a7c69d9e1b7a24ae4e27e952b71c5f6adad4cfe3
[libreriscv.git] / resources.mdwn
1 # Resources and Specifications
2
3 This page aims to collect all the resources and specifications we need
4 in one place for quick access. We will try our best to keep links here
5 up-to-date. Feel free to add more links here.
6
7 [[!toc ]]
8
9 # Getting Started
10
11 This section is primarily a series of useful links found online
12
13 * [FSiC2019](https://wiki.f-si.org/index.php/FSiC2019)
14 * Fundamentals to learn to get started [[3d_gpu/tutorial]]
15
16 ## Is Open Source Hardware Profitable?
17 [RaptorCS on FOSS Hardware Interview](https://www.youtube.com/watch?v=o5Ihqg72T3c&feature=youtu.be)
18
19 # OpenPOWER ISA
20
21 * [3.0 PDF](https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0)
22 * [2.07 PDF](https://openpowerfoundation.org/?resource_lib=ibm-power-isa-version-2-07-b)
23 * Virginia Tech course <https://github.com/w-feng/CompArch-MIPS-POWER>
24
25 ## Overview of the user ISA:
26
27 * [Raymond Chen's PowerPC series](https://devblogs.microsoft.com/oldnewthing/20180806-00/?p=99425)
28 * Power ISA listings <https://power-isa-beta.mybluemix.net/>
29
30 ## OpenPOWER OpenFSI Spec (2016)
31
32 * [OpenPOWER OpenFSI Spec](http://openpowerfoundation.org/wp-content/uploads/resources/OpenFSI-spec-100/OpenFSI-spec-20161212.pdf)
33
34 * [OpenPOWER OpenFSI Compliance Spec](http://openpowerfoundation.org/wp-content/uploads/resources/openpower-fsi-thts-1.0/openpower-fsi-thts-20180130.pdf)
35
36 # Energy-efficient cores
37
38 * https://arxiv.org/abs/2002.10143
39
40 # Communities
41
42 * <https://www.reddit.com/r/OpenPOWER/>
43 * <http://lists.mailinglist.openpowerfoundation.org/pipermail/openpower-hdl-cores/>
44 * <http://lists.mailinglist.openpowerfoundation.org/pipermail/openpower-community-dev/>
45 * Open tape-out mailing list <https://groups.google.com/a/opentapeout.dev/g/mailinglist>
46
47 # ppc64 ELF ABI
48
49 * EABI 1.9 supplement <https://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi-1.9.html>
50 * https://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi-1.9.pdf
51
52 # Other GPU Specifications
53
54 *
55 * https://developer.amd.com/wp-content/resources/RDNA_Shader_ISA.pdf
56 * https://developer.amd.com/wp-content/resources/Vega_Shader_ISA_28July2017.pdf
57 * MALI Midgard
58 * [Nyuzi](https://github.com/jbush001/NyuziProcessor)
59 * VideoCore IV
60 * etnaviv
61
62 # JTAG
63
64 * [Useful JTAG implementation reference: Design Of IEEE 1149.1 TAP Controller IP Core by Shelja, Nandakumar and Muruganantham, DOI:10.5121/csit.2016.60910](https://web.archive.org/web/20201021174944/https://airccj.org/CSCP/vol6/csit65610.pdf)
65
66 Abstract
67
68 "The objective of this work is to design and implement a TAP controller IP core compatible with IEEE 1149.1-2013 revision of the standard. The test logic architecture also includes the Test Mode Persistence controller and its associated logic. This work is expected to serve as a ready to use module that can be directly inserted in to a new digital IC designs with little modifications."
69
70 # Radix MMU
71 - [Qemu emulation](https://github.com/qemu/qemu/commit/d5fee0bbe68d5e61e2d2beb5ff6de0b9c1cfd182)
72
73 # D-Cache
74
75 - [A Primer on Memory Consistency and Cache Coherence
76 ](https://www.morganclaypool.com/doi/10.2200/S00962ED2V01Y201910CAC049)
77
78 ## D-Cache Possible Optimizations papers and links
79 - [ACDC: Small, Predictable and High-Performance Data Cache](https://dl.acm.org/doi/10.1145/2677093)
80 - [Stop Crying Over Your Cache Miss Rate: Handling Efficiently Thousands of
81 Outstanding Misses in FPGAs](https://dl.acm.org/doi/abs/10.1145/3289602.3293901)
82
83 # BW Enhancing Shared L1 Cache Design research done in cooperation with AMD
84 - [Youtube video PACT 2020 - Analyzing and Leveraging Shared L1 Caches in GPUs](https://m.youtube.com/watch?v=CGIhOnt7F6s)
85 - [Url to PDF of paper on author's website (clicking will download the pdf)](https://adwaitjog.github.io/docs/pdf/sharedl1-pact20.pdf)
86
87
88 # RTL Arithmetic SQRT, FPU etc.
89
90 ## Wallace vs Dadda Multipliers
91
92 * [Paper comparing efficiency of Wallace and Dadda Multipliers in RTL implementations (clicking will download the pdf from archive.org)](https://web.archive.org/web/20180717013227/http://ieeemilestones.ethw.org/images/d/db/A_comparison_of_Dadda_and_Wallace_multiplier_delays.pdf)
93
94 ## Sqrt
95 * [Fast Floating Point Square Root](https://pdfs.semanticscholar.org/5060/4e9aff0e37089c4ab9a376c3f35761ffe28b.pdf)
96 * [Reciprocal Square Root Algorithm](http://www.acsel-lab.com/arithmetic/arith15/papers/ARITH15_Takagi.pdf)
97 * [Fast Calculation of Cube and Inverse Cube Roots Using a Magic Constant and Its Implementation on Microcontrollers (clicking will download the pdf)](https://res.mdpi.com/d_attachment/energies/energies-14-01058/article_deploy/energies-14-01058-v2.pdf)
98 * [Modified Fast Inverse Square Root and Square Root Approximation Algorithms: The Method of Switching Magic Constants (clicking will download the pdf)](https://res.mdpi.com/d_attachment/computation/computation-09-00021/article_deploy/computation-09-00021-v3.pdf)
99
100
101 ## CORDIC and related algorithms
102
103 * <https://bugs.libre-soc.org/show_bug.cgi?id=127> research into CORDIC
104 * <https://bugs.libre-soc.org/show_bug.cgi?id=208>
105 * [BKM (log(x) and e^x)](https://en.wikipedia.org/wiki/BKM_algorithm)
106 * [CORDIC](http://www.andraka.com/files/crdcsrvy.pdf)
107 - Does not have an easy way of computing tan(x)
108 * [zipcpu CORDIC](https://zipcpu.com/dsp/2017/08/30/cordic.html)
109 * [Low latency and Low error floating point TCORDIC](https://ieeexplore.ieee.org/document/7784797) (email Michael or Cole if you don't have IEEE access)
110 * <http://www.myhdl.org/docs/examples/sinecomp/> MyHDL version of CORDIC
111 * <https://dspguru.com/dsp/faqs/cordic/>
112
113 ## IEEE Standard for Floating-Point Arithmetic (IEEE 754)
114
115 Almost all modern computers follow the IEEE Floating-Point Standard. Of
116 course, we will follow it as well for interoperability.
117
118 * IEEE 754-2019: <https://standards.ieee.org/standard/754-2019.html>
119
120 Note: Even though this is such an important standard used by everyone,
121 it is unfortunately not freely available and requires a payment to
122 access. However, each of the Libre-SOC members already have access
123 to the document.
124
125 * [Lecture notes - Floating Point Appreciation](http://pages.cs.wisc.edu/~markhill/cs354/Fall2008/notes/flpt.apprec.html)
126
127 Among other things, has a nice explanation on arithmetic, rounding modes and the sticky bit.
128
129 * [What Every Computer Scientist Should Know About Floating-Point Arithmetic](https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html)
130
131 Nice resource on rounding errors (ulps and epsilon) and the "table maker's dilemma".
132
133 ## Past FPU Mistakes to learn from
134
135 * [Intel Underestimates Error Bounds by 1.3 quintillion on
136 Random ASCII – tech blog of Bruce Dawson ](https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/)
137 * [Intel overstates FPU accuracy 06/01/2013](http://notabs.org/fpuaccuracy)
138 * How not to design an ISA
139 <https://player.vimeo.com/video/450406346>
140 Meester Forsyth <http://eelpi.gotdns.org/>
141
142 # Khronos Standards
143
144 The Khronos Group creates open standards for authoring and acceleration
145 of graphics, media, and computation. It is a requirement for our hybrid
146 CPU/GPU to be compliant with these standards *as well* as with IEEE754,
147 in order to be commercially-competitive in both areas: especially Vulkan
148 and OpenCL being the most important. SPIR-V is also important for the
149 Kazan driver.
150
151 Thus the [[zfpacc_proposal]] has been created which permits runtime dynamic
152 switching between different accuracy levels, in userspace applications.
153
154 [**SPIR-V Main Page Link**](https://www.khronos.org/registry/spir-v/)
155
156 * [SPIR-V 1.5 Specification Revision 1](https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html)
157 * [SPIR-V OpenCL Extended Instruction Set](https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.ExtendedInstructionSet.100.html)
158 * [SPIR-V GLSL Extended Instruction Set](https://www.khronos.org/registry/spir-v/specs/unified1/GLSL.std.450.html)
159
160 [**Vulkan Main Page Link**](https://www.khronos.org/registry/vulkan/)
161
162 * [Vulkan 1.1.122](https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/index.html)
163
164 [**OpenCL Main Page**](https://www.khronos.org/registry/OpenCL/)
165
166 * [OpenCL 2.2 API Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_API.html)
167 * [OpenCL 2.2 Extension Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Ext.html)
168 * [OpenCL 2.2 SPIR-V Environment Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Env.html)
169
170 * OpenCL released the proposed OpenCL 3.0 spec for comments in april 2020
171
172 * [Announcement video](https://youtu.be/h0_syTg6TtY)
173 * [Announcement video slides (PDF)](https://www.khronos.org/assets/uploads/apis/OpenCL-3.0-Launch-Apr20.pdf)
174
175 Note: We are implementing hardware accelerated Vulkan and
176 OpenCL while relying on other software projects to translate APIs to
177 Vulkan. E.g. Zink allows for OpenGL-to-Vulkan in software.
178
179 # Open Source (CC BY + MIT) DirectX specs (by Microsoft, but not official specs)
180
181 https://github.com/Microsoft/DirectX-Specs
182
183 # Graphics and Compute API Stack
184
185 I found this informative post that mentions Kazan and a whole bunch of
186 other stuff. It looks like *many* APIs can be emulated on top of Vulkan,
187 although performance is not evaluated.
188
189 <https://synappsis.wordpress.com/2017/06/03/opengl-over-vulkan-dev/>
190
191 * Pixilica is heading up an initiative to create a RISC-V graphical ISA
192
193 * [Pixilica 3D Graphical ISA Slides](https://b5792ddd-543e-4dd4-9b97-fe259caf375d.filesusr.com/ugd/841f2a_c8685ced353b4c3ea20dbb993c4d4d18.pdf)
194
195 # 3D Graphics Texture compression software and hardware
196
197 * [Proprietary Rad Game Tools Oddle Texture Software Compression](https://web.archive.org/web/20200913122043/http://www.radgametools.com/oodle.htm)
198
199 * [Blog post by one of the engineers who developed the proprietary Rad Game Tools Oddle Texture Software Compression and the Oodle Kraken decompression software and hardware decoder used in the ps5 ssd](https://archive.vn/oz0pG)
200
201 # Various POWER Communities
202 - [An effort to make a 100% Libre POWER Laptop](https://www.powerpc-notebook.org/en/)
203 The T2080 is a POWER8 chip.
204 - [Power Progress Community](https://www.powerprogress.org/campaigns/donations-to-all-the-power-progress-community-projects/)
205 Supporting/Raising awareness of various POWER related open projects on the FOSS
206 community
207 - [OpenPOWER](https://openpowerfoundation.org)
208 Promotes and ensure compliance with the Power ISA amongst members.
209 - [OpenCapi](https://opencapi.org)
210 High performance interconnect for POWER machines. One of the big advantages
211 of the POWER architecture. Notably more performant than PCIE Gen4, and is
212 designed to be layered on top of the physical PCIE link.
213 - [OpenPOWER “Virtual Coffee” Calls](https://openpowerfoundation.org/openpower-virtual-coffee-calls/)
214 Truly open bi-weekly teleconference lines for anybody interested in helping
215 advance or adopting the POWER architecture.
216
217 # Conferences
218
219 see [[conferences]]
220
221
222 # Coriolis2
223
224 * LIP6's Coriolis - a set of backend design tools:
225 <https://www-soc.lip6.fr/equipe-cian/logiciels/coriolis/>
226
227 Note: The rest of LIP6's website is in French, but there is a UK flag
228 in the corner that gives the English version.
229
230 # Logical Equivalence and extraction
231
232 * NETGEN
233 * CVC https://github.com/d-m-bailey/cvc
234
235 # Klayout
236
237 * KLayout - Layout viewer and editor: <https://www.klayout.de/>
238
239 # image to GDS-II
240
241 * https://nazca-design.org/convert-image-to-gds/
242
243 # The OpenROAD Project
244
245 OpenROAD seeks to develop and foster an autonomous, 24-hour, open-source
246 layout generation flow (RTL-to-GDS).
247
248 * <https://theopenroadproject.org/>
249
250 # Other RISC-V GPU attempts
251
252 * <https://fossi-foundation.org/2019/09/03/gsoc-64b-pointers-in-rv32>
253
254 * <http://bjump.org/manycore/>
255
256 * <https://resharma.github.io/RISCV32-GPU/>
257
258 TODO: Get in touch and discuss collaboration
259
260 # Tests, Benchmarks, Conformance, Compliance, Verification, etc.
261
262 ## RISC-V Tests
263
264 RISC-V Foundation is in the process of creating an official conformance
265 test. It's still in development as far as I can tell.
266
267 * //TODO LINK TO RISC-V CONFORMANCE TEST
268
269 ## IEEE 754 Testing/Emulation
270
271 IEEE 754 has no official tests for floating-point but there are
272 well-known third party tools to check such as John Hauser's TestFloat.
273
274 There is also his SoftFloat library, which is a software emulation
275 library for IEEE 754.
276
277 * <http://www.jhauser.us/arithmetic/>
278
279 Jacob is also working on an IEEE 754 software emulation library written
280 in Rust which also has Python bindings:
281
282 * Source: <https://salsa.debian.org/Kazan-team/simple-soft-float>
283 * Crate: <https://crates.io/crates/simple-soft-float>
284 * Autogenerated Docs: <https://docs.rs/simple-soft-float/>
285
286 A cool paper I came across in my research is "IeeeCC754++ : An Advanced
287 Set of Tools to Check IEEE 754-2008 Conformity" by Dr. Matthias Hüsken.
288
289 * Direct link to PDF:
290 <http://elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/Derivate-7505/dc1735.pdf>
291
292 ## Khronos Tests
293
294 OpenCL Conformance Tests
295
296 * <https://github.com/KhronosGroup/OpenCL-CTS>
297
298 Vulkan Conformance Tests
299
300 * <https://github.com/KhronosGroup/VK-GL-CTS>
301
302 MAJOR NOTE: We are **not** allowed to say we are compliant with any of
303 the Khronos standards until we actually make an official submission,
304 do the paperwork, and pay the relevant fees.
305
306 ## Formal Verification
307
308 Formal verification of Libre RISC-V ensures that it is bug-free in
309 regards to what we specify. Of course, it is important to do the formal
310 verification as a final step in the development process before we produce
311 thousands or millions of silicon.
312
313 * Possible way to speed up our solvers for our formal proofs <https://web.archive.org/web/20201029205507/https://github.com/eth-sri/fastsmt>
314
315 * Algorithms (papers) submitted for 2018 International SAT Competition <https://web.archive.org/web/20201029205239/https://helda.helsinki.fi/bitstream/handle/10138/237063/sc2018_proceedings.pdf> <https://web.archive.org/web/20201029205637/http://www.satcompetition.org/>
316 * Minisail <https://www.isa-afp.org/entries/MiniSail.html> - compiler
317 for SAIL into c
318
319 Some learning resources I found in the community:
320
321 * ZipCPU: <http://zipcpu.com/> ZipCPU provides a comprehensive
322 tutorial for beginners and many exercises/quizzes/slides:
323 <http://zipcpu.com/tutorial/>
324 * Western Digital's SweRV CPU blog (I recommend looking at all their
325 posts): <https://tomverbeure.github.io/>
326 * <https://tomverbeure.github.io/risc-v/2018/11/19/A-Bug-Free-RISC-V-Core-without-Simulation.html>
327 * <https://tomverbeure.github.io/rtl/2019/01/04/Under-the-Hood-of-Formal-Verification.html>
328
329 VAMP CPU
330
331 * Formal verification of a fully IEEE compliant floating point unit
332 <https://publikationen.sulb.uni-saarland.de/bitstream/20.500.11880/25760/1/ChristianJacobi_ProfDrWolfgangJPaul.pdf>
333 * <https://www-wjp.cs.uni-sb.de/forschung/projekte/VAMP/?lang=en>
334 * the PVS/hw subfolder is under the 2-clause BSD license:
335 <https://www-wjp.cs.uni-sb.de/forschung/projekte/VAMP/PVS/hw/COPYRIGHT>
336 * <https://alastairreid.github.io/RelatedWork/papers/beyer:ijsttt:2006/>
337
338 ## Automation
339
340 * <https://www.ohwr.org/project/wishbone-gen>
341
342 # Bus Architectures
343
344 * Avalon <https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf>
345 * CXM <https://www.computeexpresslink.org/download-the-specification>
346
347 # Vector Processors
348
349 * THOR <https://github.com/robfinch/Thor/blob/main/Thor2021/doc/Thor2021.pdf>
350 * NEC SX-Aurora
351 * RVV
352 * MRISC32 <https://github.com/mrisc32/mrisc32>
353
354 # LLVM
355
356 ## Adding new instructions:
357
358 * <https://archive.fosdem.org/2015/schedule/event/llvm_internal_asm/>
359
360 # Branch Prediction
361
362 * <https://danluu.com/branch-prediction/>
363
364 # Python RTL Tools
365
366 * <https://ieeexplore.ieee.org/document/9591456> pylog fpga
367 <https://github.com/hst10/pylog>
368 * [Migen - a Python RTL](https://jeffrey.co.in/blog/2014/01/d-flip-flop-using-migen/)
369 * [Migen Tutorial](http://blog.lambdaconcept.com/doku.php?id=migen:tutorial>)
370 * There is a great guy, Robert Baruch, who has a good
371 [tutorial](https://github.com/RobertBaruch/nmigen-tutorial) on nMigen.
372 He also build an FPGA-proven Motorola 6800 CPU clone with nMigen and put
373 [the code](https://github.com/RobertBaruch/n6800) and
374 [instructional videos](https://www.youtube.com/playlist?list=PLEeZWGE3PwbbjxV7_XnPSR7ouLR2zjktw)
375 online.
376 There is now a page [[docs/learning_nmigen]].
377 * [Using our Python Unit Tests(old)](http://lists.libre-riscv.org/pipermail/libre-riscv-dev/2019-March/000705.html)
378 * <https://chisel.eecs.berkeley.edu/api/latest/chisel3/util/DecoupledIO.html>
379
380 # Other
381
382 * Cray-1 Pocket Reference
383 <https://nitter.it/aka_pugs/status/1546576975166201856>
384 <https://ftp.libre-soc.org/cray-1-pocket-ref/>
385 <https://www.computerhistory.org/collections/catalog/102685876>
386 * <https://github.com/tdene/synth_opt_adders> Prefix-tree generation scripts
387 * <https://debugger.medium.com/why-is-apples-m1-chip-so-fast-3262b158cba2> N1
388 * <https://codeberg.org/tok/librecell> Libre Cell Library
389 * <https://wiki.f-si.org/index.php/FSiC2019>
390 * <https://fusesoc.net>
391 * <https://www.lowrisc.org/open-silicon/>
392 * <http://fpgacpu.ca/fpga/Pipeline_Skid_Buffer.html> pipeline skid buffer
393 * <https://pyvcd.readthedocs.io/en/latest/vcd.gtkw.html> GTKwave
394 * <https://github.com/Ben1152000/sootty> - console-based vcd viewer
395 * <https://github.com/ics-jku/wal> - Waveform Analysis
396 * <http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_Resets.pdf>
397 Synchronous Resets? Asynchronous Resets? I am so confused! How will I
398 ever know which to use? by Clifford E. Cummings
399 * <http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf>
400 Clock Domain Crossing (CDC) Design & Verification Techniques Using
401 SystemVerilog, by Clifford E. Cummings
402 In particular, see section 5.8.2: Multi-bit CDC signal passing using
403 1-deep / 2-register FIFO synchronizer.
404 * <http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.pdf>
405 Understanding Latency Hiding on GPUs, by Vasily Volkov
406 * Efabless "Openlane" <https://github.com/efabless/openlane>
407 * example of openlane with nmigen
408 <https://github.com/lethalbit/nmigen/tree/openlane>
409 * Co-simulation plugin for verilator, transferring to ECP5
410 <https://github.com/vmware/cascade>
411 * Multi-read/write ported memories
412 <https://tomverbeure.github.io/2019/08/03/Multiport-Memories.html>
413 * Data-dependent fail-on-first aka "Fault-tolerant speculative vectorisation"
414 <https://arxiv.org/pdf/1803.06185.pdf>
415 * OpenPOWER Foundation Membership
416 <https://openpowerfoundation.org/membership/how-to-join/membership-kit-9-27-16-4/>
417 * Clock switching (and formal verification)
418 <https://zipcpu.com/formal/2018/05/31/clkswitch.html>
419 * Circuit of Compunit <http://home.macintosh.garden/~mepy2/libre-soc/comp_unit_req_rel.html>
420 * Circuitverse 16-bit <https://circuitverse.org/users/17603/projects/54486>
421 * Nice example model of a Tomasulo-based architecture, with multi-issue, in-order issue, out-of-order execution, in-order commit, with reservation stations and reorder buffers, and hazard avoidance.
422 <https://www.brown.edu/Departments/Engineering/Courses/En164/Tomasulo_10.pdf>
423 * adrian_b architecture comparison <https://news.ycombinator.com/item?id=24459041>
424 * ericandecscent RISC-V <https://libre-soc.org/irclog/%23libre-soc.2021-07-11.log.html>
425
426 # Real/Physical Projects
427
428 * [Samuel's KC5 code](http://chiselapp.com/user/kc5tja/repository/kestrel-3/dir?ci=6c559135a301f321&name=cores/cpu)
429 * <https://chips4makers.io/blog/>
430 * <https://hackaday.io/project/7817-zynqberry>
431 * <https://github.com/efabless/raven-picorv32>
432 * <https://efabless.com>
433 * <https://efabless.com/design_catalog/default>
434 * <https://wiki.f-si.org/index.php/The_Raven_chip:_First-time_silicon_success_with_qflow_and_efabless>
435 * <https://mshahrad.github.io/openpiton-asplos16.html>
436
437 # ASIC tape-out pricing
438
439 * <https://europractice-ic.com/wp-content/uploads/2020/05/General-MPW-EUROPRACTICE-200505-v8.pdf>
440
441 # Funding
442
443 * <https://toyota-ai.ventures/>
444 * [NLNet Applications](http://bugs.libre-riscv.org/buglist.cgi?columnlist=assigned_to%2Cbug_status%2Cresolution%2Cshort_desc%2Ccf_budget&f1=cf_nlnet_milestone&o1=equals&query_format=advanced&resolution=---&v1=NLnet.2019.02)
445
446 # Good Programming/Design Practices
447
448 * [Liskov Substitution Principle](https://en.wikipedia.org/wiki/Liskov_substitution_principle)
449 * [Principle of Least Astonishment](https://en.wikipedia.org/wiki/Principle_of_least_astonishment)
450 * <https://peertube.f-si.org/videos/watch/379ef007-40b7-4a51-ba1a-0db4f48e8b16>
451 * [Rust-Lang Philosophy and Consensus](http://smallcultfollowing.com/babysteps/blog/2019/04/19/aic-adventures-in-consensus/)
452
453 * <https://youtu.be/o5Ihqg72T3c>
454 * <http://flopoco.gforge.inria.fr/>
455 * Fundamentals of Modern VLSI Devices
456 <https://groups.google.com/a/groups.riscv.org/d/msg/hw-dev/b4pPvlzBzu0/7hDfxArEAgAJ>
457
458 # 12 skills summary
459
460 * <https://www.crnhq.org/cr-kit/>
461
462 # Analog Simulation
463
464 * <https://github.com/Isotel/mixedsim>
465 * <http://www.vlsiacademy.org/open-source-cad-tools.html>
466 * <http://ngspice.sourceforge.net/adms.html>
467 * <https://en.wikipedia.org/wiki/Verilog-AMS#Open_Source_Implementations>
468
469 # Libre-SOC Standards
470
471 This list auto-generated from a page tag "standards":
472
473 [[!inline pages="tagged(standards)" actions="no" archive="yes" quick="yes"]]
474
475 # Server setup
476
477 * [[resources/server-setup/web-server]]
478 * [[resources/server-setup/git-mirroring]]
479 * [[resources/server-setup/nagios-monitoring]]
480
481 # Testbeds
482
483 * <https://www.fed4fire.eu/testbeds/>
484
485 # Really Useful Stuff
486
487 * <https://github.com/im-tomu/fomu-workshop/blob/master/docs/requirements.txt>
488 * <https://github.com/im-tomu/fomu-workshop/blob/master/docs/conf.py#L39-L47>
489
490 # Digilent Arty
491
492 * https://store.digilentinc.com/pmod-sf3-32-mb-serial-nor-flash/
493 * https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
494 * https://store.digilentinc.com/pmod-vga-video-graphics-array/
495 * https://store.digilentinc.com/pmod-microsd-microsd-card-slot/
496 * https://store.digilentinc.com/pmod-rtcc-real-time-clock-calendar/
497 * https://store.digilentinc.com/pmod-i2s2-stereo-audio-input-and-output/
498
499 # CircuitJS experiments
500
501 * [[resources/high-speed-serdes-in-circuitjs]]
502
503 # Logic Simulator 2
504 * <https://github.com/dkilfoyle/logic2>
505 [Live web version](https://dkilfoyle.github.io/logic2/)
506
507 > ## Features
508 > 1. Micro-subset verilog-like DSL for coding the array of logic gates (parsed using Antlr)
509 > 2. Monaco-based code editor with automatic linting/error reporting, smart indentation, code folding, hints
510 > 3. IDE docking ui courtesy of JupyterLab's Lumino widgets
511 > 4. Schematic visualisation courtesy of d3-hwschematic
512 > 5. Testbench simulation with graphical trace output and schematic animation
513 > 6. Circuit description as gates, boolean logic or verilog behavioural model
514 > 7. Generate arbitrary outputs from truth table and Sum of Products or Karnaugh Map
515
516 [from the GitHub page. As of 2021/03/29]
517
518 # ASIC Timing and Design flow resources
519
520 * <https://www.linkedin.com/pulse/asic-design-flow-introduction-timing-constraints-mahmoud-abdellatif/>
521 * <https://www.icdesigntips.com/2020/10/setup-and-hold-time-explained.html>
522 * <https://www.vlsiguide.com/2018/07/clock-tree-synthesis-cts.html>
523 * <https://en.wikipedia.org/wiki/Frequency_divider>
524
525 # Geometric Haskell Library
526
527 * <https://github.com/julialongtin/hslice/blob/master/Graphics/Slicer/Math/GeometricAlgebra.hs>
528 * <https://github.com/julialongtin/hslice/blob/master/Graphics/Slicer/Math/PGA.hs>
529 * <https://arxiv.org/pdf/1501.06511.pdf>
530 * <https://bivector.net/index.html>
531
532 # TODO investigate
533
534 ```
535 https://www.nextplatform.com/2022/08/22/the-expanding-cxl-memory-hierarchy-is-inevitable-and-good-enough/
536 https://github.com/idea-fasoc/OpenFASOC
537 https://www.quicklogic.com/2020/06/18/the-tipping-point/
538 https://www.quicklogic.com/blog/
539 https://www.quicklogic.com/2020/09/15/why-open-source-ecosystems-make-good-business-sense/
540 https://www.quicklogic.com/qorc/
541 https://en.wikipedia.org/wiki/RAD750
542 The RAD750 system has a price that is comparable to the RAD6000, the latter of which as of 2002 was listed at US$200,000 (equivalent to $284,292 in 2019).
543 https://theamphour.com/525-open-fpga-toolchains-and-machine-learning-with-brian-faith-of-quicklogic/
544 https://github.blog/2021-03-22-open-innovation-winning-strategy-digital-sovereignty-human-progress/
545 https://github.com/olofk/edalize
546 https://github.com/hdl/containers
547 https://twitter.com/OlofKindgren/status/1374848733746192394
548 You might also want to check out https://umarcor.github.io/osvb/index.html
549 https://www.linkedin.com/pulse/1932021-python-now-replaces-tcl-all-besteda-apis-avidan-efody/
550 “TCL has served us well, over the years, allowing us to provide an API, and at the same time ensure nobody will ever use it. I will miss it”.
551 https://sphinxcontrib-hdl-diagrams.readthedocs.io/en/latest/examples/comb-full-adder.html
552 https://sphinxcontrib-hdl-diagrams.readthedocs.io/en/latest/examples/carry4.html
553 FuseSoC is used by MicroWatt and Western Digital cores
554 OpenTitan also uses FuseSoC
555 LowRISC is UK based
556 https://antmicro.com/blog/2020/12/ibex-support-in-verilator-yosys-via-uhdm-surelog/
557 https://cirosantilli.com/x86-paging
558 https://stackoverflow.com/questions/18431261/how-does-x86-paging-work
559 http://denninginstitute.com/modules/vm/red/i486page.html
560 ```