | 1 | RM |
176 | 000001 | RM[0] | 1 | RM[1] | 1 | RM[2:23] |
177
178 Following the prefix will be the suffix: this is simply a 32-bit v3.0B / v3.1
179 instruction. That instruction becomes "prefixed" with the SVP context: the
180 Remapped Encoding field (RM).
181
182 It is important to note that unlike v3.1 64-bit prefixed instructions
183 there is insufficient space in `RM` to provide identification of
184 any SVP64 Fields without first partially decoding the
185 32-bit suffix. Similar to the "Forms" (X-Form, D-Form) the
186 `RM` format is individually associated with every instruction.
187
188 Extreme caution and care must therefore be taken
189 when extending SVP64 in future, to not create unnecessary relationships
190 between prefix and suffix that could complicate decoding, adding latency.
191
192 # Common RM fields
193
194 The following fields are common to all Remapped Encodings:
195
196 | Field Name | Field bits | Description |
197 |------------|------------|----------------------------------------|
198 | MASKMODE | `0` | Execution (predication) Mask Kind |
199 | MASK | `1:3` | Execution Mask |
200 | SUBVL | `8:9` | Sub-vector length |
201
202 The following fields are optional or encoded differently depending
203 on context after decoding of the Scalar suffix:
204
205 | Field Name | Field bits | Description |
206 |------------|------------|----------------------------------------|
207 | ELWIDTH | `4:5` | Element Width |
208 | ELWIDTH_SRC | `6:7` | Element Width for Source |
209 | EXTRA | `10:18` | Register Extra encoding |
210 | MODE | `19:23` | changes Vector behaviour |
211
212 * MODE changes the behaviour of the SV operation (result saturation, mapreduce)
213 * SUBVL groups elements together into vec2, vec3, vec4 for use in 3D and Audio/Video DSP work
214 * ELWIDTH and ELWIDTH_SRC overrides the instruction's destination and source operand width
215 * MASK (and MASK_SRC) and MASKMODE provide predication (two types of sources: scalar INT and Vector CR).
216 * Bits 10 to 18 (EXTRA) are further decoded depending on the RM category for the instruction, which is determined only by decoding the Scalar 32 bit suffix.
217
218 Similar to OpenPOWER `X-Form` etc. EXTRA bits are given designations, such as `RM-1P-3S1D` which indicates for this example that the operation is to be single-predicated and that there are 3 source operand EXTRA tags and one destination operand tag.
219
220 Note that if ELWIDTH != ELWIDTH_SRC this may result in reduced performance or increased latency in some implementations due to lane-crossing.
221
222 # Mode
223
224 Mode is an augmentation of SV behaviour. Different types of
225 instructions have different needs, similar to Power ISA
226 v3.1 64 bit prefix 8LS and MTRR formats apply to different
227 instruction types. Modes include Reduction, Iteration, arithmetic
228 saturation, and Fail-First. More specific details in each
229 section and in the [[svp64/appendix]]
230
231 * For condition register operations see [[sv/cr_ops]]
232 * For LD/ST Modes, see [[sv/ldst]].
233 * For Branch modes, see [[sv/branches]]
234 * For arithmetic and logical, see [[sv/normal]]
235
236 # ELWIDTH Encoding
237
238 Default behaviour is set to 0b00 so that zeros follow the convention of
239 `scalar identity behaviour`. In this case it means that elwidth overrides
240 are not applicable. Thus if a 32 bit instruction operates on 32 bit,
241 `elwidth=0b00` specifies that this behaviour is unmodified. Likewise
242 when a processor is switched from 64 bit to 32 bit mode, `elwidth=0b00`
243 states that, again, the behaviour is not to be modified.
244
245 Only when elwidth is nonzero is the element width overridden to the
246 explicitly required value.
247
248 ## Elwidth for Integers:
249
250 | Value | Mnemonic | Description |
251 |-------|----------------|------------------------------------|
252 | 00 | DEFAULT | default behaviour for operation |
253 | 01 | `ELWIDTH=w` | Word: 32-bit integer |
254 | 10 | `ELWIDTH=h` | Halfword: 16-bit integer |
255 | 11 | `ELWIDTH=b` | Byte: 8-bit integer |
256
257 This encoding is chosen such that the byte width may be computed as `(3-ew)<<8`
258
259 ## Elwidth for FP Registers:
260
261 | Value | Mnemonic | Description |
262 |-------|----------------|------------------------------------|
263 | 00 | DEFAULT | default behaviour for FP operation |
264 | 01 | `ELWIDTH=f32` | 32-bit IEEE 754 Single floating-point |
265 | 10 | `ELWIDTH=f16` | 16-bit IEEE 754 Half floating-point |
266 | 11 | `ELWIDTH=bf16` | Reserved for `bf16` |
267
268 Note:
269 [`bf16`](https://en.wikipedia.org/wiki/Bfloat16_floating-point_format)
270 is reserved for a future implementation of SV
271
272 Note that any IEEE754 FP operation in Power ISA ending in "s" (`fadds`) shall
273 perform its operation at **half** the ELWIDTH then padded back out
274 to ELWIDTH. `sv.fadds/ew=f32` shall perform an IEEE754 FP16 operation that is then "padded" to fill out to an IEEE754 FP32. When ELWIDTH=DEFAULT
275 clearly the behaviour of `sv.fadds` is performed at 32-bit accuracy
276 then padded back out to fit in IEEE754 FP64, exactly as for Scalar
277 v3.0B "single" FP. Any FP operation ending in "s" where ELWIDTH=f16
278 or ELWIDTH=bf16 is reserved and must raise an illegal instruction
279 (IEEE754 FP8 or BF8 are not defined).
280
281 ## Elwidth for CRs:
282
283 Element-width overrides for CR Fields has no meaning. The bits
284 are therefore used for other purposes, or when Rc=1, the Elwidth
285 applies to the result being tested, but not to the Vector of CR Fields.
286
287
288 # SUBVL Encoding
289
290 the default for SUBVL is 1 and its encoding is 0b00 to indicate that
291 SUBVL is effectively disabled (a SUBVL for-loop of only one element). this
292 lines up in combination with all other "default is all zeros" behaviour.
293
294 | Value | Mnemonic | Subvec | Description |
295 |-------|-----------|---------|------------------------|
296 | 00 | `SUBVL=1` | single | Sub-vector length of 1 |
297 | 01 | `SUBVL=2` | vec2 | Sub-vector length of 2 |
298 | 10 | `SUBVL=3` | vec3 | Sub-vector length of 3 |
299 | 11 | `SUBVL=4` | vec4 | Sub-vector length of 4 |
300
301 The SUBVL encoding value may be thought of as an inclusive range of a
302 sub-vector. SUBVL=2 represents a vec2, its encoding is 0b01, therefore
303 this may be considered to be elements 0b00 to 0b01 inclusive.
304
305 # MASK/MASK_SRC & MASKMODE Encoding
306
307 TODO: rename MASK_KIND to MASKMODE
308
309 One bit (`MASKMODE`) indicates the mode: CR or Int predication. The two
310 types may not be mixed.
311
312 Special note: to disable predication this field must
313 be set to zero in combination with Integer Predication also being set
314 to 0b000. this has the effect of enabling "all 1s" in the predicate
315 mask, which is equivalent to "not having any predication at all"
316 and consequently, in combination with all other default zeros, fully
317 disables SV (`scalar identity behaviour`).
318
319 `MASKMODE` may be set to one of 2 values:
320
321 | Value | Description |
322 |-----------|------------------------------------------------------|
323 | 0 | MASK/MASK_SRC are encoded using Integer Predication |
324 | 1 | MASK/MASK_SRC are encoded using CR-based Predication |
325
326 Integer Twin predication has a second set of 3 bits that uses the same
327 encoding thus allowing either the same register (r3 or r10) to be used
328 for both src and dest, or different regs (one for src, one for dest).
329
330 Likewise CR based twin predication has a second set of 3 bits, allowing
331 a different test to be applied.
332
333 Note that it is assumed that Predicate Masks (whether INT or CR)
334 are read *before* the operations proceed. In practice (for CR Fields)
335 this creates an unnecessary block on parallelism. Therefore,
336 it is up to the programmer to ensure that the CR fields used as
337 Predicate Masks are not being written to by any parallel Vector Loop.
338 Doing so results in **UNDEFINED** behaviour, according to the definition
339 outlined in the OpenPOWER v3.0B Specification.
340
341 Hardware Implementations are therefore free and clear to delay reading
342 of individual CR fields until the actual predicated element operation
343 needs to take place, safe in the knowledge that no programmer will
344 have issued a Vector Instruction where previous elements could have
345 overwritten (destroyed) not-yet-executed CR-Predicated element operations.
346
347 ## Integer Predication (MASKMODE=0)
348
349 When the predicate mode bit is zero the 3 bits are interpreted as below.
350 Twin predication has an identical 3 bit field similarly encoded.
351
352 `MASK` and `MASK_SRC` may be set to one of 8 values, to provide the following meaning:
353
354 | Value | Mnemonic | Element `i` enabled if: |
355 |-------|----------|------------------------------|
356 | 000 | ALWAYS | predicate effectively all 1s |
357 | 001 | 1 << R3 | `i == R3` |
358 | 010 | R3 | `R3 & (1 << i)` is non-zero |
359 | 011 | ~R3 | `R3 & (1 << i)` is zero |
360 | 100 | R10 | `R10 & (1 << i)` is non-zero |
361 | 101 | ~R10 | `R10 & (1 << i)` is zero |
362 | 110 | R30 | `R30 & (1 << i)` is non-zero |
363 | 111 | ~R30 | `R30 & (1 << i)` is zero |
364
365 r10 and r30 are at the high end of temporary and unused registers, so as not to interfere with register allocation from ABIs.
366
367 ## CR-based Predication (MASKMODE=1)
368
369 When the predicate mode bit is one the 3 bits are interpreted as below.
370 Twin predication has an identical 3 bit field similarly encoded.
371
372 `MASK` and `MASK_SRC` may be set to one of 8 values, to provide the following meaning:
373
374 | Value | Mnemonic | Element `i` is enabled if |
375 |-------|----------|--------------------------|
376 | 000 | lt | `CR[offs+i].LT` is set |
377 | 001 | nl/ge | `CR[offs+i].LT` is clear |
378 | 010 | gt | `CR[offs+i].GT` is set |
379 | 011 | ng/le | `CR[offs+i].GT` is clear |
380 | 100 | eq | `CR[offs+i].EQ` is set |
381 | 101 | ne | `CR[offs+i].EQ` is clear |
382 | 110 | so/un | `CR[offs+i].FU` is set |
383 | 111 | ns/nu | `CR[offs+i].FU` is clear |
384
385 CR based predication. TODO: select alternate CR for twin predication? see
386 [[discussion]] Overlap of the two CR based predicates must be taken
387 into account, so the starting point for one of them must be suitably
388 high, or accept that for twin predication VL must not exceed the range
389 where overlap will occur, *or* that they use the same starting point
390 but select different *bits* of the same CRs
391
392 `offs` is defined as CR32 (4x8) so as to mesh cleanly with Vectorised Rc=1 operations (see below). Rc=1 operations start from CR8 (TBD).
393
394 Notes from Jacob: CR6-7 allows Scalar ops to refer to these without having to do a transfer (v3.0B). Another idea: the DepMatrices treat scalar CRs as one "thing" and treat the Vectors as a completely separate "thing". also: do modulo arithmetic on allocation of CRs.
395
396 # Extra Remapped Encoding
397
398 Shows all instruction-specific fields in the Remapped Encoding `RM[10:18]` for all instruction variants. Note that due to the very tight space, the encoding mode is *not* included in the prefix itself. The mode is "applied", similar to OpenPOWER "Forms" (X-Form, D-Form) on a per-instruction basis, and, like "Forms" are given a designation (below) of the form `RM-nP-nSnD`. The full list of which instructions use which remaps is here [[opcode_regs_deduped]]. (*Machine-readable CSV files have been provided which will make the task of creating SV-aware ISA decoders easier*).
399
400 These mappings are part of the SVP64 Specification in exactly the same
401 way as X-Form, D-Form. New Scalar instructions added to the Power ISA
402 will need a corresponding SVP64 Mapping, which can be derived by-rote
403 from examining the Register "Profile" of the instruction.
404
405 There are two categories: Single and Twin Predication.
406 Due to space considerations further subdivision of Single Predication
407 is based on whether the number of src operands is 2 or 3. With only
408 9 bits available some compromises have to be made.
409
410 * `RM-1P-3S1D` Single Predication dest/src1/2/3, applies to 4-operand instructions (fmadd, isel, madd).
411 * `RM-1P-2S1D` Single Predication dest/src1/2 applies to 3-operand instructions (src1 src2 dest)
412 * `RM-2P-1S1D` Twin Predication (src=1, dest=1)
413 * `RM-2P-2S1D` Twin Predication (src=2, dest=1) primarily for LDST (Indexed)
414 * `RM-2P-1S2D` Twin Predication (src=1, dest=2) primarily for LDST Update
415
416 ## RM-1P-3S1D
417
418 | Field Name | Field bits | Description |
419 |------------|------------|----------------------------------------|
420 | Rdest\_EXTRA2 | `10:11` | extends Rdest (R\*\_EXTRA2 Encoding) |
421 | Rsrc1\_EXTRA2 | `12:13` | extends Rsrc1 (R\*\_EXTRA2 Encoding) |
422 | Rsrc2\_EXTRA2 | `14:15` | extends Rsrc2 (R\*\_EXTRA2 Encoding) |
423 | Rsrc3\_EXTRA2 | `16:17` | extends Rsrc3 (R\*\_EXTRA2 Encoding) |
424 | EXTRA2_MODE | `18` | used by `divmod2du` and `madded` for RS |
425
426 These are for 3 operand in and either 1 or 2 out instructions.
427 3-in 1-out includes `madd RT,RA,RB,RC`. (DRAFT) instructions
428 such as `madded` have an implicit second destination, RS, the
429 selection of which is determined by bit 18.
430
431 ## RM-1P-2S1D
432
433 | Field Name | Field bits | Description |
434 |------------|------------|-------------------------------------------|
435 | Rdest\_EXTRA3 | `10:12` | extends Rdest |
436 | Rsrc1\_EXTRA3 | `13:15` | extends Rsrc1 |
437 | Rsrc2\_EXTRA3 | `16:18` | extends Rsrc3 |
438
439 These are for 2 operand 1 dest instructions, such as `add RT, RA,
440 RB`. However also included are unusual instructions with an implicit dest
441 that is identical to its src reg, such as `rlwinmi`.
442
443 Normally, with instructions such as `rlwinmi`, the scalar v3.0B ISA would not have sufficient bit fields to allow
444 an alternative destination. With SV however this becomes possible.
445 Therefore, the fact that the dest is implicitly also a src should not
446 mislead: due to the *prefix* they are different SV regs.
447
448 * `rlwimi RA, RS, ...`
449 * Rsrc1_EXTRA3 applies to RS as the first src
450 * Rsrc2_EXTRA3 applies to RA as the secomd src
451 * Rdest_EXTRA3 applies to RA to create an **independent** dest.
452
453 With the addition of the EXTRA bits, the three registers
454 each may be *independently* made vector or scalar, and be independently
455 augmented to 7 bits in length.
456
457 ## RM-2P-1S1D/2S
458
459 | Field Name | Field bits | Description |
460 |------------|------------|----------------------------|
461 | Rdest_EXTRA3 | `10:12` | extends Rdest |
462 | Rsrc1_EXTRA3 | `13:15` | extends Rsrc1 |
463 | MASK_SRC | `16:18` | Execution Mask for Source |
464
465 `RM-2P-2S` is for `stw` etc. and is Rsrc1 Rsrc2.
466
467 ## RM-1P-2S1D
468
469 single-predicate, three registers (2 read, 1 write)
470
471 | Field Name | Field bits | Description |
472 |------------|------------|----------------------------|
473 | Rdest_EXTRA3 | `10:12` | extends Rdest |
474 | Rsrc1_EXTRA3 | `13:15` | extends Rsrc1 |
475 | Rsrc2_EXTRA3 | `16:18` | extends Rsrc2 |
476
477 ## RM-2P-2S1D/1S2D/3S
478
479 The primary purpose for this encoding is for Twin Predication on LOAD
480 and STORE operations. see [[sv/ldst]] for detailed anslysis.
481
482 RM-2P-2S1D:
483
484 | Field Name | Field bits | Description |
485 |------------|------------|----------------------------|
486 | Rdest_EXTRA2 | `10:11` | extends Rdest (R\*\_EXTRA2 Encoding) |
487 | Rsrc1_EXTRA2 | `12:13` | extends Rsrc1 (R\*\_EXTRA2 Encoding) |
488 | Rsrc2_EXTRA2 | `14:15` | extends Rsrc2 (R\*\_EXTRA2 Encoding) |
489 | MASK_SRC | `16:18` | Execution Mask for Source |
490
491 Note that for 1S2P the EXTRA2 dest and src names are switched (Rsrc_EXTRA2
492 is in bits 10:11, Rdest1_EXTRA2 in 12:13)
493
494 Also that for 3S (to cover `stdx` etc.) the names are switched to 3 src: Rsrc1_EXTRA2, Rsrc2_EXTRA2, Rsrc3_EXTRA2.
495
496 Note also that LD with update indexed, which takes 2 src and 2 dest
497 (e.g. `lhaux RT,RA,RB`), does not have room for 4 registers and also
498 Twin Predication. therefore these are treated as RM-2P-2S1D and the
499 src spec for RA is also used for the same RA as a dest.
500
501 Note that if ELWIDTH != ELWIDTH_SRC this may result in reduced performance or increased latency in some implementations due to lane-crossing.
502
503 # R\*\_EXTRA2/3
504
505 EXTRA is the means by which two things are achieved:
506
507 1. Registers are marked as either Vector *or Scalar*
508 2. Register field numbers (limited typically to 5 bit)
509 are extended in range, both for Scalar and Vector.
510
511 The register files are therefore extended:
512
513 * INT is extended from r0-31 to r0-127
514 * FP is extended from fp0-32 to fp0-fp127
515 * CR Fields are extended from CR0-7 to CR0-127
516
517 In the following tables register numbers are constructed from the
518 standard v3.0B / v3.1B 32 bit register field (RA, FRA) and the EXTRA2
519 or EXTRA3 field from the SV Prefix, determined by the specific
520 RM-xx-yyyy designation for a given instruction.
521 The prefixing is arranged so that
522 interoperability between prefixing and nonprefixing of scalar registers
523 is direct and convenient (when the EXTRA field is all zeros).
524
525 A pseudocode algorithm explains the relationship, for INT/FP (see [[svp64/appendix]] for CRs)
526
527 if extra3_mode:
528 spec = EXTRA3
529 else:
530 spec = EXTRA2 << 1 # same as EXTRA3, shifted
531 if spec[0]: # vector
532 return (RA << 2) | spec[1:2]
533 else: # scalar
534 return (spec[1:2] << 5) | RA
535
536 Future versions may extend to 256 by shifting Vector numbering up.
537 Scalar will not be altered.
538
539 Note that in some cases the range of starting points for Vectors
540 is limited.
541
542 ## INT/FP EXTRA3
543
544 If EXTRA3 is zero, maps to
545 "scalar identity" (scalar OpenPOWER ISA field naming).
546
547 Fields are as follows:
548
549 * Value: R_EXTRA3
550 * Mode: register is tagged as scalar or vector
551 * Range/Inc: the range of registers accessible from this EXTRA
552 encoding, and the "increment" (accessibility). "/4" means
553 that this EXTRA encoding may only give access (starting point)
554 every 4th register.
555 * MSB..LSB: the bit field showing how the register opcode field
556 combines with EXTRA to give (extend) the register number (GPR)
557
558 | Value | Mode | Range/Inc | 6..0 |
559 |-----------|-------|---------------|---------------------|
560 | 000 | Scalar | `r0-r31`/1 | `0b00 RA` |
561 | 001 | Scalar | `r32-r63`/1 | `0b01 RA` |
562 | 010 | Scalar | `r64-r95`/1 | `0b10 RA` |
563 | 011 | Scalar | `r96-r127`/1 | `0b11 RA` |
564 | 100 | Vector | `r0-r124`/4 | `RA 0b00` |
565 | 101 | Vector | `r1-r125`/4 | `RA 0b01` |
566 | 110 | Vector | `r2-r126`/4 | `RA 0b10` |
567 | 111 | Vector | `r3-r127`/4 | `RA 0b11` |
568
569 ## INT/FP EXTRA2
570
571 If EXTRA2 is zero will map to
572 "scalar identity behaviour" i.e Scalar OpenPOWER register naming:
573
574 | Value | Mode | Range/inc | 6..0 |
575 |-----------|-------|---------------|-----------|
576 | 00 | Scalar | `r0-r31`/1 | `0b00 RA` |
577 | 01 | Scalar | `r32-r63`/1 | `0b01 RA` |
578 | 10 | Vector | `r0-r124`/4 | `RA 0b00` |
579 | 11 | Vector | `r2-r126`/4 | `RA 0b10` |
580
581 ## CR Field EXTRA3
582
583 CR Field encoding is essentially the same but made more complex due to CRs being bit-based. See [[svp64/appendix]] for explanation and pseudocode.
584 Note that Vectors may only start from CR0, CR4, CR8, CR12, CR16...
585
586 Encoding shown MSB down to LSB
587
588 For a 5-bit operand (BA, BB, BT):
589
590 | Value | Mode | Range/Inc | 8..5 | 4..2 | 1..0 |
591 |-------|------|---------------|-----------| --------|---------|
592 | 000 | Scalar | `CR0-CR7`/1 | 0b0000 | BA[4:2] | BA[1:0] |
593 | 001 | Scalar | `CR8-CR15`/1 | 0b0001 | BA[4:2] | BA[1:0] |
594 | 010 | Scalar | `CR16-CR23`/1 | 0b0010 | BA[4:2] | BA[1:0] |
595 | 011 | Scalar | `CR24-CR31`/1 | 0b0011 | BA[4:2] | BA[1:0] |
596 | 100 | Vector | `CR0-CR112`/16 | BA[4:2] 0 | 0b000 | BA[1:0] |
597 | 101 | Vector | `CR4-CR116`/16 | BA[4:2] 0 | 0b100 | BA[1:0] |
598 | 110 | Vector | `CR8-CR120`/16 | BA[4:2] 1 | 0b000 | BA[1:0] |
599 | 111 | Vector | `CR12-CR124`/16 | BA[4:2] 1 | 0b100 | BA[1:0] |
600
601 For a 3-bit operand (e.g. BFA):
602
603 | Value | Mode | Range/Inc | 6..3 | 2..0 |
604 |-------|------|---------------|-----------| --------|
605 | 000 | Scalar | `CR0-CR7`/1 | 0b0000 | BFA |
606 | 001 | Scalar | `CR8-CR15`/1 | 0b0001 | BFA |
607 | 010 | Scalar | `CR16-CR23`/1 | 0b0010 | BFA |
608 | 011 | Scalar | `CR24-CR31`/1 | 0b0011 | BFA |
609 | 100 | Vector | `CR0-CR112`/16 | BFA 0 | 0b000 |
610 | 101 | Vector | `CR4-CR116`/16 | BFA 0 | 0b100 |
611 | 110 | Vector | `CR8-CR120`/16 | BFA 1 | 0b000 |
612 | 111 | Vector | `CR12-CR124`/16 | BFA 1 | 0b100 |
613
614 ## CR EXTRA2
615
616 CR encoding is essentially the same but made more complex due to CRs being bit-based. See separate section for explanation and pseudocode.
617 Note that Vectors may only start from CR0, CR8, CR16, CR24, CR32...
618
619
620 Encoding shown MSB down to LSB
621
622 For a 5-bit operand (BA, BB, BC):
623
624 | Value | Mode | Range/Inc | 8..5 | 4..2 | 1..0 |
625 |-------|--------|----------------|---------|---------|---------|
626 | 00 | Scalar | `CR0-CR7`/1 | 0b0000 | BA[4:2] | BA[1:0] |
627 | 01 | Scalar | `CR8-CR15`/1 | 0b0001 | BA[4:2] | BA[1:0] |
628 | 10 | Vector | `CR0-CR112`/16 | BA[4:2] 0 | 0b000 | BA[1:0] |
629 | 11 | Vector | `CR8-CR120`/16 | BA[4:2] 1 | 0b000 | BA[1:0] |
630
631 For a 3-bit operand (e.g. BFA):
632
633 | Value | Mode | Range/Inc | 6..3 | 2..0 |
634 |-------|------|---------------|-----------| --------|
635 | 00 | Scalar | `CR0-CR7`/1 | 0b0000 | BFA |
636 | 01 | Scalar | `CR8-CR15`/1 | 0b0001 | BFA |
637 | 10 | Vector | `CR0-CR112`/16 | BFA 0 | 0b000 |
638 | 11 | Vector | `CR8-CR120`/16 | BFA 1 | 0b000 |
639
640 # Appendix
641
642 Now at its own page: [[svp64/appendix]]
643