(no commit message)
[libreriscv.git] / openpower / sv / svp64.mdwn
1 # SVP64 for OpenPOWER ISA v3.0B
2
3 This document describes SV augmentation of the OpenPOWER v3.0B ISA. Permission to create commercial v3.1B implementations has not yet been granted through the issuance of a v3.1B EULA by the OpenPOWER Foundation (only v3.0B)
4
5 Links:
6
7 * <http://lists.libre-soc.org/pipermail/libre-soc-dev/2020-December/001498.html>>
8 * [[svp64/discussion]]
9 * [[svp64/appendix]]
10 * <http://lists.libre-soc.org/pipermail/libre-soc-dev/2020-December/001650.html>
11 * <https://bugs.libre-soc.org/show_bug.cgi?id=550>
12
13 Table of contents
14
15 [[!toc]]
16
17 # Introduction
18
19 This document focuses on the encoding of [[SV|sv]], and assumes familiarity with the same. It is best read in conjunction with the [[sv/overview]] which explains the background.
20
21 The plan is to create an encoding for SVP64, then to create an encoding
22 for SVP48, then to reorganize them both to improve field overlap,
23 reducing the amount of decoder hardware necessary.
24
25 All bit numbers are in MSB0 form (the bits are numbered from 0 at the MSB
26 and counting up as you move to the LSB end). All bit ranges are inclusive
27 (so `4:6` means bits 4, 5, and 6).
28
29 64-bit instructions are split into two 32-bit words, the prefix and the
30 suffix. The prefix always comes before the suffix in PC order.
31
32 | 0:5 | 6:31 | 0:31 |
33 |--------|--------------|--------------|
34 | EXT01 | v3.1B Prefix | v3.1B Suffix |
35
36 svp64 fits into the "reserved" portions of the v3.1B prefix, making it possible for svp64, v3.0B (or v3.1B including 64 bit prefixed) instructions to co-exist in the same binary without conflict.
37
38 ## SVP64 encoding features
39
40 A number of features need to be compacted into a very small space of only 24 bits:
41
42 * Independent per-register Scalar/Vector tagging and range extension on every register
43 * Element width overrides on both source and destination
44 * Predication on both source and destination
45 * Two different *types* of predication: INT and CR
46 * SV Modes including saturation (for A/V DSP), mapreduce, fail-first and
47 predicate-result mode.
48
49 This document focusses specifically on how that fits into available space. The [[svp64/appendix]] explains more of the details, whilst the [[sv/overview]] gives the basics.
50
51 # Definition of Reserved in this spec.
52
53 For the new fields added in SVP64, instructions that have any of their
54 fields set to a reserved value must cause an illegal instruction trap,
55 to allow emulation of future instruction sets. Reserved values are always all zeros.
56
57 This is unlike OpenPower ISA v3.1, which in many instances does not require a trap if reserved fields are nonzero.
58
59 # Identity Behaviour
60
61 SVP64 is designed so that when the prefix is all zeros, and
62 VL=1, no effect or
63 influence occurs (no augmentation) such that all standard OpenPOWER
64 v3.0/1B instructions covered by the prefix are "unaltered". This is termed `scalar identity behaviour` (based on the mathematical definition for "identity", as in, "identity matrix" or better "identity transformation").
65
66 Note that this is completely different from when VL=0. VL=0 turns all operations under its influence into `nops` (regardless of the prefix)
67 whereas when VL=1 and the SV prefix is all zeros, the operation simply acts as if SV had not been applied at all to the instruction (an "identity operation").
68
69 The significance of identity behaviour is that instructions added under svp64 to the 32 bit suffix are not only accessible to svp64: as long as implementors conform to identity behaviour (set the prefix to all zeros) they may use the instructions without needing to actually implement SV itself.
70
71 # Register Naming and size
72
73 SV Registers are simply the INT, FP and CR register files extended
74 linearly to larger sizes; SV Vectorisation iterates sequentially through these registers.
75
76 Where the integer regfile in standard scalar
77 OpenPOWER v3.0B/v3.1B is r0 to r31, SV extends this as r0 to r127.
78 Likewise FP registers are extended to 128 (fp0 to fp127), and CRs are
79 extended to 64 entries, CR0 thru CR63.
80
81 The names of the registers therefore reflects a simple linear extension
82 of the OpenPOWER v3.0B / v3.1B register naming, and in hardware this
83 would be reflected by a linear increase in the size of the underlying
84 SRAM used for the regfiles.
85
86 Note: when an EXTRA field (defined below) is zero, SV is deliberately designed
87 so that the register fields are identical to as if SV was not in effect
88 i.e. under these circumstances (EXTRA=0) the register field names RA,
89 RB etc. are interpreted and treated as v3.0B / v3.1B scalar registers. This is part of
90 `scalar identity behaviour` described above.
91
92 ## Future expansion.
93
94 With the way that EXTRA fields are defined and applied to register fields,
95 future versions of SV may involve 256 or greater registers. To accommodate 256 registers, numbering of Vectors will simply shift up by one bit, without
96 requiring additional prefix bits. Backwards binary compatibility may be achieved with a PCR bit (Program Compatibility Register). Beyond this, further discussion is out of scope for this version of svp64.
97
98 # Remapped Encoding (`RM[0:23]`)
99
100 To allow relatively easy remapping of which portions of the Prefix Opcode
101 Map are used for SVP64 without needing to rewrite a large portion of the
102 SVP64 spec, a mapping is defined from the OpenPower v3.1 prefix bits to
103 a new 24-bit Remapped Encoding denoted `RM[0]` at the MSB to `RM[23]`
104 at the LSB.
105
106 The mapping from the OpenPower v3.1 prefix bits to the Remapped Encoding
107 is defined in the Prefix Fields section.
108
109 ## Prefix Opcode Map (64-bit instruction encoding)
110
111 In the original table in the v3.1B OpenPOWER ISA Spec on p1350, Table 12, prefix bits 6:11 are shown, with their allocations to different v3.1B pregix "modes".
112
113 The table below hows both PowerISA v3.1 instructions as well as new SVP instructions fit;
114 empty spaces are yet-to-be-allocated Illegal Instructions.
115
116 | 6:11 | ---000 | ---001 | ---010 | ---011 | ---100 | ---101 | ---110 | ---111 |
117 |------|--------|--------|--------|--------|--------|--------|--------|--------|
118 |000---| 8LS | 8LS | 8LS | 8LS | 8LS | 8LS | 8LS | 8LS |
119 |001---| | | | | | | | |
120 |010---| 8RR | | | | `SVP64`| `SVP64`| `SVP64`| `SVP64`|
121 |011---| | | | | `SVP64`| `SVP64`| `SVP64`| `SVP64`|
122 |100---| MLS | MLS | MLS | MLS | MLS | MLS | MLS | MLS |
123 |101---| | | | | | | | |
124 |110---| MRR | | | | `SVP64`| `SVP64`| `SVP64`| `SVP64`|
125 |111---| | MMIRR | | | `SVP64`| `SVP64`| `SVP64`| `SVP64`|
126
127 Note that by taking up a block of 16, where in every case bits 7 and 9 are set, this allows svp64 to utilise four bits of the v3.1B Prefix space and "allocate" them to svp64's Remapped Encoding field, instead.
128
129 ## Prefix Fields
130
131 To "activate" svp64 (in a way that does not conflict with v3.1B 64 bit Prefix mode), fields within the v3.1B Prefix Opcode Map are set
132 (see Prefix Opcode Map, above), leaving 24 bits "free" for use by SV.
133 This is achieved by setting bits 7 and 9 to 1:
134
135 | Name | Bits | Value | Description |
136 |------------|---------|-------|--------------------------------|
137 | EXT01 | `0:5` | `1` | Indicates Prefixed 64-bit |
138 | `RM[0]` | `6` | | Bit 0 of Remapped Encoding |
139 | SVP64_7 | `7` | `1` | Indicates this is SVP64 |
140 | `RM[1]` | `8` | | Bit 1 of Remapped Encoding |
141 | SVP64_9 | `9` | `1` | Indicates this is SVP64 |
142 | `RM[2:23]` | `10:31` | | Bits 2-23 of Remapped Encoding |
143
144 Laid out bitwise, this is as follows, showing how the 32-bits of the prefix
145 are constructed:
146
147 | 0:5 | 6 | 7 | 8 | 9 | 10:31 |
148 |--------|-------|---|-------|---|----------|
149 | EXT01 | RM | 1 | RM | 1 | RM |
150 | 000001 | RM[0] | 1 | RM[1] | 1 | RM[2:23] |
151
152 Following the prefix will be the suffix: this is simply a 32-bit v3.0B / v3.1B
153 instruction. That instruction becomes "prefixed" with the SVP context: the
154 Remapped Encoding field (RM).
155
156 # Common RM fields
157
158 The following fields are common to all Remapped Encodings:
159
160 | Field Name | Field bits | Description |
161 |------------|------------|----------------------------------------|
162 | MASK\_KIND | `0` | Execution (predication) Mask Kind |
163 | MASK | `1:3` | Execution Mask |
164 | ELWIDTH | `4:5` | Element Width |
165 | ELWIDTH_SRC | `6:7` | Element Width for Source |
166 | SUBVL | `8:9` | Sub-vector length |
167 | MODE | `19:23` | changes Vector behaviour |
168
169 * MODE changes the behaviour of the SV operation (result saturation, mapreduce)
170 * SUBVL groups elements together into vec2, vec3, vec4 for use in 3D and Audio/Video DSP work
171 * ELWIDTH and ELWIDTH_SRC overrides the instruction's destination and source operand width
172 * MASK and MASK_KIND provide predication (two types of sources: scalar INT and Vector CR).
173
174 Bits 10 to 18 are further decoded depending on RM category for the instruction.
175 These are given designations such as `RM-1P-3S1D` which indicates for this example that the operation is to be single-predicated and that there are 3 source operand EXTRA tags and one destination operand tag.
176
177 Note that if ELWIDTH != ELWIDTH_SRC this may result in reduced performance or increased latency in some implementations due to lane-crossing.
178
179 # Mode
180
181 Mode is an augmentation of SV behaviour. Some of these alterations are element-based (saturation), others involve post-analysis (predicate result) and others are Vector-based (mapreduce, fail-on-first).
182
183 These are the modes:
184
185 * **normal** mode is straight vectorisation. no augmentations: the vector comprises an array of independently created results.
186 * **ffirst** or data-dependent fail-on-first: see separate section. the vector may be truncated depending on certain criteria.
187 *VL is altered as a result*.
188 * **sat mode** or saturation: clamps each elemrnt result to a min/max rather than overflows / wraps. allows signed and unsigned clamping.
189 * **reduce mode**. a mapreduce is performed. the result is a scalar. a result vector however is required, as the upper elements may be used to store intermediary computations. the result of the mapreduce is in the first element with a nonzero predicate bit. see separate section below.
190 note that there are comprehensive caveats when using this mode.
191 * **pred-result** will test the result (CR testing selects a bit of CR and inverts it, just like branch testing) and if the test fails it is as if the predicate bit was zero. When Rc=1 the CR element however is still stored in the CR regfile, even if the test failed. This scheme does not apply to crops (crand, cror). See appendix for details.
192
193 Note that ffirst and reduce modes are not anticipated to be high-performance in some implementations. ffirst due to interactions with VL, and reduce due to it requiring additional operations to produce a result. normal, saturate and pred-result are however independent and may easily be parallelised to give high performance, regardless of the value of VL.
194
195 The Mode table is laid out as follows:
196
197 | 0-1 | 2 | 3 4 | description |
198 | --- | --- |---------|-------------------------- |
199 | 00 | 0 | sz dz | normal mode |
200 | 00 | 1 | sz CRM | reduce mode (mapreduce), SUBVL=1 |
201 | 00 | 1 | SVM CRM | subvector reduce mode, SUBVL>1 |
202 | 01 | inv | CR-bit | Rc=1: ffirst CR sel |
203 | 01 | inv | sz RC1 | Rc=0: ffirst z/nonz |
204 | 10 | N | sz dz | sat mode: N=0/1 u/s |
205 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
206 | 11 | inv | sz RC1 | Rc=0: pred-result z/nonz |
207
208 Fields:
209
210 * **sz / dz** if predication is enabled will put zeros into the dest (or as src in the case of twin pred) when the predicate bit is zero. otherwise the element is ignored or skipped, depending on context.
211 * **inv CR bit** just as in branches (BO) these bits allow testing of a CR bit and whether it is set (inv=0) or unset (inv=1)
212 * **CRM** affects the CR on reduce mode when Rc=1
213 * **SVM** sets "subvector" reduce mode
214 * **N** sets signed/unsigned saturation.
215 **RC1** as if Rc=1, stores CRs *but not the result*
216
217 # ELWIDTH Encoding
218
219 Default behaviour is set to 0b00 so that zeros follow the convention of
220 "npt doing anything". In this case it means that elwidth overrides
221 are not applicable. Thus if a 32 bit instruction operates on 32 bit,
222 `elwidth=0b00` specifies that this behaviour is unmodified. Likewise
223 when a processor is switched from 64 bit to 32 bit mode, `elwidth=0b00`
224 states that, again, the behaviour is not to be modified.
225
226 Only when elwidth is nonzero is the element width overridden to the
227 explicitly required value.
228
229 ## Elwidth for Integers:
230
231 | Value | Mnemonic | Description |
232 |-------|----------------|------------------------------------|
233 | 00 | DEFAULT | default behaviour for operation |
234 | 01 | `ELWIDTH=b` | Byte: 8-bit integer |
235 | 10 | `ELWIDTH=h` | Halfword: 16-bit integer |
236 | 11 | `ELWIDTH=w` | Word: 32-bit integer |
237
238 ## Elwidth for FP Registers:
239
240 | Value | Mnemonic | Description |
241 |-------|----------------|------------------------------------|
242 | 00 | DEFAULT | default behaviour for FP operation |
243 | 01 | `ELWIDTH=bf16` | Reserved for `bf16` |
244 | 10 | `ELWIDTH=f16` | 16-bit IEEE 754 Half floating-point |
245 | 11 | `ELWIDTH=f32` | 32-bit IEEE 754 Single floating-point |
246
247 Note:
248 [`bf16`](https://en.wikipedia.org/wiki/Bfloat16_floating-point_format)
249 is reserved for a future implementation of SV
250
251 ## Elwidth for CRs:
252
253 TODO, important, particularly for crops, mfcr and mtcr, what elwidth
254 even means. instead it may be possible to use the bits as extra indices
255 (EXTRA6) to access the full 64 CRs. TBD, several ideas
256
257 The actual width of the CRs cannot be altered: they are 4 bit. Also,
258 for Rc=1 operations that produce a result (in RT or FRT) and corresponding CR, it is
259 the INT/FP result to which the elwidth override applies, *not* the CR.
260 This therefore inherently places Rc=1 operations firmly out of scope as far as a "meaning" for elwidth on CRs is concerned.
261
262 As mentioned TBD, this leaves crops etc. to have a meaning defined for
263 elwidth, because these ops are pure explicit CR based.
264
265 Examples: mfxm may take the extra bits and use them as extra mask bits.
266
267 # SUBVL Encoding
268
269 the default for SUBVL is 1 and its encoding is 0b00 to indicate that
270 SUBVL is effectively disabled (a SUBVL for-loop of only one element). this
271 lines up in combination with all other "default is all zeros" behaviour.
272
273 | Value | Mnemonic | Subvec | Description |
274 |-------|-----------|---------|------------------------|
275 | 00 | `SUBVL=1` | single | Sub-vector length of 1 |
276 | 01 | `SUBVL=2` | vec2 | Sub-vector length of 2 |
277 | 10 | `SUBVL=3` | vec3 | Sub-vector length of 3 |
278 | 11 | `SUBVL=4` | vec4 | Sub-vector length of 4 |
279
280 The SUBVL encoding value may be thought of as an inclusive range of a
281 sub-vector. SUBVL=2 represents a vec2, its encoding is 0b01, therefore
282 this may be considered to be elements 0b00 to 0b01 inclusive.
283
284 # MASK/MASK_SRC & MASK_KIND Encoding
285
286 One bit (`MASKMODE`) indicates the mode: CR or Int predication. The two
287 types may not be mixed.
288
289 Special note: to get default behaviour (SV disabled) this field must
290 be set to zero in combination with Integer Predication also being set
291 to 0b000. this has the effect of enabling "all 1s" in the predicate
292 mask, which is equivalent to "not having any predication at all"
293 and consequently, in combination with all other default zeros, fully
294 disables SV.
295
296 | Value | Description |
297 |-------|------------------------------------------------------|
298 | 0 | MASK/MASK_SRC are encoded using Integer Predication |
299 | 1 | MASK/MASK_SRC are encoded using CR-based Predication |
300
301 Integer Twin predication has a second set of 3 bits that uses the same
302 encoding thus allowing either the same register (r3 or r10) to be used
303 for both src and dest, or different regs (one for src, one for dest).
304
305 Likewise CR based twin predication has a second set of 3 bits, allowing
306 a different test to be applied.
307
308 ## Integer Predication (MASK_KIND=0)
309
310 When the predicate mode bit is zero the 3 bits are interpreted as below.
311 Twin predication has an identical 3 bit field similarly encoded.
312
313 | Value | Mnemonic | Element `i` enabled if: |
314 |-------|----------|------------------------------|
315 | 000 | ALWAYS | predicate effectively all 1s |
316 | 001 | 1 << R3 | `i == R3` |
317 | 010 | R3 | `R3 & (1 << i)` is non-zero |
318 | 011 | ~R3 | `R3 & (1 << i)` is zero |
319 | 100 | R10 | `R10 & (1 << i)` is non-zero |
320 | 101 | ~R10 | `R10 & (1 << i)` is zero |
321 | 110 | R30 | `R30 & (1 << i)` is non-zero |
322 | 111 | ~R30 | `R30 & (1 << i)` is zero |
323
324 ## CR-based Predication (MASK_KIND=1)
325
326 When the predicate mode bit is one the 3 bits are interpreted as below.
327 Twin predication has an identical 3 bit field similarly encoded
328
329 | Value | Mnemonic | Element `i` is enabled if |
330 |-------|----------|--------------------------|
331 | 000 | lt | `CR[offs+i].LT` is set |
332 | 001 | nl/ge | `CR[offs+i].LT` is clear |
333 | 010 | gt | `CR[offs+i].GT` is set |
334 | 011 | ng/le | `CR[offs+i].GT` is clear |
335 | 100 | eq | `CR[offs+i].EQ` is set |
336 | 101 | ne | `CR[offs+i].EQ` is clear |
337 | 110 | so/un | `CR[offs+i].FU` is set |
338 | 111 | ns/nu | `CR[offs+i].FU` is clear |
339
340 CR based predication. TODO: select alternate CR for twin predication? see
341 [[discussion]] Overlap of the two CR based predicates must be taken
342 into account, so the starting point for one of them must be suitably
343 high, or accept that for twin predication VL must not exceed the range
344 where overlap will occur, *or* that they use the same starting point
345 but select different *bits* of the same CRs
346
347 `offs` is defined as CR32 (4x8) so as to mesh cleanly with Vectorised Rc=1 operations (see below). Rc=1 operations start from CR8 (TBD).
348
349 # Extra Remapped Encoding
350
351 Shows all instruction-specific fields in the Remapped Encoding `RM[8:18]` for all instruction variants. Note that due to the very tight space, the encoding mode is *not* included in the prefix itself. The mode is "applied", similar to OpenPOWER "Forms" (X-Form, D-Form) on a per-instruction basis, and, like "Forms" are given a designation (below) of the form `RM-nP-nSnD`. The full list of which instructions use which remaps is here [[opcode_regs_deduped]].
352
353 There are two categories: Single and Twin Predication.
354 Due to space considerations further subdivision of Single Predication
355 is based on whether the number of src operands is 2 or 3.
356
357 * `RM-1P-3S1D` Single Predication dest/src1/2/3, applies to 4-operand instructions (fmadd, isel, madd).
358 * `RM-1P-2S1D` Single Predication dest/src1/2 applies to 3-operand instructions (src1 src2 dest)
359 * `RM-2P-1S1D` Twin Predication (src=1, dest=1)
360 * `RM-2P-2S1D` Twin Predication (src=2, dest=1) primarily for LDST (Indexed)
361 * `RM-2P-1S2D` Twin Predication (src=1, dest=2) primarily for LDST Update
362
363 ## RM-1P-3S1D
364
365 | Field Name | Field bits | Description |
366 |------------|------------|----------------------------------------|
367 | Rdest\_EXTRA2 | `10:11` | extends Rdest (R\*\_EXTRA2 Encoding) |
368 | Rsrc1\_EXTRA2 | `12:13` | extends Rsrc1 (R\*\_EXTRA2 Encoding) |
369 | Rsrc2\_EXTRA2 | `14:15` | extends Rsrc2 (R\*\_EXTRA2 Encoding) |
370 | Rsrc3\_EXTRA2 | `16:17` | extends Rsrc3 (R\*\_EXTRA2 Encoding) |
371 | reserved | `18` | reserved |
372
373 ## RM-1P-2S1D
374
375 | Field Name | Field bits | Description |
376 |------------|------------|-------------------------------------------|
377 | Rdest\_EXTRA3 | `10:12` | extends Rdest |
378 | Rsrc1\_EXTRA3 | `13:15` | extends Rsrc1 |
379 | Rsrc2\_EXTRA3 | `16:18` | extends Rsrc3 |
380
381 These are for 2 operand 1 dest instructions, such as `add RT, RA,
382 RB`. However also included are unusual instructions with an implicit dest
383 that is identical to its src reg, such as `rlwinmi`.
384
385 Normally, with instructions such as `rlwinmi`, the scalar v3.0B ISA would not have sufficient bit fields to allow
386 an alternative destination. With SV however this becomes possible.
387 Therefore, the fact that the dest is implicitly also a src should not
388 mislead: due to the *prefix* they are different SV regs.
389
390 * `rlwimi RA, RS, ...`
391 * Rsrc1_EXTRA3 applies to RS as the first src
392 * Rsrc2_EXTRA3 applies to RA as the secomd src
393 * Rdest_EXTRA3 applies to RA to create an **independent** dest.
394
395 With the addition of the EXTRA bits, the three registers
396 each may be *independently* made vector or scalar, and be independently
397 augmented to 7 bits in length.
398
399 ## RM-2P-1S1D/2S
400
401 | Field Name | Field bits | Description |
402 |------------|------------|----------------------------|
403 | Rdest_EXTRA3 | `10:12` | extends Rdest |
404 | Rsrc1_EXTRA3 | `13:15` | extends Rsrc1 |
405 | MASK_SRC | `16:18` | Execution Mask for Source |
406
407 `RM-2P-2S` is for `stw` etc. and is Rsrc1 Rsrc2.
408
409 ## RM-2P-2S1D/1S2D/3S
410
411 The primary purpose for this encoding is for Twin Predication on LOAD
412 and STORE operations. see [[sv/ldst]] for detailed anslysis.
413
414 RM-2P-2S1D:
415
416 | Field Name | Field bits | Description |
417 |------------|------------|----------------------------|
418 | Rdest_EXTRA2 | `10:11` | extends Rdest (R\*\_EXTRA2 Encoding) |
419 | Rsrc1_EXTRA2 | `12:13` | extends Rsrc1 (R\*\_EXTRA2 Encoding) |
420 | Rsrc2_EXTRA2 | `14:16` | extends Rsrc2 (R\*\_EXTRA2 Encoding) |
421 | MASK_SRC | `17:18` | Execution Mask for Source |
422
423 Note that for 1S2P the EXTRA2 dest and src names are switched (Rsrc_EXTRA2
424 is in bits 10:11, Rdest1_EXTRA2 in 12:13)
425
426 Also that for 3S (to cover `stdx` etc.) the names are switched to 3 src: Rsrc1_EXTRA2, Rsrc2_EXTRA2, Rsrc3_EXTRA2.
427
428 Note also that LD with update indexed, which takes 2 src and 2 dest
429 (e.g. `lhaux RT,RA,RB`), does not have room for 4 registers and also
430 Twin Predication. therefore these are treated as RM-2P-2S1D and the
431 src spec for RA is also used for the same RA as a dest.
432
433 Note that if ELWIDTH != ELWIDTH_SRC this may result in reduced performance or increased latency in some implementations due to lane-crossing.
434
435 # R\*\_EXTRA2 and R\*\_EXTRA3 Encoding
436
437 EXTRA is the means by which two things are achieved:
438
439 1. Registers are marked as either Vector *or Scalar*
440 2. Register field numbers (limited typically to 5 bit)
441 are extended in range, both for Scalar and Vector.
442
443 In the following tables register numbers are constructed from the
444 standard v3.0B / v3.1B 32 bit register field (RA, FRA) and the EXTRA2
445 or EXTRA3 field from the SV Prefix. The prefixing is arranged so that
446 interoperability between prefixing and nonprefixing of scalar registers
447 is direct and convenient (when the EXTRA field is all zeros).
448
449 A pseudocode algorithm explains the relationship, for INT/FP (see separate section for CRs)
450
451 if extra3_mode:
452 spec = EXTRA3
453 else:
454 spec = EXTRA2 << 1 # same as EXTRA3, shifted
455 if spec[2]: # vector
456 return (RA << 2) | spec[0:1]
457 else: # scalar
458 return (spec[0:1] << 5) | RA
459
460 ## INT/FP EXTRA3
461
462 alternative which is understandable and, if EXTRA3 is zero, maps to
463 "no effect" (scalar OpenPOWER ISA field naming). also, these are the
464 encodings used in the original SV Prefix scheme. the reason why they
465 were chosen is so that scalar registers in v3.0B and prefixed scalar
466 registers have access to the same 32 registers.
467
468 | R\*\_EXTRA3 | Mode | Range | MSB downto LSB |
469 |-----------|-------|---------------|---------------------|
470 | 000 | Scalar | `r0-r31` | `0b00 RA` |
471 | 001 | Scalar | `r32-r63` | `0b01 RA` |
472 | 010 | Scalar | `r64-r95` | `0b10 RA` |
473 | 011 | Scalar | `r96-r127` | `0b11 RA` |
474 | 100 | Vector | `r0-r124` | `RA 0b00` |
475 | 101 | Vector | `r1-r125` | `RA 0b01` |
476 | 110 | Vector | `r2-r126` | `RA 0b10` |
477 | 111 | Vector | `r3-r127` | `RA 0b11` |
478
479 ## INT/FP EXTRA2
480
481 alternative which is understandable and, if EXTRA2 is zero will map to
482 "no effect" i.e Scalar OpenPOWER register naming:
483
484 | R\*\_EXTRA2 | Mode | Range | MSB down to LSB |
485 |-----------|-------|---------------|---------------------|
486 | 00 | Scalar | `r0-r31` | `0b00 RA` |
487 | 01 | Scalar | `r32-r63` | `0b01 RA` |
488 | 10 | Vector | `r0-r124` | `RA 0b00` |
489 | 11 | Vector | `r2-r126` | `RA 0b10` |
490
491 ## CR EXTRA3
492
493 CR encoding is essentially the same but made more complex due to CRs being bit-based. See separate section for explanation and pseudocode.
494
495 Encoding shown MSB down to LSB
496
497 | R\*\_EXTRA3 | Mode | 7..5 | 4..2 | 1..0 |
498 |-------------|------|---------| --------|---------|
499 | 000 | Scalar | 0b000 | BA[4:2] | BA[1:0] |
500 | 001 | Scalar | 0b001 | BA[4:2] | BA[1:0] |
501 | 010 | Scalar | 0b010 | BA[4:2] | BA[1:0] |
502 | 011 | Scalar | 0b011 | BA[4:2] | BA[1:0] |
503 | 100 | Vector | BA[4:2] | 0b000 | BA[1:0] |
504 | 101 | Vector | BA[4:2] | 0b010 | BA[1:0] |
505 | 110 | Vector | BA[4:2] | 0b100 | BA[1:0] |
506 | 111 | Vector | BA[4:2] | 0b110 | BA[1:0] |
507
508 ## CR EXTRA2
509
510 CR encoding is essentially the same but made more complex due to CRs being bit-based. See separate section for explanation and pseudocode.
511
512 Encoding shown MSB down to LSB
513
514 | R\*\_EXTRA2 | Mode | 7..5 | 4..2 | 1..0 |
515 |-------------|--------|---------|---------|---------|
516 | 00 | Scalar | 0b000 | BA[4:2] | BA[1:0] |
517 | 01 | Scalar | 0b001 | BA[4:2] | BA[1:0] |
518 | 10 | Vector | BA[4:2] | 0b000 | BA[1:0] |
519 | 11 | Vector | BA[4:2] | 0b100 | BA[1:0] |
520
521 # Appendix
522
523 Now at its own page: [[svp64/appendix]]
524