qbfsat: Add bisection mode and make it the default.
[yosys.git] / passes / sat / qbfsat.cc
1 /*
2 * yosys -- Yosys Open SYnthesis Suite
3 *
4 * Copyright (C) 2020 Alberto Gonzalez <boqwxp@airmail.cc>
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 */
19
20 #include "kernel/yosys.h"
21 #include "kernel/celltypes.h"
22 #include "kernel/consteval.h"
23 #include "kernel/log.h"
24 #include "kernel/rtlil.h"
25 #include "kernel/register.h"
26 #include <cstdio>
27 #include <algorithm>
28
29 #if defined(_WIN32)
30 # define WIFEXITED(x) 1
31 # define WIFSIGNALED(x) 0
32 # define WIFSTOPPED(x) 0
33 # define WEXITSTATUS(x) ((x) & 0xff)
34 # define WTERMSIG(x) SIGTERM
35 #else
36 # include <sys/wait.h>
37 #endif
38
39 USING_YOSYS_NAMESPACE
40 PRIVATE_NAMESPACE_BEGIN
41
42 struct QbfSolutionType {
43 std::vector<std::string> stdout_lines;
44 dict<std::string, std::string> hole_to_value;
45 bool sat;
46 bool unknown; //true if neither 'sat' nor 'unsat'
47
48 QbfSolutionType() : sat(false), unknown(true) {}
49 };
50
51 struct QbfSolveOptions {
52 bool specialize, specialize_from_file, write_solution, nocleanup, dump_final_smt2, assume_outputs, assume_neg;
53 bool nooptimize, nobisection;
54 bool sat, unsat, show_smtbmc;
55 std::string specialize_soln_file;
56 std::string write_soln_soln_file;
57 std::string dump_final_smt2_file;
58 size_t argidx;
59 QbfSolveOptions() : specialize(false), specialize_from_file(false), write_solution(false),
60 nocleanup(false), dump_final_smt2(false), assume_outputs(false), assume_neg(false),
61 nooptimize(false), nobisection(false), sat(false), unsat(false), show_smtbmc(false),
62 argidx(0) {};
63 };
64
65 void recover_solution(QbfSolutionType &sol) {
66 YS_REGEX_TYPE sat_regex = YS_REGEX_COMPILE("Status: PASSED");
67 YS_REGEX_TYPE unsat_regex = YS_REGEX_COMPILE("Solver Error.*model is not available");
68 YS_REGEX_TYPE memout_regex = YS_REGEX_COMPILE("Solver Error:.*error \"out of memory\"");
69 YS_REGEX_TYPE hole_value_regex = YS_REGEX_COMPILE_WITH_SUBS("Value for anyconst in [a-zA-Z0-9_]* \\(([^:]*:[^\\)]*)\\): (.*)");
70 #ifndef NDEBUG
71 YS_REGEX_TYPE hole_loc_regex = YS_REGEX_COMPILE("[^:]*:[0-9]+.[0-9]+-[0-9]+.[0-9]+");
72 YS_REGEX_TYPE hole_val_regex = YS_REGEX_COMPILE("[0-9]+");
73 #endif
74 YS_REGEX_MATCH_TYPE m;
75 bool sat_regex_found = false;
76 bool unsat_regex_found = false;
77 dict<std::string, bool> hole_value_recovered;
78 for (const std::string &x : sol.stdout_lines) {
79 if(YS_REGEX_NS::regex_search(x, m, hole_value_regex)) {
80 std::string loc = m[1].str();
81 std::string val = m[2].str();
82 #ifndef NDEBUG
83 log_assert(YS_REGEX_NS::regex_search(loc, hole_loc_regex));
84 log_assert(YS_REGEX_NS::regex_search(val, hole_val_regex));
85 #endif
86 sol.hole_to_value[loc] = val;
87 }
88 else if (YS_REGEX_NS::regex_search(x, sat_regex))
89 sat_regex_found = true;
90 else if (YS_REGEX_NS::regex_search(x, unsat_regex))
91 unsat_regex_found = true;
92 else if (YS_REGEX_NS::regex_search(x, memout_regex)) {
93 sol.unknown = true;
94 log_warning("solver ran out of memory\n");
95 }
96 }
97 #ifndef NDEBUG
98 log_assert(!sol.unknown && sol.sat? sat_regex_found : true);
99 log_assert(!sol.unknown && !sol.sat? unsat_regex_found : true);
100 #endif
101 }
102
103 dict<std::string, std::string> get_hole_loc_name_map(RTLIL::Module *module, const QbfSolutionType &sol) {
104 dict<std::string, std::string> hole_loc_to_name;
105 for (auto cell : module->cells()) {
106 std::string cell_src = cell->get_src_attribute();
107 auto pos = sol.hole_to_value.find(cell_src);
108 if (pos != sol.hole_to_value.end() && cell->type.in("$anyconst", "$anyseq")) {
109 log_assert(hole_loc_to_name.find(pos->first) == hole_loc_to_name.end());
110 hole_loc_to_name[pos->first] = cell->getPort(ID::Y).as_wire()->name.str();
111 }
112 }
113
114 return hole_loc_to_name;
115 }
116
117 pool<std::string> validate_design_and_get_inputs(RTLIL::Module *module, const QbfSolveOptions &opt) {
118 bool found_input = false;
119 bool found_hole = false;
120 bool found_1bit_output = false;
121 bool found_assert_assume = false;
122 pool<std::string> input_wires;
123 for (auto wire : module->wires()) {
124 if (wire->port_input) {
125 found_input = true;
126 input_wires.insert(wire->name.str());
127 }
128 if (wire->port_output && wire->width == 1)
129 found_1bit_output = true;
130 }
131 for (auto cell : module->cells()) {
132 if (cell->type == "$allconst")
133 found_input = true;
134 if (cell->type == "$anyconst")
135 found_hole = true;
136 if (cell->type.in("$assert", "$assume"))
137 found_assert_assume = true;
138 }
139 if (!found_input)
140 log_cmd_error("Can't perform QBF-SAT on a miter with no inputs!\n");
141 if (!found_hole)
142 log_cmd_error("Did not find any existentially-quantified variables. Use 'sat' instead.\n");
143 if (!found_1bit_output && !found_assert_assume)
144 log_cmd_error("Did not find any single-bit outputs or $assert/$assume cells. Is this a miter circuit?\n");
145 if (!found_assert_assume && !opt.assume_outputs)
146 log_cmd_error("Did not find any $assert/$assume cells. Single-bit outputs were found, but `-assume-outputs` was not specified.\n");
147
148 return input_wires;
149 }
150
151 void write_solution(RTLIL::Module *module, const QbfSolutionType &sol, const std::string &file) {
152 std::ofstream fout(file.c_str());
153 if (!fout)
154 log_cmd_error("could not open solution file for writing.\n");
155
156 dict<std::string, std::string> hole_loc_to_name = get_hole_loc_name_map(module, sol);
157 for(auto &x : sol.hole_to_value)
158 fout << hole_loc_to_name[x.first] << "=" << x.second << std::endl;
159 }
160
161 void specialize_from_file(RTLIL::Module *module, const std::string &file) {
162 YS_REGEX_TYPE hole_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.*)=([01]+)$");
163 YS_REGEX_MATCH_TYPE m;
164 pool<RTLIL::Cell *> anyconsts_to_remove;
165 dict<std::string, std::string> hole_name_to_value;
166 std::ifstream fin(file.c_str());
167 if (!fin)
168 log_cmd_error("could not read solution file.\n");
169
170 std::string buf;
171 while (std::getline(fin, buf)) {
172 log_assert(YS_REGEX_NS::regex_search(buf, m, hole_assn_regex));
173 std::string hole_name = m[1].str();
174 std::string hole_value = m[2].str();
175 hole_name_to_value[hole_name] = hole_value;
176 }
177
178 for (auto cell : module->cells())
179 if (cell->type == "$anyconst") {
180 auto anyconst_port_y = cell->getPort(ID::Y).as_wire();
181 if (anyconst_port_y == nullptr)
182 continue;
183 if (hole_name_to_value.find(anyconst_port_y->name.str()) != hole_name_to_value.end())
184 anyconsts_to_remove.insert(cell);
185 }
186 for (auto cell : anyconsts_to_remove)
187 module->remove(cell);
188
189 for (auto &it : hole_name_to_value) {
190 std::string hole_name = it.first;
191 std::string hole_value = it.second;
192 RTLIL::Wire *wire = module->wire(hole_name);
193 #ifndef NDEBUG
194 log_assert(wire != nullptr);
195 log_assert(wire->width > 0 && GetSize(hole_value) == wire->width);
196 #endif
197
198 log("Specializing %s from file with %s = %d'b%s.\n", module->name.c_str(), hole_name.c_str(), wire->width, hole_value.c_str());
199 std::vector<RTLIL::SigBit> value_bv;
200 value_bv.reserve(wire->width);
201 for (char c : hole_value)
202 value_bv.emplace_back(c == '1'? RTLIL::S1 : RTLIL::S0);
203 std::reverse(value_bv.begin(), value_bv.end());
204 module->connect(wire, value_bv);
205 }
206 }
207
208 void specialize(RTLIL::Module *module, const QbfSolutionType &sol, bool quiet = false) {
209 dict<std::string, std::string> hole_loc_to_name = get_hole_loc_name_map(module, sol);
210 pool<RTLIL::Cell *> anyconsts_to_remove;
211 for (auto cell : module->cells())
212 if (cell->type == "$anyconst")
213 if (hole_loc_to_name.find(cell->get_src_attribute()) != hole_loc_to_name.end())
214 anyconsts_to_remove.insert(cell);
215 for (auto cell : anyconsts_to_remove)
216 module->remove(cell);
217 for (auto &it : sol.hole_to_value) {
218 std::string hole_loc = it.first;
219 std::string hole_value = it.second;
220
221 #ifndef NDEBUG
222 auto pos = hole_loc_to_name.find(hole_loc);
223 log_assert(pos != hole_loc_to_name.end());
224 #endif
225
226 std::string hole_name = hole_loc_to_name[hole_loc];
227 RTLIL::Wire *wire = module->wire(hole_name);
228 #ifndef NDEBUG
229 log_assert(wire != nullptr);
230 log_assert(wire->width > 0 && GetSize(hole_value) == wire->width);
231 #endif
232
233 if (!quiet)
234 log("Specializing %s with %s = %d'b%s.\n", module->name.c_str(), hole_name.c_str(), wire->width, hole_value.c_str());
235 std::vector<RTLIL::SigBit> value_bv;
236 value_bv.reserve(wire->width);
237 for (char c : hole_value)
238 value_bv.emplace_back(c == '1'? RTLIL::S1 : RTLIL::S0);
239 std::reverse(value_bv.begin(), value_bv.end());
240 module->connect(wire, value_bv);
241 }
242 }
243
244 void dump_model(RTLIL::Module *module, const QbfSolutionType &sol) {
245 log("Satisfiable model:\n");
246 dict<std::string, std::string> hole_loc_to_name = get_hole_loc_name_map(module, sol);
247 for (auto &it : sol.hole_to_value) {
248 std::string hole_loc = it.first;
249 std::string hole_value = it.second;
250
251 #ifndef NDEBUG
252 auto pos = hole_loc_to_name.find(hole_loc);
253 log_assert(pos != hole_loc_to_name.end());
254 #endif
255
256 std::string hole_name = hole_loc_to_name[hole_loc];
257 log("\t%s = %lu'b%s\n", hole_name.c_str(), hole_value.size(), hole_value.c_str());
258 std::vector<RTLIL::SigBit> value_bv;
259 value_bv.reserve(hole_value.size());
260 for (char c : hole_value)
261 value_bv.emplace_back(c == '1'? RTLIL::S1 : RTLIL::S0);
262 std::reverse(value_bv.begin(), value_bv.end());
263 }
264 }
265
266 void allconstify_inputs(RTLIL::Module *module, const pool<std::string> &input_wires) {
267 for (auto &n : input_wires) {
268 RTLIL::Wire *input = module->wire(n);
269 #ifndef NDEBUG
270 log_assert(input != nullptr);
271 #endif
272
273 RTLIL::Cell *allconst = module->addCell("$allconst$" + n, "$allconst");
274 allconst->setParam(ID(WIDTH), input->width);
275 allconst->setPort(ID::Y, input);
276 allconst->set_src_attribute(input->get_src_attribute());
277 input->port_input = false;
278 log("Replaced input %s with $allconst cell.\n", n.c_str());
279 }
280 module->fixup_ports();
281 }
282
283 void assume_miter_outputs(RTLIL::Module *module, const QbfSolveOptions &opt) {
284 std::vector<RTLIL::Wire *> wires_to_assume;
285 for (auto w : module->wires())
286 if (w->port_output && w->width == 1)
287 wires_to_assume.push_back(w);
288
289 if (wires_to_assume.size() == 0)
290 return;
291 else {
292 log("Adding $assume cell for output(s): ");
293 for (auto w : wires_to_assume)
294 log("\"%s\" ", w->name.c_str());
295 log("\n");
296 }
297
298 if (opt.assume_neg) {
299 for (unsigned int i = 0; i < wires_to_assume.size(); ++i) {
300 RTLIL::SigSpec n_wire = module->LogicNot(wires_to_assume[i]->name.str() + "__n__qbfsat", wires_to_assume[i], false, wires_to_assume[i]->get_src_attribute());
301 wires_to_assume[i] = n_wire.as_wire();
302 }
303 }
304
305 for (auto i = 0; wires_to_assume.size() > 1; ++i) {
306 std::vector<RTLIL::Wire *> buf;
307 for (auto j = 0; j + 1 < GetSize(wires_to_assume); j += 2) {
308 std::stringstream strstr; strstr << i << "_" << j;
309 RTLIL::Wire *and_wire = module->addWire("\\_qbfsat_and_" + strstr.str(), 1);
310 module->addLogicAnd("$_qbfsat_and_" + strstr.str(), wires_to_assume[j], wires_to_assume[j+1], and_wire, false, wires_to_assume[j]->get_src_attribute());
311 buf.push_back(and_wire);
312 }
313 if (wires_to_assume.size() % 2 == 1)
314 buf.push_back(wires_to_assume[wires_to_assume.size() - 1]);
315 wires_to_assume.swap(buf);
316 }
317
318 #ifndef NDEBUG
319 log_assert(wires_to_assume.size() == 1);
320 #endif
321 module->addAssume("$assume_qbfsat_miter_outputs", wires_to_assume[0], RTLIL::S1);
322 }
323
324 QbfSolutionType call_qbf_solver(RTLIL::Module *mod, const QbfSolveOptions &opt, const std::string &tempdir_name, const bool quiet = false, const int iter_num = 0) {
325 //Execute and capture stdout from `yosys-smtbmc -s z3 -t 1 -g --binary [--dump-smt2 <file>]`
326 QbfSolutionType ret;
327 const std::string yosys_smtbmc_exe = proc_self_dirname() + "yosys-smtbmc";
328 const std::string smt2_command = "write_smt2 -stbv -wires " + tempdir_name + "/problem" + (iter_num != 0? stringf("%d", iter_num) : "") + ".smt2";
329 const std::string smtbmc_cmd = yosys_smtbmc_exe + " -s z3 -t 1 -g --binary " + (opt.dump_final_smt2? "--dump-smt2 " + opt.dump_final_smt2_file + " " : "") + tempdir_name + "/problem" + (iter_num != 0? stringf("%d", iter_num) : "") + ".smt2 2>&1";
330 const std::string smtbmc_warning = "z3: WARNING:";
331 const bool show_smtbmc = opt.show_smtbmc;
332
333 Pass::call(mod->design, smt2_command);
334
335 auto process_line = [&ret, &smtbmc_warning, &show_smtbmc, &quiet](const std::string &line) {
336 ret.stdout_lines.push_back(line.substr(0, line.size()-1)); //don't include trailing newline
337 auto warning_pos = line.find(smtbmc_warning);
338 if (warning_pos != std::string::npos)
339 log_warning("%s", line.substr(warning_pos + smtbmc_warning.size() + 1).c_str());
340 else
341 if (show_smtbmc && !quiet)
342 log("smtbmc output: %s", line.c_str());
343 };
344 log_header(mod->design, "Solving QBF-SAT problem.\n");
345 if (!quiet) log("Launching \"%s\".\n", smtbmc_cmd.c_str());
346 int retval = run_command(smtbmc_cmd, process_line);
347 if (retval == 0) {
348 ret.sat = true;
349 ret.unknown = false;
350 } else if (retval == 1) {
351 ret.sat = false;
352 ret.unknown = false;
353 }
354
355 recover_solution(ret);
356 return ret;
357 }
358
359 QbfSolutionType qbf_solve(RTLIL::Module *mod, const QbfSolveOptions &opt) {
360 QbfSolutionType ret, best_soln;
361 const std::string tempdir_name = make_temp_dir("/tmp/yosys-z3-XXXXXX");
362 RTLIL::Module *module = mod;
363 RTLIL::Design *design = module->design;
364 std::string module_name = module->name.str();
365 RTLIL::Wire *wire_to_optimize = nullptr;
366 RTLIL::IdString wire_to_optimize_name;
367 bool maximize = false;
368 log_assert(module->design != nullptr);
369
370 Pass::call(design, "design -push-copy");
371
372 //Replace input wires with wires assigned $allconst cells:
373 pool<std::string> input_wires = validate_design_and_get_inputs(module, opt);
374 allconstify_inputs(module, input_wires);
375 if (opt.assume_outputs)
376 assume_miter_outputs(module, opt);
377
378 //Find the wire to be optimized, if any:
379 for (auto wire : module->wires())
380 if (wire->get_bool_attribute("\\maximize") || wire->get_bool_attribute("\\minimize"))
381 wire_to_optimize = wire;
382 if (wire_to_optimize != nullptr) {
383 wire_to_optimize_name = wire_to_optimize->name;
384 maximize = wire_to_optimize->get_bool_attribute("\\maximize");
385 }
386
387 if (opt.nobisection || opt.nooptimize) {
388 if (wire_to_optimize != nullptr && opt.nooptimize) {
389 wire_to_optimize->set_bool_attribute("\\maximize", false);
390 wire_to_optimize->set_bool_attribute("\\minimize", false);
391 }
392 ret = call_qbf_solver(module, opt, tempdir_name, false, 0);
393 } else {
394 //Do the iterated bisection method:
395 unsigned int iter_num = 1;
396 unsigned int success = 0;
397 unsigned int failure = 0;
398 unsigned int cur_thresh = 0;
399
400 log_assert(wire_to_optimize != nullptr);
401 log("%s wire \"%s\".\n", (maximize? "Maximizing" : "Minimizing"), log_signal(wire_to_optimize));
402
403 //If maximizing, grow until we get a failure. Then bisect success and failure.
404 while (failure == 0 || success - failure > 1) {
405 Pass::call(design, "design -push-copy");
406 log_header(design, "Preparing QBF-SAT problem.\n");
407
408 if (cur_thresh != 0) {
409 //Add thresholding logic (but not on the initial run when we don't have a sense of where to start):
410 RTLIL::SigSpec comparator = maximize? module->Ge(NEW_ID, module->wire(wire_to_optimize_name), RTLIL::Const(cur_thresh), false)
411 : module->Le(NEW_ID, module->wire(wire_to_optimize_name), RTLIL::Const(cur_thresh), false);
412
413 module->addAssume(wire_to_optimize_name.str() + "__threshold", comparator, RTLIL::Const(1, 1));
414 log("Trying to solve with %s %s %d.\n", wire_to_optimize_name.c_str(), (maximize? ">=" : "<="), cur_thresh);
415 }
416
417 ret = call_qbf_solver(module, opt, tempdir_name, false, iter_num);
418 Pass::call(design, "design -pop");
419 module = design->module(module_name);
420
421 if (!ret.unknown && ret.sat) {
422 Pass::call(design, "design -push-copy");
423 specialize(module, ret, true);
424
425 RTLIL::SigSpec wire, value, undef;
426 RTLIL::SigSpec::parse_sel(wire, design, module, wire_to_optimize_name.str());
427
428 ConstEval ce(module);
429 value = wire;
430 if (!ce.eval(value, undef))
431 log_cmd_error("Failed to evaluate signal %s: Missing value for %s.\n", log_signal(wire), log_signal(undef));
432 log_assert(value.is_fully_const());
433 success = value.as_const().as_int();
434 best_soln = ret;
435 log("Problem is satisfiable with %s = %d.\n", wire_to_optimize_name.c_str(), success);
436 Pass::call(design, "design -pop");
437 module = design->module(module_name);
438
439 //sometimes this happens if we get an 'unknown' or timeout
440 if (!maximize && success < failure)
441 break;
442 else if (maximize && success > failure)
443 break;
444 } else {
445 //Treat 'unknown' as UNSAT
446 failure = cur_thresh;
447 if (failure == 0) {
448 log("Problem is NOT satisfiable.\n");
449 break;
450 }
451 else
452 log("Problem is NOT satisfiable with %s %s %d.\n", wire_to_optimize_name.c_str(), (maximize? ">=" : "<="), failure);
453 }
454
455 iter_num++;
456 cur_thresh = (maximize && failure == 0)? 2 * success //growth
457 : (success + failure) / 2; //bisection
458 }
459 if (success != 0 || failure != 0) {
460 log("Wire %s is %s at %d.\n", wire_to_optimize_name.c_str(), (maximize? "maximized" : "minimized"), success);
461 ret = best_soln;
462 }
463 }
464
465 if(!opt.nocleanup)
466 remove_directory(tempdir_name);
467
468 Pass::call(design, "design -pop");
469
470 return ret;
471 }
472
473 QbfSolveOptions parse_args(const std::vector<std::string> &args) {
474 QbfSolveOptions opt;
475 for (opt.argidx = 1; opt.argidx < args.size(); opt.argidx++) {
476 if (args[opt.argidx] == "-nocleanup") {
477 opt.nocleanup = true;
478 continue;
479 }
480 else if (args[opt.argidx] == "-specialize") {
481 opt.specialize = true;
482 continue;
483 }
484 else if (args[opt.argidx] == "-assume-outputs") {
485 opt.assume_outputs = true;
486 continue;
487 }
488 else if (args[opt.argidx] == "-assume-negative-polarity") {
489 opt.assume_neg = true;
490 continue;
491 }
492 else if (args[opt.argidx] == "-nooptimize") {
493 opt.nooptimize = true;
494 continue;
495 }
496 else if (args[opt.argidx] == "-nobisection") {
497 opt.nobisection = true;
498 continue;
499 }
500 else if (args[opt.argidx] == "-sat") {
501 opt.sat = true;
502 continue;
503 }
504 else if (args[opt.argidx] == "-unsat") {
505 opt.unsat = true;
506 continue;
507 }
508 else if (args[opt.argidx] == "-show-smtbmc") {
509 opt.show_smtbmc = true;
510 continue;
511 }
512 else if (args[opt.argidx] == "-dump-final-smt2") {
513 opt.dump_final_smt2 = true;
514 if (args.size() <= opt.argidx + 1)
515 log_cmd_error("smt2 file not specified.\n");
516 else
517 opt.dump_final_smt2_file = args[++opt.argidx];
518 continue;
519 }
520 else if (args[opt.argidx] == "-specialize-from-file") {
521 opt.specialize_from_file = true;
522 if (args.size() <= opt.argidx + 1)
523 log_cmd_error("solution file not specified.\n");
524 else
525 opt.specialize_soln_file = args[++opt.argidx];
526 continue;
527 }
528 else if (args[opt.argidx] == "-write-solution") {
529 opt.write_solution = true;
530 if (args.size() <= opt.argidx + 1)
531 log_cmd_error("solution file not specified.\n");
532 else
533 opt.write_soln_soln_file = args[++opt.argidx];
534 continue;
535 }
536 break;
537 }
538
539 return opt;
540 }
541
542 void print_proof_failed()
543 {
544 log("\n");
545 log(" ______ ___ ___ _ _ _ _ \n");
546 log(" (_____ \\ / __) / __) (_) | | | |\n");
547 log(" _____) )___ ___ ___ _| |__ _| |__ _____ _| | _____ __| | |\n");
548 log(" | ____/ ___) _ \\ / _ (_ __) (_ __|____ | | || ___ |/ _ |_|\n");
549 log(" | | | | | |_| | |_| || | | | / ___ | | || ____( (_| |_ \n");
550 log(" |_| |_| \\___/ \\___/ |_| |_| \\_____|_|\\_)_____)\\____|_|\n");
551 log("\n");
552 }
553
554 void print_qed()
555 {
556 log("\n");
557 log(" /$$$$$$ /$$$$$$$$ /$$$$$$$ \n");
558 log(" /$$__ $$ | $$_____/ | $$__ $$ \n");
559 log(" | $$ \\ $$ | $$ | $$ \\ $$ \n");
560 log(" | $$ | $$ | $$$$$ | $$ | $$ \n");
561 log(" | $$ | $$ | $$__/ | $$ | $$ \n");
562 log(" | $$/$$ $$ | $$ | $$ | $$ \n");
563 log(" | $$$$$$/ /$$| $$$$$$$$ /$$| $$$$$$$//$$\n");
564 log(" \\____ $$$|__/|________/|__/|_______/|__/\n");
565 log(" \\__/ \n");
566 log("\n");
567 }
568
569 struct QbfSatPass : public Pass {
570 QbfSatPass() : Pass("qbfsat", "solve a 2QBF-SAT problem in the circuit") { }
571 void help() YS_OVERRIDE
572 {
573 // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
574 log("\n");
575 log(" qbfsat [options] [selection]\n");
576 log("\n");
577 log("This command solves a 2QBF-SAT problem defined over the currently selected module.\n");
578 log("Existentially-quantified variables are declared by assigning a wire \"$anyconst\".\n");
579 log("Universally-quantified variables may be explicitly declared by assigning a wire\n");
580 log("\"$allconst\", but module inputs will be treated as universally-quantified variables\n");
581 log("by default.\n");
582 log("\n");
583 log(" -nocleanup\n");
584 log(" Do not delete temporary files and directories. Useful for\n");
585 log(" debugging.\n");
586 log("\n");
587 log(" -dump-final-smt2 <file>\n");
588 log(" Pass the --dump-smt2 option to yosys-smtbmc.\n");
589 log("\n");
590 log(" -assume-outputs\n");
591 log(" Add an $assume cell for the conjunction of all one-bit module output wires.\n");
592 log("\n");
593 log(" -assume-negative-polarity\n");
594 log(" When adding $assume cells for one-bit module output wires, assume they are\n");
595 log(" negative polarity signals and should always be low, for example like the\n");
596 log(" miters created with the `miter` command.\n");
597 log("\n");
598 log(" -nooptimize\n");
599 log(" Ignore \"\\minimize\" and \"\\maximize\" attributes, do not emit \"(maximize)\" or\n");
600 log(" \"(minimize)\" in the SMTLIBv2, and generally make no attempt to optimize anything.\n");
601 log("\n");
602 log(" -nobisection\n");
603 log(" If a wire is marked with the \"\\minimize\" or \"\\maximize\" attribute, do not\n");
604 log(" attempt to optimize that value with the default iterated solving and threshold\n");
605 log(" bisection approach. Instead, have yosys-smtbmc emit a \"(minimize)\" or \"(maximize)\"\n");
606 log(" command in the SMTLIBv2 output and hope that the solver supports optimizing\n");
607 log(" quantified bitvector problems.\n");
608 log("\n");
609 log(" -sat\n");
610 log(" Generate an error if the solver does not return \"sat\".\n");
611 log("\n");
612 log(" -unsat\n");
613 log(" Generate an error if the solver does not return \"unsat\".\n");
614 log("\n");
615 log(" -show-smtbmc\n");
616 log(" Print the output from yosys-smtbmc.\n");
617 log("\n");
618 log(" -specialize\n");
619 log(" Replace all \"$anyconst\" cells with constant values determined by the solver.\n");
620 log("\n");
621 log(" -specialize-from-file <solution file>\n");
622 log(" Do not run the solver, but instead only attempt to replace all \"$anyconst\"\n");
623 log(" cells in the current module with values provided by the specified file.\n");
624 log("\n");
625 log(" -write-solution <solution file>\n");
626 log(" Write the assignments discovered by the solver for all \"$anyconst\" cells\n");
627 log(" to the specified file.");
628 log("\n");
629 log("\n");
630 }
631
632 void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
633 {
634 log_header(design, "Executing QBFSAT pass (solving QBF-SAT problems in the circuit).\n");
635 QbfSolveOptions opt = parse_args(args);
636 extra_args(args, opt.argidx, design);
637
638 RTLIL::Module *module = nullptr;
639 for (auto mod : design->selected_modules()) {
640 if (module)
641 log_cmd_error("Only one module must be selected for the QBF-SAT pass! (selected: %s and %s)\n", log_id(module), log_id(mod));
642 module = mod;
643 }
644 if (module == nullptr)
645 log_cmd_error("Can't perform QBF-SAT on an empty selection!\n");
646
647 log_push();
648 if (!opt.specialize_from_file) {
649 //Save the design to restore after modiyfing the current module.
650 std::string module_name = module->name.str();
651
652 QbfSolutionType ret = qbf_solve(module, opt);
653 module = design->module(module_name);
654 if (ret.unknown) {
655 log_warning("solver did not give an answer\n");
656 if (opt.sat || opt.unsat)
657 log_cmd_error("expected problem to be %s\n", opt.sat? "SAT" : "UNSAT");
658 }
659 else if (ret.sat) {
660 print_qed();
661 if (opt.write_solution) {
662 write_solution(module, ret, opt.write_soln_soln_file);
663 }
664 if (opt.specialize) {
665 specialize(module, ret);
666 } else {
667 dump_model(module, ret);
668 }
669 if (opt.unsat)
670 log_cmd_error("expected problem to be UNSAT\n");
671 }
672 else {
673 print_proof_failed();
674 if (opt.sat)
675 log_cmd_error("expected problem to be SAT\n");
676 }
677 } else
678 specialize_from_file(module, opt.specialize_soln_file);
679 log_pop();
680 }
681 } QbfSatPass;
682
683 PRIVATE_NAMESPACE_END