4b7001eb59bfcc4ebdeeda7fc7f97214e006cb8d
[gem5.git] / physical.cc
1 /*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 */
39
40 #include <sys/mman.h>
41 #include <sys/types.h>
42 #include <sys/user.h>
43 #include <fcntl.h>
44 #include <unistd.h>
45 #include <zlib.h>
46
47 #include <cerrno>
48 #include <climits>
49 #include <cstdio>
50 #include <iostream>
51 #include <string>
52
53 #include "base/trace.hh"
54 #include "debug/BusAddrRanges.hh"
55 #include "debug/Checkpoint.hh"
56 #include "mem/abstract_mem.hh"
57 #include "mem/physical.hh"
58
59 using namespace std;
60
61 PhysicalMemory::PhysicalMemory(const string& _name,
62 const vector<AbstractMemory*>& _memories) :
63 _name(_name), size(0)
64 {
65 // add the memories from the system to the address map as
66 // appropriate
67 for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
68 m != _memories.end(); ++m) {
69 // only add the memory if it is part of the global address map
70 if ((*m)->isInAddrMap()) {
71 memories.push_back(*m);
72
73 // calculate the total size once and for all
74 size += (*m)->size();
75
76 // add the range to our interval tree and make sure it does not
77 // intersect an existing range
78 if (addrMap.insert((*m)->getAddrRange(), *m) == addrMap.end())
79 fatal("Memory address range for %s is overlapping\n",
80 (*m)->name());
81 } else {
82 DPRINTF(BusAddrRanges,
83 "Skipping memory %s that is not in global address map\n",
84 (*m)->name());
85 // this type of memory is used e.g. as reference memory by
86 // Ruby, and they also needs a backing store, but should
87 // not be part of the global address map
88
89 // simply do it independently, also note that this kind of
90 // memories are allowed to overlap in the logic address
91 // map
92 vector<AbstractMemory*> unmapped_mems;
93 unmapped_mems.push_back(*m);
94 createBackingStore((*m)->getAddrRange(), unmapped_mems);
95 }
96 }
97
98 // iterate over the increasing addresses and chunks of contigous
99 // space to be mapped to backing store, also remember what
100 // memories constitute the range so we can go and find out if we
101 // have to init their parts to zero
102 vector<AddrRange> intlv_ranges;
103 vector<AbstractMemory*> curr_memories;
104 for (AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.begin();
105 r != addrMap.end(); ++r) {
106 // simply skip past all memories that are null and hence do
107 // not need any backing store
108 if (!r->second->isNull()) {
109 // if the range is interleaved then save it for now
110 if (r->first.interleaved()) {
111 // if we already got interleaved ranges that are not
112 // part of the same range, then first do a merge
113 // before we add the new one
114 if (!intlv_ranges.empty() &&
115 !intlv_ranges.back().mergesWith(r->first)) {
116 AddrRange merged_range(intlv_ranges);
117 createBackingStore(merged_range, curr_memories);
118 intlv_ranges.clear();
119 curr_memories.clear();
120 }
121 intlv_ranges.push_back(r->first);
122 curr_memories.push_back(r->second);
123 } else {
124 vector<AbstractMemory*> single_memory;
125 single_memory.push_back(r->second);
126 createBackingStore(r->first, single_memory);
127 }
128 }
129 }
130
131 // if there is still interleaved ranges waiting to be merged, go
132 // ahead and do it
133 if (!intlv_ranges.empty()) {
134 AddrRange merged_range(intlv_ranges);
135 createBackingStore(merged_range, curr_memories);
136 }
137 }
138
139 void
140 PhysicalMemory::createBackingStore(AddrRange range,
141 const vector<AbstractMemory*>& _memories)
142 {
143 if (range.interleaved())
144 panic("Cannot create backing store for interleaved range %s\n",
145 range.to_string());
146
147 // perform the actual mmap
148 DPRINTF(BusAddrRanges, "Creating backing store for range %s with size %d\n",
149 range.to_string(), range.size());
150 int map_flags = MAP_ANON | MAP_PRIVATE;
151 uint8_t* pmem = (uint8_t*) mmap(NULL, range.size(),
152 PROT_READ | PROT_WRITE,
153 map_flags, -1, 0);
154
155 if (pmem == (uint8_t*) MAP_FAILED) {
156 perror("mmap");
157 fatal("Could not mmap %d bytes for range %s!\n", range.size(),
158 range.to_string());
159 }
160
161 // remember this backing store so we can checkpoint it and unmap
162 // it appropriately
163 backingStore.push_back(make_pair(range, pmem));
164
165 // count how many of the memories are to be zero initialized so we
166 // can see if some but not all have this parameter set
167 uint32_t init_to_zero = 0;
168
169 // point the memories to their backing store, and if requested,
170 // initialize the memory range to 0
171 for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
172 m != _memories.end(); ++m) {
173 DPRINTF(BusAddrRanges, "Mapping memory %s to backing store\n",
174 (*m)->name());
175 (*m)->setBackingStore(pmem);
176
177 // if it should be zero, then go and make it so
178 if ((*m)->initToZero()) {
179 ++init_to_zero;
180 }
181 }
182
183 if (init_to_zero != 0) {
184 if (init_to_zero != _memories.size())
185 fatal("Some, but not all memories in range %s are set zero\n",
186 range.to_string());
187
188 memset(pmem, 0, range.size());
189 }
190 }
191
192 PhysicalMemory::~PhysicalMemory()
193 {
194 // unmap the backing store
195 for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
196 s != backingStore.end(); ++s)
197 munmap((char*)s->second, s->first.size());
198 }
199
200 bool
201 PhysicalMemory::isMemAddr(Addr addr) const
202 {
203 // see if the address is within the last matched range
204 if (!rangeCache.contains(addr)) {
205 // lookup in the interval tree
206 AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.find(addr);
207 if (r == addrMap.end()) {
208 // not in the cache, and not in the tree
209 return false;
210 }
211 // the range is in the tree, update the cache
212 rangeCache = r->first;
213 }
214
215 assert(addrMap.find(addr) != addrMap.end());
216
217 // either matched the cache or found in the tree
218 return true;
219 }
220
221 AddrRangeList
222 PhysicalMemory::getConfAddrRanges() const
223 {
224 // this could be done once in the constructor, but since it is unlikely to
225 // be called more than once the iteration should not be a problem
226 AddrRangeList ranges;
227 vector<AddrRange> intlv_ranges;
228 for (AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.begin();
229 r != addrMap.end(); ++r) {
230 if (r->second->isConfReported()) {
231 // if the range is interleaved then save it for now
232 if (r->first.interleaved()) {
233 // if we already got interleaved ranges that are not
234 // part of the same range, then first do a merge
235 // before we add the new one
236 if (!intlv_ranges.empty() &&
237 !intlv_ranges.back().mergesWith(r->first)) {
238 ranges.push_back(AddrRange(intlv_ranges));
239 intlv_ranges.clear();
240 }
241 intlv_ranges.push_back(r->first);
242 } else {
243 // keep the current range
244 ranges.push_back(r->first);
245 }
246 }
247 }
248
249 // if there is still interleaved ranges waiting to be merged,
250 // go ahead and do it
251 if (!intlv_ranges.empty()) {
252 ranges.push_back(AddrRange(intlv_ranges));
253 }
254
255 return ranges;
256 }
257
258 void
259 PhysicalMemory::access(PacketPtr pkt)
260 {
261 assert(pkt->isRequest());
262 Addr addr = pkt->getAddr();
263 AddrRangeMap<AbstractMemory*>::const_iterator m = addrMap.find(addr);
264 assert(m != addrMap.end());
265 m->second->access(pkt);
266 }
267
268 void
269 PhysicalMemory::functionalAccess(PacketPtr pkt)
270 {
271 assert(pkt->isRequest());
272 Addr addr = pkt->getAddr();
273 AddrRangeMap<AbstractMemory*>::const_iterator m = addrMap.find(addr);
274 assert(m != addrMap.end());
275 m->second->functionalAccess(pkt);
276 }
277
278 void
279 PhysicalMemory::serialize(ostream& os)
280 {
281 // serialize all the locked addresses and their context ids
282 vector<Addr> lal_addr;
283 vector<int> lal_cid;
284
285 for (vector<AbstractMemory*>::iterator m = memories.begin();
286 m != memories.end(); ++m) {
287 const list<LockedAddr>& locked_addrs = (*m)->getLockedAddrList();
288 for (list<LockedAddr>::const_iterator l = locked_addrs.begin();
289 l != locked_addrs.end(); ++l) {
290 lal_addr.push_back(l->addr);
291 lal_cid.push_back(l->contextId);
292 }
293 }
294
295 arrayParamOut(os, "lal_addr", lal_addr);
296 arrayParamOut(os, "lal_cid", lal_cid);
297
298 // serialize the backing stores
299 unsigned int nbr_of_stores = backingStore.size();
300 SERIALIZE_SCALAR(nbr_of_stores);
301
302 unsigned int store_id = 0;
303 // store each backing store memory segment in a file
304 for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
305 s != backingStore.end(); ++s) {
306 nameOut(os, csprintf("%s.store%d", name(), store_id));
307 serializeStore(os, store_id++, s->first, s->second);
308 }
309 }
310
311 void
312 PhysicalMemory::serializeStore(ostream& os, unsigned int store_id,
313 AddrRange range, uint8_t* pmem)
314 {
315 // we cannot use the address range for the name as the
316 // memories that are not part of the address map can overlap
317 string filename = name() + ".store" + to_string(store_id) + ".pmem";
318 long range_size = range.size();
319
320 DPRINTF(Checkpoint, "Serializing physical memory %s with size %d\n",
321 filename, range_size);
322
323 SERIALIZE_SCALAR(store_id);
324 SERIALIZE_SCALAR(filename);
325 SERIALIZE_SCALAR(range_size);
326
327 // write memory file
328 string filepath = Checkpoint::dir() + "/" + filename.c_str();
329 int fd = creat(filepath.c_str(), 0664);
330 if (fd < 0) {
331 perror("creat");
332 fatal("Can't open physical memory checkpoint file '%s'\n",
333 filename);
334 }
335
336 gzFile compressed_mem = gzdopen(fd, "wb");
337 if (compressed_mem == NULL)
338 fatal("Insufficient memory to allocate compression state for %s\n",
339 filename);
340
341 uint64_t pass_size = 0;
342
343 // gzwrite fails if (int)len < 0 (gzwrite returns int)
344 for (uint64_t written = 0; written < range.size();
345 written += pass_size) {
346 pass_size = (uint64_t)INT_MAX < (range.size() - written) ?
347 (uint64_t)INT_MAX : (range.size() - written);
348
349 if (gzwrite(compressed_mem, pmem + written,
350 (unsigned int) pass_size) != (int) pass_size) {
351 fatal("Write failed on physical memory checkpoint file '%s'\n",
352 filename);
353 }
354 }
355
356 // close the compressed stream and check that the exit status
357 // is zero
358 if (gzclose(compressed_mem))
359 fatal("Close failed on physical memory checkpoint file '%s'\n",
360 filename);
361
362 }
363
364 void
365 PhysicalMemory::unserialize(Checkpoint* cp, const string& section)
366 {
367 // unserialize the locked addresses and map them to the
368 // appropriate memory controller
369 vector<Addr> lal_addr;
370 vector<int> lal_cid;
371 arrayParamIn(cp, section, "lal_addr", lal_addr);
372 arrayParamIn(cp, section, "lal_cid", lal_cid);
373 for(size_t i = 0; i < lal_addr.size(); ++i) {
374 AddrRangeMap<AbstractMemory*>::const_iterator m =
375 addrMap.find(lal_addr[i]);
376 m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i]));
377 }
378
379 // unserialize the backing stores
380 unsigned int nbr_of_stores;
381 UNSERIALIZE_SCALAR(nbr_of_stores);
382
383 for (unsigned int i = 0; i < nbr_of_stores; ++i) {
384 unserializeStore(cp, csprintf("%s.store%d", section, i));
385 }
386
387 }
388
389 void
390 PhysicalMemory::unserializeStore(Checkpoint* cp, const string& section)
391 {
392 const uint32_t chunk_size = 16384;
393
394 unsigned int store_id;
395 UNSERIALIZE_SCALAR(store_id);
396
397 string filename;
398 UNSERIALIZE_SCALAR(filename);
399 string filepath = cp->cptDir + "/" + filename;
400
401 // mmap memoryfile
402 int fd = open(filepath.c_str(), O_RDONLY);
403 if (fd < 0) {
404 perror("open");
405 fatal("Can't open physical memory checkpoint file '%s'", filename);
406 }
407
408 gzFile compressed_mem = gzdopen(fd, "rb");
409 if (compressed_mem == NULL)
410 fatal("Insufficient memory to allocate compression state for %s\n",
411 filename);
412
413 uint8_t* pmem = backingStore[store_id].second;
414 AddrRange range = backingStore[store_id].first;
415
416 // unmap file that was mmapped in the constructor, this is
417 // done here to make sure that gzip and open don't muck with
418 // our nice large space of memory before we reallocate it
419 munmap((char*) pmem, range.size());
420
421 long range_size;
422 UNSERIALIZE_SCALAR(range_size);
423
424 DPRINTF(Checkpoint, "Unserializing physical memory %s with size %d\n",
425 filename, range_size);
426
427 if (range_size != range.size())
428 fatal("Memory range size has changed! Saw %lld, expected %lld\n",
429 range_size, range.size());
430
431 pmem = (uint8_t*) mmap(NULL, range.size(), PROT_READ | PROT_WRITE,
432 MAP_ANON | MAP_PRIVATE, -1, 0);
433
434 if (pmem == (void*) MAP_FAILED) {
435 perror("mmap");
436 fatal("Could not mmap physical memory!\n");
437 }
438
439 uint64_t curr_size = 0;
440 long* temp_page = new long[chunk_size];
441 long* pmem_current;
442 uint32_t bytes_read;
443 while (curr_size < range.size()) {
444 bytes_read = gzread(compressed_mem, temp_page, chunk_size);
445 if (bytes_read == 0)
446 break;
447
448 assert(bytes_read % sizeof(long) == 0);
449
450 for (uint32_t x = 0; x < bytes_read / sizeof(long); x++) {
451 // Only copy bytes that are non-zero, so we don't give
452 // the VM system hell
453 if (*(temp_page + x) != 0) {
454 pmem_current = (long*)(pmem + curr_size + x * sizeof(long));
455 *pmem_current = *(temp_page + x);
456 }
457 }
458 curr_size += bytes_read;
459 }
460
461 delete[] temp_page;
462
463 if (gzclose(compressed_mem))
464 fatal("Close failed on physical memory checkpoint file '%s'\n",
465 filename);
466 }