Merge pull request #38 from rubund/master
[yosys.git] / passes / memory / memory_share.cc
1 /*
2 * yosys -- Yosys Open SYnthesis Suite
3 *
4 * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 */
19
20 #include "kernel/yosys.h"
21 #include "kernel/satgen.h"
22 #include "kernel/sigtools.h"
23 #include "kernel/modtools.h"
24
25 PRIVATE_NAMESPACE_BEGIN
26
27 static bool memcells_cmp(RTLIL::Cell *a, RTLIL::Cell *b)
28 {
29 if (a->type == "$memrd" && b->type == "$memrd")
30 return a->name < b->name;
31 if (a->type == "$memrd" || b->type == "$memrd")
32 return (a->type == "$memrd") < (b->type == "$memrd");
33 return a->parameters.at("\\PRIORITY").as_int() < b->parameters.at("\\PRIORITY").as_int();
34 }
35
36 struct MemoryShareWorker
37 {
38 RTLIL::Design *design;
39 RTLIL::Module *module;
40 SigMap sigmap, sigmap_xmux;
41 ModWalker modwalker;
42 CellTypes cone_ct;
43
44 std::map<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux;
45 std::map<std::set<std::map<RTLIL::SigBit, bool>>, RTLIL::SigBit> conditions_logic_cache;
46
47
48 // -----------------------------------------------------------------
49 // Converting feedbacks to async read ports to proper enable signals
50 // -----------------------------------------------------------------
51
52 bool find_data_feedback(const std::set<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig,
53 std::map<RTLIL::SigBit, bool> &state, std::set<std::map<RTLIL::SigBit, bool>> &conditions)
54 {
55 if (async_rd_bits.count(sig)) {
56 conditions.insert(state);
57 return true;
58 }
59
60 if (sig_to_mux.count(sig) == 0)
61 return false;
62
63 RTLIL::Cell *cell = sig_to_mux.at(sig).first;
64 int bit_idx = sig_to_mux.at(sig).second;
65
66 std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort("\\A"));
67 std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort("\\B"));
68 std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort("\\S"));
69 std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y"));
70 log_assert(sig_y.at(bit_idx) == sig);
71
72 for (int i = 0; i < int(sig_s.size()); i++)
73 if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) {
74 if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, conditions)) {
75 RTLIL::SigSpec new_b = cell->getPort("\\B");
76 new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
77 cell->setPort("\\B", new_b);
78 }
79 return false;
80 }
81
82
83 for (int i = 0; i < int(sig_s.size()); i++)
84 {
85 if (state.count(sig_s[i]) && state.at(sig_s[i]) == false)
86 continue;
87
88 std::map<RTLIL::SigBit, bool> new_state = state;
89 new_state[sig_s[i]] = true;
90
91 if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, conditions)) {
92 RTLIL::SigSpec new_b = cell->getPort("\\B");
93 new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
94 cell->setPort("\\B", new_b);
95 }
96 }
97
98 std::map<RTLIL::SigBit, bool> new_state = state;
99 for (int i = 0; i < int(sig_s.size()); i++)
100 new_state[sig_s[i]] = false;
101
102 if (find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, conditions)) {
103 RTLIL::SigSpec new_a = cell->getPort("\\A");
104 new_a.replace(bit_idx, RTLIL::State::Sx);
105 cell->setPort("\\A", new_a);
106 }
107
108 return false;
109 }
110
111 RTLIL::SigBit conditions_to_logic(std::set<std::map<RTLIL::SigBit, bool>> &conditions, int &created_conditions)
112 {
113 if (conditions_logic_cache.count(conditions))
114 return conditions_logic_cache.at(conditions);
115
116 RTLIL::SigSpec terms;
117 for (auto &cond : conditions) {
118 RTLIL::SigSpec sig1, sig2;
119 for (auto &it : cond) {
120 sig1.append_bit(it.first);
121 sig2.append_bit(it.second ? RTLIL::State::S1 : RTLIL::State::S0);
122 }
123 terms.append(module->Ne(NEW_ID, sig1, sig2));
124 created_conditions++;
125 }
126
127 if (terms.size() > 1)
128 terms = module->ReduceAnd(NEW_ID, terms);
129
130 return conditions_logic_cache[conditions] = terms;
131 }
132
133 void translate_rd_feedback_to_en(std::string memid, std::vector<RTLIL::Cell*> &rd_ports, std::vector<RTLIL::Cell*> &wr_ports)
134 {
135 std::map<RTLIL::SigSpec, std::vector<std::set<RTLIL::SigBit>>> async_rd_bits;
136 std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> muxtree_upstream_map;
137 std::set<RTLIL::SigBit> non_feedback_nets;
138
139 for (auto wire_it : module->wires_)
140 if (wire_it.second->port_output) {
141 std::vector<RTLIL::SigBit> bits = RTLIL::SigSpec(wire_it.second);
142 non_feedback_nets.insert(bits.begin(), bits.end());
143 }
144
145 for (auto cell_it : module->cells_)
146 {
147 RTLIL::Cell *cell = cell_it.second;
148 bool ignore_data_port = false;
149
150 if (cell->type == "$mux" || cell->type == "$pmux")
151 {
152 std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort("\\A"));
153 std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort("\\B"));
154 std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort("\\S"));
155 std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y"));
156
157 non_feedback_nets.insert(sig_s.begin(), sig_s.end());
158
159 for (int i = 0; i < int(sig_y.size()); i++) {
160 muxtree_upstream_map[sig_y[i]].insert(sig_a[i]);
161 for (int j = 0; j < int(sig_s.size()); j++)
162 muxtree_upstream_map[sig_y[i]].insert(sig_b[i + j*sig_y.size()]);
163 }
164
165 continue;
166 }
167
168 if ((cell->type == "$memwr" || cell->type == "$memrd") &&
169 cell->parameters.at("\\MEMID").decode_string() == memid)
170 ignore_data_port = true;
171
172 for (auto conn : cell_it.second->connections())
173 {
174 if (ignore_data_port && conn.first == "\\DATA")
175 continue;
176 std::vector<RTLIL::SigBit> bits = sigmap(conn.second);
177 non_feedback_nets.insert(bits.begin(), bits.end());
178 }
179 }
180
181 std::set<RTLIL::SigBit> expand_non_feedback_nets = non_feedback_nets;
182 while (!expand_non_feedback_nets.empty())
183 {
184 std::set<RTLIL::SigBit> new_expand_non_feedback_nets;
185
186 for (auto &bit : expand_non_feedback_nets)
187 if (muxtree_upstream_map.count(bit))
188 for (auto &new_bit : muxtree_upstream_map.at(bit))
189 if (!non_feedback_nets.count(new_bit)) {
190 non_feedback_nets.insert(new_bit);
191 new_expand_non_feedback_nets.insert(new_bit);
192 }
193
194 expand_non_feedback_nets.swap(new_expand_non_feedback_nets);
195 }
196
197 for (auto cell : rd_ports)
198 {
199 if (cell->parameters.at("\\CLK_ENABLE").as_bool())
200 continue;
201
202 RTLIL::SigSpec sig_addr = sigmap(cell->getPort("\\ADDR"));
203 std::vector<RTLIL::SigBit> sig_data = sigmap(cell->getPort("\\DATA"));
204
205 for (int i = 0; i < int(sig_data.size()); i++)
206 if (non_feedback_nets.count(sig_data[i]))
207 goto not_pure_feedback_port;
208
209 async_rd_bits[sig_addr].resize(std::max(async_rd_bits.size(), sig_data.size()));
210 for (int i = 0; i < int(sig_data.size()); i++)
211 async_rd_bits[sig_addr][i].insert(sig_data[i]);
212
213 not_pure_feedback_port:;
214 }
215
216 if (async_rd_bits.empty())
217 return;
218
219 log("Populating enable bits on write ports of memory %s.%s with aync read feedback:\n", log_id(module), log_id(memid));
220
221 for (auto cell : wr_ports)
222 {
223 RTLIL::SigSpec sig_addr = sigmap_xmux(cell->getPort("\\ADDR"));
224 if (!async_rd_bits.count(sig_addr))
225 continue;
226
227 log(" Analyzing write port %s.\n", log_id(cell));
228
229 std::vector<RTLIL::SigBit> cell_data = cell->getPort("\\DATA");
230 std::vector<RTLIL::SigBit> cell_en = cell->getPort("\\EN");
231
232 int created_conditions = 0;
233 for (int i = 0; i < int(cell_data.size()); i++)
234 if (cell_en[i] != RTLIL::SigBit(RTLIL::State::S0))
235 {
236 std::map<RTLIL::SigBit, bool> state;
237 std::set<std::map<RTLIL::SigBit, bool>> conditions;
238
239 if (cell_en[i].wire != NULL) {
240 state[cell_en[i]] = false;
241 conditions.insert(state);
242 }
243
244 find_data_feedback(async_rd_bits.at(sig_addr).at(i), cell_data[i], state, conditions);
245 cell_en[i] = conditions_to_logic(conditions, created_conditions);
246 }
247
248 if (created_conditions) {
249 log(" Added enable logic for %d different cases.\n", created_conditions);
250 cell->setPort("\\EN", cell_en);
251 }
252 }
253 }
254
255
256 // ------------------------------------------------------
257 // Consolidate write ports that write to the same address
258 // ------------------------------------------------------
259
260 RTLIL::SigSpec mask_en_naive(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits)
261 {
262 // this is the naive version of the function that does not care about grouping the EN bits.
263
264 RTLIL::SigSpec inv_mask_bits = module->Not(NEW_ID, mask_bits);
265 RTLIL::SigSpec inv_mask_bits_filtered = module->Mux(NEW_ID, RTLIL::SigSpec(RTLIL::State::S1, bits.size()), inv_mask_bits, do_mask);
266 RTLIL::SigSpec result = module->And(NEW_ID, inv_mask_bits_filtered, bits);
267 return result;
268 }
269
270 RTLIL::SigSpec mask_en_grouped(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits)
271 {
272 // this version of the function preserves the bit grouping in the EN bits.
273
274 std::vector<RTLIL::SigBit> v_bits = bits;
275 std::vector<RTLIL::SigBit> v_mask_bits = mask_bits;
276
277 std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, std::pair<int, std::vector<int>>> groups;
278 RTLIL::SigSpec grouped_bits, grouped_mask_bits;
279
280 for (int i = 0; i < bits.size(); i++) {
281 std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_bits[i], v_mask_bits[i]);
282 if (groups.count(key) == 0) {
283 groups[key].first = grouped_bits.size();
284 grouped_bits.append_bit(v_bits[i]);
285 grouped_mask_bits.append_bit(v_mask_bits[i]);
286 }
287 groups[key].second.push_back(i);
288 }
289
290 std::vector<RTLIL::SigBit> grouped_result = mask_en_naive(do_mask, grouped_bits, grouped_mask_bits);
291 RTLIL::SigSpec result;
292
293 for (int i = 0; i < bits.size(); i++) {
294 std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_bits[i], v_mask_bits[i]);
295 result.append_bit(grouped_result.at(groups.at(key).first));
296 }
297
298 return result;
299 }
300
301 void merge_en_data(RTLIL::SigSpec &merged_en, RTLIL::SigSpec &merged_data, RTLIL::SigSpec next_en, RTLIL::SigSpec next_data)
302 {
303 std::vector<RTLIL::SigBit> v_old_en = merged_en;
304 std::vector<RTLIL::SigBit> v_next_en = next_en;
305
306 // The new merged_en signal is just the old merged_en signal and next_en OR'ed together.
307 // But of course we need to preserve the bit grouping..
308
309 std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups;
310 std::vector<RTLIL::SigBit> grouped_old_en, grouped_next_en;
311 RTLIL::SigSpec new_merged_en;
312
313 for (int i = 0; i < int(v_old_en.size()); i++) {
314 std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_old_en[i], v_next_en[i]);
315 if (groups.count(key) == 0) {
316 groups[key] = grouped_old_en.size();
317 grouped_old_en.push_back(key.first);
318 grouped_next_en.push_back(key.second);
319 }
320 }
321
322 std::vector<RTLIL::SigBit> grouped_new_en = module->Or(NEW_ID, grouped_old_en, grouped_next_en);
323
324 for (int i = 0; i < int(v_old_en.size()); i++) {
325 std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_old_en[i], v_next_en[i]);
326 new_merged_en.append_bit(grouped_new_en.at(groups.at(key)));
327 }
328
329 // Create the new merged_data signal.
330
331 RTLIL::SigSpec new_merged_data(RTLIL::State::Sx, merged_data.size());
332
333 RTLIL::SigSpec old_data_set = module->And(NEW_ID, merged_en, merged_data);
334 RTLIL::SigSpec old_data_unset = module->And(NEW_ID, merged_en, module->Not(NEW_ID, merged_data));
335
336 RTLIL::SigSpec new_data_set = module->And(NEW_ID, next_en, next_data);
337 RTLIL::SigSpec new_data_unset = module->And(NEW_ID, next_en, module->Not(NEW_ID, next_data));
338
339 new_merged_data = module->Or(NEW_ID, new_merged_data, old_data_set);
340 new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, old_data_unset));
341
342 new_merged_data = module->Or(NEW_ID, new_merged_data, new_data_set);
343 new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, new_data_unset));
344
345 // Update merged_* signals
346
347 merged_en = new_merged_en;
348 merged_data = new_merged_data;
349 }
350
351 void consolidate_wr_by_addr(std::string memid, std::vector<RTLIL::Cell*> &wr_ports)
352 {
353 if (wr_ports.size() <= 1)
354 return;
355
356 log("Consolidating write ports of memory %s.%s by address:\n", log_id(module), log_id(memid));
357
358 std::map<RTLIL::SigSpec, int> last_port_by_addr;
359 std::vector<std::vector<bool>> active_bits_on_port;
360
361 bool cache_clk_enable = false;
362 bool cache_clk_polarity = false;
363 RTLIL::SigSpec cache_clk;
364
365 for (int i = 0; i < int(wr_ports.size()); i++)
366 {
367 RTLIL::Cell *cell = wr_ports.at(i);
368 RTLIL::SigSpec addr = sigmap_xmux(cell->getPort("\\ADDR"));
369
370 if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable ||
371 (cache_clk_enable && (sigmap(cell->getPort("\\CLK")) != cache_clk ||
372 cell->parameters.at("\\CLK_POLARITY").as_bool() != cache_clk_polarity)))
373 {
374 cache_clk_enable = cell->parameters.at("\\CLK_ENABLE").as_bool();
375 cache_clk_polarity = cell->parameters.at("\\CLK_POLARITY").as_bool();
376 cache_clk = sigmap(cell->getPort("\\CLK"));
377 last_port_by_addr.clear();
378
379 if (cache_clk_enable)
380 log(" New clock domain: %s %s\n", cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk));
381 else
382 log(" New clock domain: unclocked\n");
383 }
384
385 log(" Port %d (%s) has addr %s.\n", i, log_id(cell), log_signal(addr));
386
387 log(" Active bits: ");
388 std::vector<RTLIL::SigBit> en_bits = sigmap(cell->getPort("\\EN"));
389 active_bits_on_port.push_back(std::vector<bool>(en_bits.size()));
390 for (int k = int(en_bits.size())-1; k >= 0; k--) {
391 active_bits_on_port[i][k] = en_bits[k].wire != NULL || en_bits[k].data != RTLIL::State::S0;
392 log("%c", active_bits_on_port[i][k] ? '1' : '0');
393 }
394 log("\n");
395
396 if (last_port_by_addr.count(addr))
397 {
398 int last_i = last_port_by_addr.at(addr);
399 log(" Merging port %d into this one.\n", last_i);
400
401 bool found_overlapping_bits = false;
402 for (int k = 0; k < int(en_bits.size()); k++) {
403 if (active_bits_on_port[i][k] && active_bits_on_port[last_i][k])
404 found_overlapping_bits = true;
405 active_bits_on_port[i][k] = active_bits_on_port[i][k] || active_bits_on_port[last_i][k];
406 }
407
408 // Force this ports addr input to addr directly (skip don't care muxes)
409
410 cell->setPort("\\ADDR", addr);
411
412 // If any of the ports between `last_i' and `i' write to the same address, this
413 // will have priority over whatever `last_i` wrote. So we need to revisit those
414 // ports and mask the EN bits accordingly.
415
416 RTLIL::SigSpec merged_en = sigmap(wr_ports[last_i]->getPort("\\EN"));
417
418 for (int j = last_i+1; j < i; j++)
419 {
420 if (wr_ports[j] == NULL)
421 continue;
422
423 for (int k = 0; k < int(en_bits.size()); k++)
424 if (active_bits_on_port[i][k] && active_bits_on_port[j][k])
425 goto found_overlapping_bits_i_j;
426
427 if (0) {
428 found_overlapping_bits_i_j:
429 log(" Creating collosion-detect logic for port %d.\n", j);
430 RTLIL::SigSpec is_same_addr = module->addWire(NEW_ID);
431 module->addEq(NEW_ID, addr, wr_ports[j]->getPort("\\ADDR"), is_same_addr);
432 merged_en = mask_en_grouped(is_same_addr, merged_en, sigmap(wr_ports[j]->getPort("\\EN")));
433 }
434 }
435
436 // Then we need to merge the (masked) EN and the DATA signals.
437
438 RTLIL::SigSpec merged_data = wr_ports[last_i]->getPort("\\DATA");
439 if (found_overlapping_bits) {
440 log(" Creating logic for merging DATA and EN ports.\n");
441 merge_en_data(merged_en, merged_data, sigmap(cell->getPort("\\EN")), sigmap(cell->getPort("\\DATA")));
442 } else {
443 RTLIL::SigSpec cell_en = sigmap(cell->getPort("\\EN"));
444 RTLIL::SigSpec cell_data = sigmap(cell->getPort("\\DATA"));
445 for (int k = 0; k < int(en_bits.size()); k++)
446 if (!active_bits_on_port[last_i][k]) {
447 merged_en.replace(k, cell_en.extract(k, 1));
448 merged_data.replace(k, cell_data.extract(k, 1));
449 }
450 }
451
452 // Connect the new EN and DATA signals and remove the old write port.
453
454 cell->setPort("\\EN", merged_en);
455 cell->setPort("\\DATA", merged_data);
456
457 module->remove(wr_ports[last_i]);
458 wr_ports[last_i] = NULL;
459
460 log(" Active bits: ");
461 std::vector<RTLIL::SigBit> en_bits = sigmap(cell->getPort("\\EN"));
462 active_bits_on_port.push_back(std::vector<bool>(en_bits.size()));
463 for (int k = int(en_bits.size())-1; k >= 0; k--)
464 log("%c", active_bits_on_port[i][k] ? '1' : '0');
465 log("\n");
466 }
467
468 last_port_by_addr[addr] = i;
469 }
470
471 // Clean up `wr_ports': remove all NULL entries
472
473 std::vector<RTLIL::Cell*> wr_ports_with_nulls;
474 wr_ports_with_nulls.swap(wr_ports);
475
476 for (auto cell : wr_ports_with_nulls)
477 if (cell != NULL)
478 wr_ports.push_back(cell);
479 }
480
481
482 // --------------------------------------------------------
483 // Consolidate write ports using sat-based resource sharing
484 // --------------------------------------------------------
485
486 void consolidate_wr_using_sat(std::string memid, std::vector<RTLIL::Cell*> &wr_ports)
487 {
488 if (wr_ports.size() <= 1)
489 return;
490
491 ezDefaultSAT ez;
492 SatGen satgen(&ez, &modwalker.sigmap);
493
494 // find list of considered ports and port pairs
495
496 std::set<int> considered_ports;
497 std::set<int> considered_port_pairs;
498
499 for (int i = 0; i < int(wr_ports.size()); i++) {
500 std::vector<RTLIL::SigBit> bits = modwalker.sigmap(wr_ports[i]->getPort("\\EN"));
501 for (auto bit : bits)
502 if (bit == RTLIL::State::S1)
503 goto port_is_always_active;
504 if (modwalker.has_drivers(bits))
505 considered_ports.insert(i);
506 port_is_always_active:;
507 }
508
509 log("Consolidating write ports of memory %s.%s using sat-based resource sharing:\n", log_id(module), log_id(memid));
510
511 bool cache_clk_enable = false;
512 bool cache_clk_polarity = false;
513 RTLIL::SigSpec cache_clk;
514
515 for (int i = 0; i < int(wr_ports.size()); i++)
516 {
517 RTLIL::Cell *cell = wr_ports.at(i);
518
519 if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable ||
520 (cache_clk_enable && (sigmap(cell->getPort("\\CLK")) != cache_clk ||
521 cell->parameters.at("\\CLK_POLARITY").as_bool() != cache_clk_polarity)))
522 {
523 cache_clk_enable = cell->parameters.at("\\CLK_ENABLE").as_bool();
524 cache_clk_polarity = cell->parameters.at("\\CLK_POLARITY").as_bool();
525 cache_clk = sigmap(cell->getPort("\\CLK"));
526 }
527 else if (i > 0 && considered_ports.count(i-1) && considered_ports.count(i))
528 considered_port_pairs.insert(i);
529
530 if (cache_clk_enable)
531 log(" Port %d (%s) on %s %s: %s\n", i, log_id(cell),
532 cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk),
533 considered_ports.count(i) ? "considered" : "not considered");
534 else
535 log(" Port %d (%s) unclocked: %s\n", i, log_id(cell),
536 considered_ports.count(i) ? "considered" : "not considered");
537 }
538
539 if (considered_port_pairs.size() < 1) {
540 log(" No two subsequent ports in same clock domain considered -> nothing to consolidate.\n");
541 return;
542 }
543
544 // create SAT representation of common input cone of all considered EN signals
545
546 std::set<RTLIL::Cell*> sat_cells;
547 std::set<RTLIL::SigBit> bits_queue;
548 std::map<int, int> port_to_sat_variable;
549
550 for (int i = 0; i < int(wr_ports.size()); i++)
551 if (considered_port_pairs.count(i) || considered_port_pairs.count(i+1))
552 {
553 RTLIL::SigSpec sig = modwalker.sigmap(wr_ports[i]->getPort("\\EN"));
554 port_to_sat_variable[i] = ez.expression(ez.OpOr, satgen.importSigSpec(sig));
555
556 std::vector<RTLIL::SigBit> bits = sig;
557 bits_queue.insert(bits.begin(), bits.end());
558 }
559
560 while (!bits_queue.empty())
561 {
562 std::set<ModWalker::PortBit> portbits;
563 modwalker.get_drivers(portbits, bits_queue);
564 bits_queue.clear();
565
566 for (auto &pbit : portbits)
567 if (sat_cells.count(pbit.cell) == 0 && cone_ct.cell_known(pbit.cell->type)) {
568 std::set<RTLIL::SigBit> &cell_inputs = modwalker.cell_inputs[pbit.cell];
569 bits_queue.insert(cell_inputs.begin(), cell_inputs.end());
570 sat_cells.insert(pbit.cell);
571 }
572 }
573
574 log(" Common input cone for all EN signals: %d cells.\n", int(sat_cells.size()));
575
576 for (auto cell : sat_cells)
577 satgen.importCell(cell);
578
579 log(" Size of unconstrained SAT problem: %d variables, %d clauses\n", ez.numCnfVariables(), ez.numCnfClauses());
580
581 // merge subsequent ports if possible
582
583 for (int i = 0; i < int(wr_ports.size()); i++)
584 {
585 if (!considered_port_pairs.count(i))
586 continue;
587
588 if (ez.solve(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i))) {
589 log(" According to SAT solver sharing of port %d with port %d is not possible.\n", i-1, i);
590 continue;
591 }
592
593 log(" Merging port %d into port %d.\n", i-1, i);
594 port_to_sat_variable.at(i) = ez.OR(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i));
595
596 RTLIL::SigSpec last_addr = wr_ports[i-1]->getPort("\\ADDR");
597 RTLIL::SigSpec last_data = wr_ports[i-1]->getPort("\\DATA");
598 std::vector<RTLIL::SigBit> last_en = modwalker.sigmap(wr_ports[i-1]->getPort("\\EN"));
599
600 RTLIL::SigSpec this_addr = wr_ports[i]->getPort("\\ADDR");
601 RTLIL::SigSpec this_data = wr_ports[i]->getPort("\\DATA");
602 std::vector<RTLIL::SigBit> this_en = modwalker.sigmap(wr_ports[i]->getPort("\\EN"));
603
604 RTLIL::SigBit this_en_active = module->ReduceOr(NEW_ID, this_en);
605
606 wr_ports[i]->setPort("\\ADDR", module->Mux(NEW_ID, last_addr, this_addr, this_en_active));
607 wr_ports[i]->setPort("\\DATA", module->Mux(NEW_ID, last_data, this_data, this_en_active));
608
609 std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups_en;
610 RTLIL::SigSpec grouped_last_en, grouped_this_en, en;
611 RTLIL::Wire *grouped_en = module->addWire(NEW_ID, 0);
612
613 for (int j = 0; j < int(this_en.size()); j++) {
614 std::pair<RTLIL::SigBit, RTLIL::SigBit> key(last_en[j], this_en[j]);
615 if (!groups_en.count(key)) {
616 grouped_last_en.append_bit(last_en[j]);
617 grouped_this_en.append_bit(this_en[j]);
618 groups_en[key] = grouped_en->width;
619 grouped_en->width++;
620 }
621 en.append(RTLIL::SigSpec(grouped_en, groups_en[key]));
622 }
623
624 module->addMux(NEW_ID, grouped_last_en, grouped_this_en, this_en_active, grouped_en);
625 wr_ports[i]->setPort("\\EN", en);
626
627 module->remove(wr_ports[i-1]);
628 wr_ports[i-1] = NULL;
629 }
630
631 // Clean up `wr_ports': remove all NULL entries
632
633 std::vector<RTLIL::Cell*> wr_ports_with_nulls;
634 wr_ports_with_nulls.swap(wr_ports);
635
636 for (auto cell : wr_ports_with_nulls)
637 if (cell != NULL)
638 wr_ports.push_back(cell);
639 }
640
641
642 // -------------
643 // Setup and run
644 // -------------
645
646 MemoryShareWorker(RTLIL::Design *design, RTLIL::Module *module) :
647 design(design), module(module), sigmap(module)
648 {
649 std::map<std::string, std::pair<std::vector<RTLIL::Cell*>, std::vector<RTLIL::Cell*>>> memindex;
650
651 sigmap_xmux = sigmap;
652 for (auto &it : module->cells_)
653 {
654 RTLIL::Cell *cell = it.second;
655
656 if (cell->type == "$memrd")
657 memindex[cell->parameters.at("\\MEMID").decode_string()].first.push_back(cell);
658
659 if (cell->type == "$memwr")
660 memindex[cell->parameters.at("\\MEMID").decode_string()].second.push_back(cell);
661
662 if (cell->type == "$mux")
663 {
664 RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort("\\A"));
665 RTLIL::SigSpec sig_b = sigmap_xmux(cell->getPort("\\B"));
666
667 if (sig_a.is_fully_undef())
668 sigmap_xmux.add(cell->getPort("\\Y"), sig_b);
669 else if (sig_b.is_fully_undef())
670 sigmap_xmux.add(cell->getPort("\\Y"), sig_a);
671 }
672
673 if (cell->type == "$mux" || cell->type == "$pmux")
674 {
675 std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y"));
676 for (int i = 0; i < int(sig_y.size()); i++)
677 sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i);
678 }
679 }
680
681 for (auto &it : memindex) {
682 std::sort(it.second.first.begin(), it.second.first.end(), memcells_cmp);
683 std::sort(it.second.second.begin(), it.second.second.end(), memcells_cmp);
684 translate_rd_feedback_to_en(it.first, it.second.first, it.second.second);
685 consolidate_wr_by_addr(it.first, it.second.second);
686 }
687
688 cone_ct.setup_internals();
689 cone_ct.cell_types.erase("$mul");
690 cone_ct.cell_types.erase("$mod");
691 cone_ct.cell_types.erase("$div");
692 cone_ct.cell_types.erase("$pow");
693 cone_ct.cell_types.erase("$shl");
694 cone_ct.cell_types.erase("$shr");
695 cone_ct.cell_types.erase("$sshl");
696 cone_ct.cell_types.erase("$sshr");
697 cone_ct.cell_types.erase("$shift");
698 cone_ct.cell_types.erase("$shiftx");
699
700 modwalker.setup(design, module, &cone_ct);
701
702 for (auto &it : memindex)
703 consolidate_wr_using_sat(it.first, it.second.second);
704 }
705 };
706
707 struct MemorySharePass : public Pass {
708 MemorySharePass() : Pass("memory_share", "consolidate memory ports") { }
709 virtual void help()
710 {
711 // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
712 log("\n");
713 log(" memory_share [selection]\n");
714 log("\n");
715 log("This pass merges share-able memory ports into single memory ports.\n");
716 log("\n");
717 log("The following methods are used to consolidate the number of memory ports:\n");
718 log("\n");
719 log(" - When write ports are connected to async read ports accessing the same\n");
720 log(" address, then this feedback path is converted to a write port with\n");
721 log(" byte/part enable signals.\n");
722 log("\n");
723 log(" - When multiple write ports access the same address then this is converted\n");
724 log(" to a single write port with a more complex data and/or enable logic path.\n");
725 log("\n");
726 log(" - When multiple write ports are never accessed at the same time (a SAT\n");
727 log(" solver is used to determine this), then the ports are merged into a single\n");
728 log(" write port.\n");
729 log("\n");
730 log("Note that in addition to the algorithms implemented in this pass, the $memrd\n");
731 log("and $memwr cells are also subject to generic resource sharing passes (and other\n");
732 log("optimizations) such as opt_share.\n");
733 log("\n");
734 }
735 virtual void execute(std::vector<std::string> args, RTLIL::Design *design) {
736 log_header("Executing MEMORY_SHARE pass (consolidating $memrc/$memwr cells).\n");
737 extra_args(args, 1, design);
738 for (auto module : design->selected_modules())
739 MemoryShareWorker(design, module);
740 }
741 } MemorySharePass;
742
743 PRIVATE_NAMESPACE_END
744