namespace Yosys
[yosys.git] / passes / memory / memory_share.cc
1 /*
2 * yosys -- Yosys Open SYnthesis Suite
3 *
4 * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 */
19
20 #include "kernel/yosys.h"
21 #include "kernel/satgen.h"
22 #include "kernel/sigtools.h"
23 #include "kernel/modtools.h"
24
25 USING_YOSYS_NAMESPACE
26 PRIVATE_NAMESPACE_BEGIN
27
28 bool memcells_cmp(RTLIL::Cell *a, RTLIL::Cell *b)
29 {
30 if (a->type == "$memrd" && b->type == "$memrd")
31 return a->name < b->name;
32 if (a->type == "$memrd" || b->type == "$memrd")
33 return (a->type == "$memrd") < (b->type == "$memrd");
34 return a->parameters.at("\\PRIORITY").as_int() < b->parameters.at("\\PRIORITY").as_int();
35 }
36
37 struct MemoryShareWorker
38 {
39 RTLIL::Design *design;
40 RTLIL::Module *module;
41 SigMap sigmap, sigmap_xmux;
42 ModWalker modwalker;
43 CellTypes cone_ct;
44
45 std::map<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux;
46 std::map<std::set<std::map<RTLIL::SigBit, bool>>, RTLIL::SigBit> conditions_logic_cache;
47
48
49 // -----------------------------------------------------------------
50 // Converting feedbacks to async read ports to proper enable signals
51 // -----------------------------------------------------------------
52
53 bool find_data_feedback(const std::set<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig,
54 std::map<RTLIL::SigBit, bool> &state, std::set<std::map<RTLIL::SigBit, bool>> &conditions)
55 {
56 if (async_rd_bits.count(sig)) {
57 conditions.insert(state);
58 return true;
59 }
60
61 if (sig_to_mux.count(sig) == 0)
62 return false;
63
64 RTLIL::Cell *cell = sig_to_mux.at(sig).first;
65 int bit_idx = sig_to_mux.at(sig).second;
66
67 std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort("\\A"));
68 std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort("\\B"));
69 std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort("\\S"));
70 std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y"));
71 log_assert(sig_y.at(bit_idx) == sig);
72
73 for (int i = 0; i < int(sig_s.size()); i++)
74 if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) {
75 if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, conditions)) {
76 RTLIL::SigSpec new_b = cell->getPort("\\B");
77 new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
78 cell->setPort("\\B", new_b);
79 }
80 return false;
81 }
82
83
84 for (int i = 0; i < int(sig_s.size()); i++)
85 {
86 if (state.count(sig_s[i]) && state.at(sig_s[i]) == false)
87 continue;
88
89 std::map<RTLIL::SigBit, bool> new_state = state;
90 new_state[sig_s[i]] = true;
91
92 if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, conditions)) {
93 RTLIL::SigSpec new_b = cell->getPort("\\B");
94 new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
95 cell->setPort("\\B", new_b);
96 }
97 }
98
99 std::map<RTLIL::SigBit, bool> new_state = state;
100 for (int i = 0; i < int(sig_s.size()); i++)
101 new_state[sig_s[i]] = false;
102
103 if (find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, conditions)) {
104 RTLIL::SigSpec new_a = cell->getPort("\\A");
105 new_a.replace(bit_idx, RTLIL::State::Sx);
106 cell->setPort("\\A", new_a);
107 }
108
109 return false;
110 }
111
112 RTLIL::SigBit conditions_to_logic(std::set<std::map<RTLIL::SigBit, bool>> &conditions, int &created_conditions)
113 {
114 if (conditions_logic_cache.count(conditions))
115 return conditions_logic_cache.at(conditions);
116
117 RTLIL::SigSpec terms;
118 for (auto &cond : conditions) {
119 RTLIL::SigSpec sig1, sig2;
120 for (auto &it : cond) {
121 sig1.append_bit(it.first);
122 sig2.append_bit(it.second ? RTLIL::State::S1 : RTLIL::State::S0);
123 }
124 terms.append(module->Ne(NEW_ID, sig1, sig2));
125 created_conditions++;
126 }
127
128 if (terms.size() > 1)
129 terms = module->ReduceAnd(NEW_ID, terms);
130
131 return conditions_logic_cache[conditions] = terms;
132 }
133
134 void translate_rd_feedback_to_en(std::string memid, std::vector<RTLIL::Cell*> &rd_ports, std::vector<RTLIL::Cell*> &wr_ports)
135 {
136 std::map<RTLIL::SigSpec, std::vector<std::set<RTLIL::SigBit>>> async_rd_bits;
137 std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> muxtree_upstream_map;
138 std::set<RTLIL::SigBit> non_feedback_nets;
139
140 for (auto wire_it : module->wires_)
141 if (wire_it.second->port_output) {
142 std::vector<RTLIL::SigBit> bits = RTLIL::SigSpec(wire_it.second);
143 non_feedback_nets.insert(bits.begin(), bits.end());
144 }
145
146 for (auto cell_it : module->cells_)
147 {
148 RTLIL::Cell *cell = cell_it.second;
149 bool ignore_data_port = false;
150
151 if (cell->type == "$mux" || cell->type == "$pmux")
152 {
153 std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort("\\A"));
154 std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort("\\B"));
155 std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort("\\S"));
156 std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y"));
157
158 non_feedback_nets.insert(sig_s.begin(), sig_s.end());
159
160 for (int i = 0; i < int(sig_y.size()); i++) {
161 muxtree_upstream_map[sig_y[i]].insert(sig_a[i]);
162 for (int j = 0; j < int(sig_s.size()); j++)
163 muxtree_upstream_map[sig_y[i]].insert(sig_b[i + j*sig_y.size()]);
164 }
165
166 continue;
167 }
168
169 if ((cell->type == "$memwr" || cell->type == "$memrd") &&
170 cell->parameters.at("\\MEMID").decode_string() == memid)
171 ignore_data_port = true;
172
173 for (auto conn : cell_it.second->connections())
174 {
175 if (ignore_data_port && conn.first == "\\DATA")
176 continue;
177 std::vector<RTLIL::SigBit> bits = sigmap(conn.second);
178 non_feedback_nets.insert(bits.begin(), bits.end());
179 }
180 }
181
182 std::set<RTLIL::SigBit> expand_non_feedback_nets = non_feedback_nets;
183 while (!expand_non_feedback_nets.empty())
184 {
185 std::set<RTLIL::SigBit> new_expand_non_feedback_nets;
186
187 for (auto &bit : expand_non_feedback_nets)
188 if (muxtree_upstream_map.count(bit))
189 for (auto &new_bit : muxtree_upstream_map.at(bit))
190 if (!non_feedback_nets.count(new_bit)) {
191 non_feedback_nets.insert(new_bit);
192 new_expand_non_feedback_nets.insert(new_bit);
193 }
194
195 expand_non_feedback_nets.swap(new_expand_non_feedback_nets);
196 }
197
198 for (auto cell : rd_ports)
199 {
200 if (cell->parameters.at("\\CLK_ENABLE").as_bool())
201 continue;
202
203 RTLIL::SigSpec sig_addr = sigmap(cell->getPort("\\ADDR"));
204 std::vector<RTLIL::SigBit> sig_data = sigmap(cell->getPort("\\DATA"));
205
206 for (int i = 0; i < int(sig_data.size()); i++)
207 if (non_feedback_nets.count(sig_data[i]))
208 goto not_pure_feedback_port;
209
210 async_rd_bits[sig_addr].resize(std::max(async_rd_bits.size(), sig_data.size()));
211 for (int i = 0; i < int(sig_data.size()); i++)
212 async_rd_bits[sig_addr][i].insert(sig_data[i]);
213
214 not_pure_feedback_port:;
215 }
216
217 if (async_rd_bits.empty())
218 return;
219
220 log("Populating enable bits on write ports of memory %s.%s with aync read feedback:\n", log_id(module), log_id(memid));
221
222 for (auto cell : wr_ports)
223 {
224 RTLIL::SigSpec sig_addr = sigmap_xmux(cell->getPort("\\ADDR"));
225 if (!async_rd_bits.count(sig_addr))
226 continue;
227
228 log(" Analyzing write port %s.\n", log_id(cell));
229
230 std::vector<RTLIL::SigBit> cell_data = cell->getPort("\\DATA");
231 std::vector<RTLIL::SigBit> cell_en = cell->getPort("\\EN");
232
233 int created_conditions = 0;
234 for (int i = 0; i < int(cell_data.size()); i++)
235 if (cell_en[i] != RTLIL::SigBit(RTLIL::State::S0))
236 {
237 std::map<RTLIL::SigBit, bool> state;
238 std::set<std::map<RTLIL::SigBit, bool>> conditions;
239
240 if (cell_en[i].wire != NULL) {
241 state[cell_en[i]] = false;
242 conditions.insert(state);
243 }
244
245 find_data_feedback(async_rd_bits.at(sig_addr).at(i), cell_data[i], state, conditions);
246 cell_en[i] = conditions_to_logic(conditions, created_conditions);
247 }
248
249 if (created_conditions) {
250 log(" Added enable logic for %d different cases.\n", created_conditions);
251 cell->setPort("\\EN", cell_en);
252 }
253 }
254 }
255
256
257 // ------------------------------------------------------
258 // Consolidate write ports that write to the same address
259 // ------------------------------------------------------
260
261 RTLIL::SigSpec mask_en_naive(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits)
262 {
263 // this is the naive version of the function that does not care about grouping the EN bits.
264
265 RTLIL::SigSpec inv_mask_bits = module->Not(NEW_ID, mask_bits);
266 RTLIL::SigSpec inv_mask_bits_filtered = module->Mux(NEW_ID, RTLIL::SigSpec(RTLIL::State::S1, bits.size()), inv_mask_bits, do_mask);
267 RTLIL::SigSpec result = module->And(NEW_ID, inv_mask_bits_filtered, bits);
268 return result;
269 }
270
271 RTLIL::SigSpec mask_en_grouped(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits)
272 {
273 // this version of the function preserves the bit grouping in the EN bits.
274
275 std::vector<RTLIL::SigBit> v_bits = bits;
276 std::vector<RTLIL::SigBit> v_mask_bits = mask_bits;
277
278 std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, std::pair<int, std::vector<int>>> groups;
279 RTLIL::SigSpec grouped_bits, grouped_mask_bits;
280
281 for (int i = 0; i < bits.size(); i++) {
282 std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_bits[i], v_mask_bits[i]);
283 if (groups.count(key) == 0) {
284 groups[key].first = grouped_bits.size();
285 grouped_bits.append_bit(v_bits[i]);
286 grouped_mask_bits.append_bit(v_mask_bits[i]);
287 }
288 groups[key].second.push_back(i);
289 }
290
291 std::vector<RTLIL::SigBit> grouped_result = mask_en_naive(do_mask, grouped_bits, grouped_mask_bits);
292 RTLIL::SigSpec result;
293
294 for (int i = 0; i < bits.size(); i++) {
295 std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_bits[i], v_mask_bits[i]);
296 result.append_bit(grouped_result.at(groups.at(key).first));
297 }
298
299 return result;
300 }
301
302 void merge_en_data(RTLIL::SigSpec &merged_en, RTLIL::SigSpec &merged_data, RTLIL::SigSpec next_en, RTLIL::SigSpec next_data)
303 {
304 std::vector<RTLIL::SigBit> v_old_en = merged_en;
305 std::vector<RTLIL::SigBit> v_next_en = next_en;
306
307 // The new merged_en signal is just the old merged_en signal and next_en OR'ed together.
308 // But of course we need to preserve the bit grouping..
309
310 std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups;
311 std::vector<RTLIL::SigBit> grouped_old_en, grouped_next_en;
312 RTLIL::SigSpec new_merged_en;
313
314 for (int i = 0; i < int(v_old_en.size()); i++) {
315 std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_old_en[i], v_next_en[i]);
316 if (groups.count(key) == 0) {
317 groups[key] = grouped_old_en.size();
318 grouped_old_en.push_back(key.first);
319 grouped_next_en.push_back(key.second);
320 }
321 }
322
323 std::vector<RTLIL::SigBit> grouped_new_en = module->Or(NEW_ID, grouped_old_en, grouped_next_en);
324
325 for (int i = 0; i < int(v_old_en.size()); i++) {
326 std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_old_en[i], v_next_en[i]);
327 new_merged_en.append_bit(grouped_new_en.at(groups.at(key)));
328 }
329
330 // Create the new merged_data signal.
331
332 RTLIL::SigSpec new_merged_data(RTLIL::State::Sx, merged_data.size());
333
334 RTLIL::SigSpec old_data_set = module->And(NEW_ID, merged_en, merged_data);
335 RTLIL::SigSpec old_data_unset = module->And(NEW_ID, merged_en, module->Not(NEW_ID, merged_data));
336
337 RTLIL::SigSpec new_data_set = module->And(NEW_ID, next_en, next_data);
338 RTLIL::SigSpec new_data_unset = module->And(NEW_ID, next_en, module->Not(NEW_ID, next_data));
339
340 new_merged_data = module->Or(NEW_ID, new_merged_data, old_data_set);
341 new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, old_data_unset));
342
343 new_merged_data = module->Or(NEW_ID, new_merged_data, new_data_set);
344 new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, new_data_unset));
345
346 // Update merged_* signals
347
348 merged_en = new_merged_en;
349 merged_data = new_merged_data;
350 }
351
352 void consolidate_wr_by_addr(std::string memid, std::vector<RTLIL::Cell*> &wr_ports)
353 {
354 if (wr_ports.size() <= 1)
355 return;
356
357 log("Consolidating write ports of memory %s.%s by address:\n", log_id(module), log_id(memid));
358
359 std::map<RTLIL::SigSpec, int> last_port_by_addr;
360 std::vector<std::vector<bool>> active_bits_on_port;
361
362 bool cache_clk_enable = false;
363 bool cache_clk_polarity = false;
364 RTLIL::SigSpec cache_clk;
365
366 for (int i = 0; i < int(wr_ports.size()); i++)
367 {
368 RTLIL::Cell *cell = wr_ports.at(i);
369 RTLIL::SigSpec addr = sigmap_xmux(cell->getPort("\\ADDR"));
370
371 if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable ||
372 (cache_clk_enable && (sigmap(cell->getPort("\\CLK")) != cache_clk ||
373 cell->parameters.at("\\CLK_POLARITY").as_bool() != cache_clk_polarity)))
374 {
375 cache_clk_enable = cell->parameters.at("\\CLK_ENABLE").as_bool();
376 cache_clk_polarity = cell->parameters.at("\\CLK_POLARITY").as_bool();
377 cache_clk = sigmap(cell->getPort("\\CLK"));
378 last_port_by_addr.clear();
379
380 if (cache_clk_enable)
381 log(" New clock domain: %s %s\n", cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk));
382 else
383 log(" New clock domain: unclocked\n");
384 }
385
386 log(" Port %d (%s) has addr %s.\n", i, log_id(cell), log_signal(addr));
387
388 log(" Active bits: ");
389 std::vector<RTLIL::SigBit> en_bits = sigmap(cell->getPort("\\EN"));
390 active_bits_on_port.push_back(std::vector<bool>(en_bits.size()));
391 for (int k = int(en_bits.size())-1; k >= 0; k--) {
392 active_bits_on_port[i][k] = en_bits[k].wire != NULL || en_bits[k].data != RTLIL::State::S0;
393 log("%c", active_bits_on_port[i][k] ? '1' : '0');
394 }
395 log("\n");
396
397 if (last_port_by_addr.count(addr))
398 {
399 int last_i = last_port_by_addr.at(addr);
400 log(" Merging port %d into this one.\n", last_i);
401
402 bool found_overlapping_bits = false;
403 for (int k = 0; k < int(en_bits.size()); k++) {
404 if (active_bits_on_port[i][k] && active_bits_on_port[last_i][k])
405 found_overlapping_bits = true;
406 active_bits_on_port[i][k] = active_bits_on_port[i][k] || active_bits_on_port[last_i][k];
407 }
408
409 // Force this ports addr input to addr directly (skip don't care muxes)
410
411 cell->setPort("\\ADDR", addr);
412
413 // If any of the ports between `last_i' and `i' write to the same address, this
414 // will have priority over whatever `last_i` wrote. So we need to revisit those
415 // ports and mask the EN bits accordingly.
416
417 RTLIL::SigSpec merged_en = sigmap(wr_ports[last_i]->getPort("\\EN"));
418
419 for (int j = last_i+1; j < i; j++)
420 {
421 if (wr_ports[j] == NULL)
422 continue;
423
424 for (int k = 0; k < int(en_bits.size()); k++)
425 if (active_bits_on_port[i][k] && active_bits_on_port[j][k])
426 goto found_overlapping_bits_i_j;
427
428 if (0) {
429 found_overlapping_bits_i_j:
430 log(" Creating collosion-detect logic for port %d.\n", j);
431 RTLIL::SigSpec is_same_addr = module->addWire(NEW_ID);
432 module->addEq(NEW_ID, addr, wr_ports[j]->getPort("\\ADDR"), is_same_addr);
433 merged_en = mask_en_grouped(is_same_addr, merged_en, sigmap(wr_ports[j]->getPort("\\EN")));
434 }
435 }
436
437 // Then we need to merge the (masked) EN and the DATA signals.
438
439 RTLIL::SigSpec merged_data = wr_ports[last_i]->getPort("\\DATA");
440 if (found_overlapping_bits) {
441 log(" Creating logic for merging DATA and EN ports.\n");
442 merge_en_data(merged_en, merged_data, sigmap(cell->getPort("\\EN")), sigmap(cell->getPort("\\DATA")));
443 } else {
444 RTLIL::SigSpec cell_en = sigmap(cell->getPort("\\EN"));
445 RTLIL::SigSpec cell_data = sigmap(cell->getPort("\\DATA"));
446 for (int k = 0; k < int(en_bits.size()); k++)
447 if (!active_bits_on_port[last_i][k]) {
448 merged_en.replace(k, cell_en.extract(k, 1));
449 merged_data.replace(k, cell_data.extract(k, 1));
450 }
451 }
452
453 // Connect the new EN and DATA signals and remove the old write port.
454
455 cell->setPort("\\EN", merged_en);
456 cell->setPort("\\DATA", merged_data);
457
458 module->remove(wr_ports[last_i]);
459 wr_ports[last_i] = NULL;
460
461 log(" Active bits: ");
462 std::vector<RTLIL::SigBit> en_bits = sigmap(cell->getPort("\\EN"));
463 active_bits_on_port.push_back(std::vector<bool>(en_bits.size()));
464 for (int k = int(en_bits.size())-1; k >= 0; k--)
465 log("%c", active_bits_on_port[i][k] ? '1' : '0');
466 log("\n");
467 }
468
469 last_port_by_addr[addr] = i;
470 }
471
472 // Clean up `wr_ports': remove all NULL entries
473
474 std::vector<RTLIL::Cell*> wr_ports_with_nulls;
475 wr_ports_with_nulls.swap(wr_ports);
476
477 for (auto cell : wr_ports_with_nulls)
478 if (cell != NULL)
479 wr_ports.push_back(cell);
480 }
481
482
483 // --------------------------------------------------------
484 // Consolidate write ports using sat-based resource sharing
485 // --------------------------------------------------------
486
487 void consolidate_wr_using_sat(std::string memid, std::vector<RTLIL::Cell*> &wr_ports)
488 {
489 if (wr_ports.size() <= 1)
490 return;
491
492 ezDefaultSAT ez;
493 SatGen satgen(&ez, &modwalker.sigmap);
494
495 // find list of considered ports and port pairs
496
497 std::set<int> considered_ports;
498 std::set<int> considered_port_pairs;
499
500 for (int i = 0; i < int(wr_ports.size()); i++) {
501 std::vector<RTLIL::SigBit> bits = modwalker.sigmap(wr_ports[i]->getPort("\\EN"));
502 for (auto bit : bits)
503 if (bit == RTLIL::State::S1)
504 goto port_is_always_active;
505 if (modwalker.has_drivers(bits))
506 considered_ports.insert(i);
507 port_is_always_active:;
508 }
509
510 log("Consolidating write ports of memory %s.%s using sat-based resource sharing:\n", log_id(module), log_id(memid));
511
512 bool cache_clk_enable = false;
513 bool cache_clk_polarity = false;
514 RTLIL::SigSpec cache_clk;
515
516 for (int i = 0; i < int(wr_ports.size()); i++)
517 {
518 RTLIL::Cell *cell = wr_ports.at(i);
519
520 if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable ||
521 (cache_clk_enable && (sigmap(cell->getPort("\\CLK")) != cache_clk ||
522 cell->parameters.at("\\CLK_POLARITY").as_bool() != cache_clk_polarity)))
523 {
524 cache_clk_enable = cell->parameters.at("\\CLK_ENABLE").as_bool();
525 cache_clk_polarity = cell->parameters.at("\\CLK_POLARITY").as_bool();
526 cache_clk = sigmap(cell->getPort("\\CLK"));
527 }
528 else if (i > 0 && considered_ports.count(i-1) && considered_ports.count(i))
529 considered_port_pairs.insert(i);
530
531 if (cache_clk_enable)
532 log(" Port %d (%s) on %s %s: %s\n", i, log_id(cell),
533 cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk),
534 considered_ports.count(i) ? "considered" : "not considered");
535 else
536 log(" Port %d (%s) unclocked: %s\n", i, log_id(cell),
537 considered_ports.count(i) ? "considered" : "not considered");
538 }
539
540 if (considered_port_pairs.size() < 1) {
541 log(" No two subsequent ports in same clock domain considered -> nothing to consolidate.\n");
542 return;
543 }
544
545 // create SAT representation of common input cone of all considered EN signals
546
547 std::set<RTLIL::Cell*> sat_cells;
548 std::set<RTLIL::SigBit> bits_queue;
549 std::map<int, int> port_to_sat_variable;
550
551 for (int i = 0; i < int(wr_ports.size()); i++)
552 if (considered_port_pairs.count(i) || considered_port_pairs.count(i+1))
553 {
554 RTLIL::SigSpec sig = modwalker.sigmap(wr_ports[i]->getPort("\\EN"));
555 port_to_sat_variable[i] = ez.expression(ez.OpOr, satgen.importSigSpec(sig));
556
557 std::vector<RTLIL::SigBit> bits = sig;
558 bits_queue.insert(bits.begin(), bits.end());
559 }
560
561 while (!bits_queue.empty())
562 {
563 std::set<ModWalker::PortBit> portbits;
564 modwalker.get_drivers(portbits, bits_queue);
565 bits_queue.clear();
566
567 for (auto &pbit : portbits)
568 if (sat_cells.count(pbit.cell) == 0 && cone_ct.cell_known(pbit.cell->type)) {
569 std::set<RTLIL::SigBit> &cell_inputs = modwalker.cell_inputs[pbit.cell];
570 bits_queue.insert(cell_inputs.begin(), cell_inputs.end());
571 sat_cells.insert(pbit.cell);
572 }
573 }
574
575 log(" Common input cone for all EN signals: %d cells.\n", int(sat_cells.size()));
576
577 for (auto cell : sat_cells)
578 satgen.importCell(cell);
579
580 log(" Size of unconstrained SAT problem: %d variables, %d clauses\n", ez.numCnfVariables(), ez.numCnfClauses());
581
582 // merge subsequent ports if possible
583
584 for (int i = 0; i < int(wr_ports.size()); i++)
585 {
586 if (!considered_port_pairs.count(i))
587 continue;
588
589 if (ez.solve(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i))) {
590 log(" According to SAT solver sharing of port %d with port %d is not possible.\n", i-1, i);
591 continue;
592 }
593
594 log(" Merging port %d into port %d.\n", i-1, i);
595 port_to_sat_variable.at(i) = ez.OR(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i));
596
597 RTLIL::SigSpec last_addr = wr_ports[i-1]->getPort("\\ADDR");
598 RTLIL::SigSpec last_data = wr_ports[i-1]->getPort("\\DATA");
599 std::vector<RTLIL::SigBit> last_en = modwalker.sigmap(wr_ports[i-1]->getPort("\\EN"));
600
601 RTLIL::SigSpec this_addr = wr_ports[i]->getPort("\\ADDR");
602 RTLIL::SigSpec this_data = wr_ports[i]->getPort("\\DATA");
603 std::vector<RTLIL::SigBit> this_en = modwalker.sigmap(wr_ports[i]->getPort("\\EN"));
604
605 RTLIL::SigBit this_en_active = module->ReduceOr(NEW_ID, this_en);
606
607 wr_ports[i]->setPort("\\ADDR", module->Mux(NEW_ID, last_addr, this_addr, this_en_active));
608 wr_ports[i]->setPort("\\DATA", module->Mux(NEW_ID, last_data, this_data, this_en_active));
609
610 std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups_en;
611 RTLIL::SigSpec grouped_last_en, grouped_this_en, en;
612 RTLIL::Wire *grouped_en = module->addWire(NEW_ID, 0);
613
614 for (int j = 0; j < int(this_en.size()); j++) {
615 std::pair<RTLIL::SigBit, RTLIL::SigBit> key(last_en[j], this_en[j]);
616 if (!groups_en.count(key)) {
617 grouped_last_en.append_bit(last_en[j]);
618 grouped_this_en.append_bit(this_en[j]);
619 groups_en[key] = grouped_en->width;
620 grouped_en->width++;
621 }
622 en.append(RTLIL::SigSpec(grouped_en, groups_en[key]));
623 }
624
625 module->addMux(NEW_ID, grouped_last_en, grouped_this_en, this_en_active, grouped_en);
626 wr_ports[i]->setPort("\\EN", en);
627
628 module->remove(wr_ports[i-1]);
629 wr_ports[i-1] = NULL;
630 }
631
632 // Clean up `wr_ports': remove all NULL entries
633
634 std::vector<RTLIL::Cell*> wr_ports_with_nulls;
635 wr_ports_with_nulls.swap(wr_ports);
636
637 for (auto cell : wr_ports_with_nulls)
638 if (cell != NULL)
639 wr_ports.push_back(cell);
640 }
641
642
643 // -------------
644 // Setup and run
645 // -------------
646
647 MemoryShareWorker(RTLIL::Design *design, RTLIL::Module *module) :
648 design(design), module(module), sigmap(module)
649 {
650 std::map<std::string, std::pair<std::vector<RTLIL::Cell*>, std::vector<RTLIL::Cell*>>> memindex;
651
652 sigmap_xmux = sigmap;
653 for (auto &it : module->cells_)
654 {
655 RTLIL::Cell *cell = it.second;
656
657 if (cell->type == "$memrd")
658 memindex[cell->parameters.at("\\MEMID").decode_string()].first.push_back(cell);
659
660 if (cell->type == "$memwr")
661 memindex[cell->parameters.at("\\MEMID").decode_string()].second.push_back(cell);
662
663 if (cell->type == "$mux")
664 {
665 RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort("\\A"));
666 RTLIL::SigSpec sig_b = sigmap_xmux(cell->getPort("\\B"));
667
668 if (sig_a.is_fully_undef())
669 sigmap_xmux.add(cell->getPort("\\Y"), sig_b);
670 else if (sig_b.is_fully_undef())
671 sigmap_xmux.add(cell->getPort("\\Y"), sig_a);
672 }
673
674 if (cell->type == "$mux" || cell->type == "$pmux")
675 {
676 std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y"));
677 for (int i = 0; i < int(sig_y.size()); i++)
678 sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i);
679 }
680 }
681
682 for (auto &it : memindex) {
683 std::sort(it.second.first.begin(), it.second.first.end(), memcells_cmp);
684 std::sort(it.second.second.begin(), it.second.second.end(), memcells_cmp);
685 translate_rd_feedback_to_en(it.first, it.second.first, it.second.second);
686 consolidate_wr_by_addr(it.first, it.second.second);
687 }
688
689 cone_ct.setup_internals();
690 cone_ct.cell_types.erase("$mul");
691 cone_ct.cell_types.erase("$mod");
692 cone_ct.cell_types.erase("$div");
693 cone_ct.cell_types.erase("$pow");
694 cone_ct.cell_types.erase("$shl");
695 cone_ct.cell_types.erase("$shr");
696 cone_ct.cell_types.erase("$sshl");
697 cone_ct.cell_types.erase("$sshr");
698 cone_ct.cell_types.erase("$shift");
699 cone_ct.cell_types.erase("$shiftx");
700
701 modwalker.setup(design, module, &cone_ct);
702
703 for (auto &it : memindex)
704 consolidate_wr_using_sat(it.first, it.second.second);
705 }
706 };
707
708 struct MemorySharePass : public Pass {
709 MemorySharePass() : Pass("memory_share", "consolidate memory ports") { }
710 virtual void help()
711 {
712 // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
713 log("\n");
714 log(" memory_share [selection]\n");
715 log("\n");
716 log("This pass merges share-able memory ports into single memory ports.\n");
717 log("\n");
718 log("The following methods are used to consolidate the number of memory ports:\n");
719 log("\n");
720 log(" - When write ports are connected to async read ports accessing the same\n");
721 log(" address, then this feedback path is converted to a write port with\n");
722 log(" byte/part enable signals.\n");
723 log("\n");
724 log(" - When multiple write ports access the same address then this is converted\n");
725 log(" to a single write port with a more complex data and/or enable logic path.\n");
726 log("\n");
727 log(" - When multiple write ports are never accessed at the same time (a SAT\n");
728 log(" solver is used to determine this), then the ports are merged into a single\n");
729 log(" write port.\n");
730 log("\n");
731 log("Note that in addition to the algorithms implemented in this pass, the $memrd\n");
732 log("and $memwr cells are also subject to generic resource sharing passes (and other\n");
733 log("optimizations) such as opt_share.\n");
734 log("\n");
735 }
736 virtual void execute(std::vector<std::string> args, RTLIL::Design *design) {
737 log_header("Executing MEMORY_SHARE pass (consolidating $memrc/$memwr cells).\n");
738 extra_args(args, 1, design);
739 for (auto module : design->selected_modules())
740 MemoryShareWorker(design, module);
741 }
742 } MemorySharePass;
743
744 PRIVATE_NAMESPACE_END