(no commit message)
[libreriscv.git] / resources.mdwn
1 # Resources and Specifications
2
3 This page aims to collect all the resources and specifications we need
4 in one place for quick access. We will try our best to keep links here
5 up-to-date. Feel free to add more links here.
6
7 [[!toc ]]
8
9 # Getting Started
10
11 This section is primarily a series of useful links found online
12
13 * [FSiC2019](https://wiki.f-si.org/index.php/FSiC2019)
14 * Fundamentals to learn to get started [[3d_gpu/tutorial]]
15
16 ## Is Open Source Hardware Profitable?
17 [RaptorCS on FOSS Hardware Interview](https://www.youtube.com/watch?v=o5Ihqg72T3c&feature=youtu.be)
18
19 # OpenPOWER ISA
20
21 * [3.0 PDF](https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0)
22 * [2.07 PDF](https://openpowerfoundation.org/?resource_lib=ibm-power-isa-version-2-07-b)
23 * Virginia Tech course <https://github.com/w-feng/CompArch-MIPS-POWER>
24
25 ## Overview of the user ISA:
26
27 * [Raymond Chen's PowerPC series](https://devblogs.microsoft.com/oldnewthing/20180806-00/?p=99425)
28 * Power ISA listings <https://power-isa-beta.mybluemix.net/>
29
30 ## OpenPOWER OpenFSI Spec (2016)
31
32 * [OpenPOWER OpenFSI Spec](http://openpowerfoundation.org/wp-content/uploads/resources/OpenFSI-spec-100/OpenFSI-spec-20161212.pdf)
33
34 * [OpenPOWER OpenFSI Compliance Spec](http://openpowerfoundation.org/wp-content/uploads/resources/openpower-fsi-thts-1.0/openpower-fsi-thts-20180130.pdf)
35
36 # Energy-efficient cores
37
38 * https://arxiv.org/abs/2002.10143
39 * https://arxiv.org/abs/2011.08070
40
41 # Open Access Publication locations
42
43 * <https://open-research-europe.ec.europa.eu/browse/engineering-and-technology>
44
45 # Communities
46
47 * <https://www.reddit.com/r/OpenPOWER/>
48 * <http://lists.mailinglist.openpowerfoundation.org/pipermail/openpower-hdl-cores/>
49 * <http://lists.mailinglist.openpowerfoundation.org/pipermail/openpower-community-dev/>
50 * Open tape-out mailing list <https://groups.google.com/a/opentapeout.dev/g/mailinglist>
51
52 # ppc64 ELF ABI
53
54 * EABI 1.9 supplement <https://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi-1.9.html>
55 * https://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi-1.9.pdf
56 * v2.1.5 <https://openpowerfoundation.org/specifications/64bitelfabi/>
57
58 # Similar concepts
59
60 * <https://www.tdx.cat/bitstream/handle/10803/674224/TCRL1de1.pdf> Vector registers may be
61 made "ultra-wide" (SX Aurora / Cray)
62
63 # Other GPU Specifications
64
65 *
66 * https://developer.amd.com/wp-content/resources/RDNA_Shader_ISA.pdf
67 * https://developer.amd.com/wp-content/resources/Vega_Shader_ISA_28July2017.pdf
68 * MALI Midgard
69 * [Nyuzi](https://github.com/jbush001/NyuziProcessor)
70 * VideoCore IV
71 * etnaviv
72
73 # JTAG
74
75 * [Useful JTAG implementation reference: Design Of IEEE 1149.1 TAP Controller IP Core by Shelja, Nandakumar and Muruganantham, DOI:10.5121/csit.2016.60910](https://web.archive.org/web/20201021174944/https://airccj.org/CSCP/vol6/csit65610.pdf)
76
77 Abstract
78
79 "The objective of this work is to design and implement a TAP controller IP core compatible with IEEE 1149.1-2013 revision of the standard. The test logic architecture also includes the Test Mode Persistence controller and its associated logic. This work is expected to serve as a ready to use module that can be directly inserted in to a new digital IC designs with little modifications."
80
81 # Radix MMU
82 - [Qemu emulation](https://github.com/qemu/qemu/commit/d5fee0bbe68d5e61e2d2beb5ff6de0b9c1cfd182)
83
84 # D-Cache
85
86 - [A Primer on Memory Consistency and Cache Coherence
87 ](https://www.morganclaypool.com/doi/10.2200/S00962ED2V01Y201910CAC049)
88
89 ## D-Cache Possible Optimizations papers and links
90 - [ACDC: Small, Predictable and High-Performance Data Cache](https://dl.acm.org/doi/10.1145/2677093)
91 - [Stop Crying Over Your Cache Miss Rate: Handling Efficiently Thousands of
92 Outstanding Misses in FPGAs](https://dl.acm.org/doi/abs/10.1145/3289602.3293901)
93
94 # BW Enhancing Shared L1 Cache Design research done in cooperation with AMD
95 - [Youtube video PACT 2020 - Analyzing and Leveraging Shared L1 Caches in GPUs](https://m.youtube.com/watch?v=CGIhOnt7F6s)
96 - [Url to PDF of paper on author's website (clicking will download the pdf)](https://adwaitjog.github.io/docs/pdf/sharedl1-pact20.pdf)
97
98
99 # RTL Arithmetic SQRT, FPU etc.
100
101 ## Wallace vs Dadda Multipliers
102
103 * [Paper comparing efficiency of Wallace and Dadda Multipliers in RTL implementations (clicking will download the pdf from archive.org)](https://web.archive.org/web/20180717013227/http://ieeemilestones.ethw.org/images/d/db/A_comparison_of_Dadda_and_Wallace_multiplier_delays.pdf)
104
105 ## Sqrt
106 * [Fast Floating Point Square Root](https://pdfs.semanticscholar.org/5060/4e9aff0e37089c4ab9a376c3f35761ffe28b.pdf)
107 * [Reciprocal Square Root Algorithm](http://www.acsel-lab.com/arithmetic/arith15/papers/ARITH15_Takagi.pdf)
108 * [Fast Calculation of Cube and Inverse Cube Roots Using a Magic Constant and Its Implementation on Microcontrollers (clicking will download the pdf)](https://res.mdpi.com/d_attachment/energies/energies-14-01058/article_deploy/energies-14-01058-v2.pdf)
109 * [Modified Fast Inverse Square Root and Square Root Approximation Algorithms: The Method of Switching Magic Constants (clicking will download the pdf)](https://res.mdpi.com/d_attachment/computation/computation-09-00021/article_deploy/computation-09-00021-v3.pdf)
110
111
112 ## CORDIC and related algorithms
113
114 * <https://bugs.libre-soc.org/show_bug.cgi?id=127> research into CORDIC
115 * <https://bugs.libre-soc.org/show_bug.cgi?id=208>
116 * [BKM (log(x) and e^x)](https://en.wikipedia.org/wiki/BKM_algorithm)
117 * [CORDIC](http://www.andraka.com/files/crdcsrvy.pdf)
118 - Does not have an easy way of computing tan(x)
119 * [zipcpu CORDIC](https://zipcpu.com/dsp/2017/08/30/cordic.html)
120 * [Low latency and Low error floating point TCORDIC](https://ieeexplore.ieee.org/document/7784797) (email Michael or Cole if you don't have IEEE access)
121 * <http://www.myhdl.org/docs/examples/sinecomp/> MyHDL version of CORDIC
122 * <https://dspguru.com/dsp/faqs/cordic/>
123
124 ## IEEE Standard for Floating-Point Arithmetic (IEEE 754)
125
126 Almost all modern computers follow the IEEE Floating-Point Standard. Of
127 course, we will follow it as well for interoperability.
128
129 * IEEE 754-2019: <https://standards.ieee.org/standard/754-2019.html>
130
131 Note: Even though this is such an important standard used by everyone,
132 it is unfortunately not freely available and requires a payment to
133 access. However, each of the Libre-SOC members already have access
134 to the document.
135
136 * [Lecture notes - Floating Point Appreciation](http://pages.cs.wisc.edu/~markhill/cs354/Fall2008/notes/flpt.apprec.html)
137
138 Among other things, has a nice explanation on arithmetic, rounding modes and the sticky bit.
139
140 * [What Every Computer Scientist Should Know About Floating-Point Arithmetic](https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html)
141
142 Nice resource on rounding errors (ulps and epsilon) and the "table maker's dilemma".
143
144 ## Past FPU Mistakes to learn from
145
146 * [Intel Underestimates Error Bounds by 1.3 quintillion on
147 Random ASCII – tech blog of Bruce Dawson ](https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/)
148 * [Intel overstates FPU accuracy 06/01/2013](http://notabs.org/fpuaccuracy)
149 * How not to design an ISA
150 <https://player.vimeo.com/video/450406346>
151 Meester Forsyth <http://eelpi.gotdns.org/>
152
153 # Khronos Standards
154
155 The Khronos Group creates open standards for authoring and acceleration
156 of graphics, media, and computation. It is a requirement for our hybrid
157 CPU/GPU to be compliant with these standards *as well* as with IEEE754,
158 in order to be commercially-competitive in both areas: especially Vulkan
159 and OpenCL being the most important. SPIR-V is also important for the
160 Kazan driver.
161
162 Thus the [[zfpacc_proposal]] has been created which permits runtime dynamic
163 switching between different accuracy levels, in userspace applications.
164
165 [**SPIR-V Main Page Link**](https://www.khronos.org/registry/spir-v/)
166
167 * [SPIR-V 1.5 Specification Revision 1](https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html)
168 * [SPIR-V OpenCL Extended Instruction Set](https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.ExtendedInstructionSet.100.html)
169 * [SPIR-V GLSL Extended Instruction Set](https://www.khronos.org/registry/spir-v/specs/unified1/GLSL.std.450.html)
170
171 [**Vulkan Main Page Link**](https://www.khronos.org/registry/vulkan/)
172
173 * [Vulkan 1.1.122](https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/index.html)
174
175 [**OpenCL Main Page**](https://www.khronos.org/registry/OpenCL/)
176
177 * [OpenCL 2.2 API Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_API.html)
178 * [OpenCL 2.2 Extension Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Ext.html)
179 * [OpenCL 2.2 SPIR-V Environment Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Env.html)
180
181 * OpenCL released the proposed OpenCL 3.0 spec for comments in april 2020
182
183 * [Announcement video](https://youtu.be/h0_syTg6TtY)
184 * [Announcement video slides (PDF)](https://www.khronos.org/assets/uploads/apis/OpenCL-3.0-Launch-Apr20.pdf)
185
186 Note: We are implementing hardware accelerated Vulkan and
187 OpenCL while relying on other software projects to translate APIs to
188 Vulkan. E.g. Zink allows for OpenGL-to-Vulkan in software.
189
190 # Open Source (CC BY + MIT) DirectX specs (by Microsoft, but not official specs)
191
192 https://github.com/Microsoft/DirectX-Specs
193
194 # Graphics and Compute API Stack
195
196 I found this informative post that mentions Kazan and a whole bunch of
197 other stuff. It looks like *many* APIs can be emulated on top of Vulkan,
198 although performance is not evaluated.
199
200 <https://synappsis.wordpress.com/2017/06/03/opengl-over-vulkan-dev/>
201
202 * Pixilica is heading up an initiative to create a RISC-V graphical ISA
203
204 * [Pixilica 3D Graphical ISA Slides](https://b5792ddd-543e-4dd4-9b97-fe259caf375d.filesusr.com/ugd/841f2a_c8685ced353b4c3ea20dbb993c4d4d18.pdf)
205
206 # 3D Graphics Texture compression software and hardware
207
208 * [Proprietary Rad Game Tools Oddle Texture Software Compression](https://web.archive.org/web/20200913122043/http://www.radgametools.com/oodle.htm)
209
210 * [Blog post by one of the engineers who developed the proprietary Rad Game Tools Oddle Texture Software Compression and the Oodle Kraken decompression software and hardware decoder used in the ps5 ssd](https://archive.vn/oz0pG)
211
212 # Various POWER Communities
213 - [An effort to make a 100% Libre POWER Laptop](https://www.powerpc-notebook.org/en/)
214 The T2080 is a POWER8 chip.
215 - [Power Progress Community](https://www.powerprogress.org/campaigns/donations-to-all-the-power-progress-community-projects/)
216 Supporting/Raising awareness of various POWER related open projects on the FOSS
217 community
218 - [OpenPOWER](https://openpowerfoundation.org)
219 Promotes and ensure compliance with the Power ISA amongst members.
220 - [OpenCapi](https://opencapi.org)
221 High performance interconnect for POWER machines. One of the big advantages
222 of the POWER architecture. Notably more performant than PCIE Gen4, and is
223 designed to be layered on top of the physical PCIE link.
224 - [OpenPOWER “Virtual Coffee” Calls](https://openpowerfoundation.org/openpower-virtual-coffee-calls/)
225 Truly open bi-weekly teleconference lines for anybody interested in helping
226 advance or adopting the POWER architecture.
227
228 # Conferences
229
230 see [[conferences]]
231
232
233 # Coriolis2
234
235 * LIP6's Coriolis - a set of backend design tools:
236 <https://www-soc.lip6.fr/equipe-cian/logiciels/coriolis/>
237
238 Note: The rest of LIP6's website is in French, but there is a UK flag
239 in the corner that gives the English version.
240
241 # Logical Equivalence and extraction
242
243 * NETGEN
244 * CVC https://github.com/d-m-bailey/cvc
245
246 # Klayout
247
248 * KLayout - Layout viewer and editor: <https://www.klayout.de/>
249
250 # image to GDS-II
251
252 * https://nazca-design.org/convert-image-to-gds/
253
254 # The OpenROAD Project
255
256 OpenROAD seeks to develop and foster an autonomous, 24-hour, open-source
257 layout generation flow (RTL-to-GDS).
258
259 * <https://theopenroadproject.org/>
260
261 # Other RISC-V GPU attempts
262
263 * <https://fossi-foundation.org/2019/09/03/gsoc-64b-pointers-in-rv32>
264
265 * <http://bjump.org/manycore/>
266
267 * <https://resharma.github.io/RISCV32-GPU/>
268
269 TODO: Get in touch and discuss collaboration
270
271 # Tests, Benchmarks, Conformance, Compliance, Verification, etc.
272
273 ## RISC-V Tests
274
275 RISC-V Foundation is in the process of creating an official conformance
276 test. It's still in development as far as I can tell.
277
278 * //TODO LINK TO RISC-V CONFORMANCE TEST
279
280 ## IEEE 754 Testing/Emulation
281
282 IEEE 754 has no official tests for floating-point but there are
283 well-known third party tools to check such as John Hauser's TestFloat.
284
285 There is also his SoftFloat library, which is a software emulation
286 library for IEEE 754.
287
288 * <http://www.jhauser.us/arithmetic/>
289
290 Jacob is also working on an IEEE 754 software emulation library written
291 in Rust which also has Python bindings:
292
293 * Source: <https://salsa.debian.org/Kazan-team/simple-soft-float>
294 * Crate: <https://crates.io/crates/simple-soft-float>
295 * Autogenerated Docs: <https://docs.rs/simple-soft-float/>
296
297 A cool paper I came across in my research is "IeeeCC754++ : An Advanced
298 Set of Tools to Check IEEE 754-2008 Conformity" by Dr. Matthias Hüsken.
299
300 * Direct link to PDF:
301 <http://elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/Derivate-7505/dc1735.pdf>
302
303 ## Khronos Tests
304
305 OpenCL Conformance Tests
306
307 * <https://github.com/KhronosGroup/OpenCL-CTS>
308
309 Vulkan Conformance Tests
310
311 * <https://github.com/KhronosGroup/VK-GL-CTS>
312
313 MAJOR NOTE: We are **not** allowed to say we are compliant with any of
314 the Khronos standards until we actually make an official submission,
315 do the paperwork, and pay the relevant fees.
316
317 ## Formal Verification
318
319 Formal verification of Libre RISC-V ensures that it is bug-free in
320 regards to what we specify. Of course, it is important to do the formal
321 verification as a final step in the development process before we produce
322 thousands or millions of silicon.
323
324 * Possible way to speed up our solvers for our formal proofs <https://web.archive.org/web/20201029205507/https://github.com/eth-sri/fastsmt>
325
326 * Algorithms (papers) submitted for 2018 International SAT Competition <https://web.archive.org/web/20201029205239/https://helda.helsinki.fi/bitstream/handle/10138/237063/sc2018_proceedings.pdf> <https://web.archive.org/web/20201029205637/http://www.satcompetition.org/>
327 * Minisail <https://www.isa-afp.org/entries/MiniSail.html> - compiler
328 for SAIL into c
329
330 Some learning resources I found in the community:
331
332 * ZipCPU: <http://zipcpu.com/> ZipCPU provides a comprehensive
333 tutorial for beginners and many exercises/quizzes/slides:
334 <http://zipcpu.com/tutorial/>
335 * Western Digital's SweRV CPU blog (I recommend looking at all their
336 posts): <https://tomverbeure.github.io/>
337 * <https://tomverbeure.github.io/risc-v/2018/11/19/A-Bug-Free-RISC-V-Core-without-Simulation.html>
338 * <https://tomverbeure.github.io/rtl/2019/01/04/Under-the-Hood-of-Formal-Verification.html>
339
340 VAMP CPU
341
342 * Formal verification of a fully IEEE compliant floating point unit
343 <https://publikationen.sulb.uni-saarland.de/bitstream/20.500.11880/25760/1/ChristianJacobi_ProfDrWolfgangJPaul.pdf>
344 * <https://www-wjp.cs.uni-sb.de/forschung/projekte/VAMP/?lang=en>
345 * the PVS/hw subfolder is under the 2-clause BSD license:
346 <https://www-wjp.cs.uni-sb.de/forschung/projekte/VAMP/PVS/hw/COPYRIGHT>
347 * <https://alastairreid.github.io/RelatedWork/papers/beyer:ijsttt:2006/>
348
349 ## Automation
350
351 * <https://www.ohwr.org/project/wishbone-gen>
352
353 # Bus Architectures
354
355 * Avalon <https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf>
356 * CXM <https://www.computeexpresslink.org/download-the-specification>
357
358 # Vector Processors
359
360 * THOR <https://github.com/robfinch/Thor/blob/main/Thor2021/doc/Thor2021.pdf>
361 * NEC SX-Aurora
362 * RVV
363 * MRISC32 <https://github.com/mrisc32/mrisc32>
364
365 # LLVM
366
367 ## Adding new instructions:
368
369 * <https://archive.fosdem.org/2015/schedule/event/llvm_internal_asm/>
370
371 # Branch Prediction
372
373 * <https://danluu.com/branch-prediction/>
374
375 # Python RTL Tools
376
377 * <https://ieeexplore.ieee.org/document/9591456> pylog fpga
378 <https://github.com/hst10/pylog>
379 * [Migen - a Python RTL](https://jeffrey.co.in/blog/2014/01/d-flip-flop-using-migen/)
380 * [Migen Tutorial](http://blog.lambdaconcept.com/doku.php?id=migen:tutorial>)
381 * There is a great guy, Robert Baruch, who has a good
382 [tutorial](https://github.com/RobertBaruch/nmigen-tutorial) on nMigen.
383 He also build an FPGA-proven Motorola 6800 CPU clone with nMigen and put
384 [the code](https://github.com/RobertBaruch/n6800) and
385 [instructional videos](https://www.youtube.com/playlist?list=PLEeZWGE3PwbbjxV7_XnPSR7ouLR2zjktw)
386 online.
387 There is now a page [[docs/learning_nmigen]].
388 * [Using our Python Unit Tests(old)](http://lists.libre-riscv.org/pipermail/libre-riscv-dev/2019-March/000705.html)
389 * <https://chisel.eecs.berkeley.edu/api/latest/chisel3/util/DecoupledIO.html>
390
391 # Other
392
393 * <https://github.com/chrische-xx/mpw7> 10-bit SAR ADC
394 * Cray-1 Pocket Reference
395 <https://nitter.it/aka_pugs/status/1546576975166201856>
396 <https://ftp.libre-soc.org/cray-1-pocket-ref/>
397 <https://www.computerhistory.org/collections/catalog/102685876>
398 * <https://github.com/tdene/synth_opt_adders> Prefix-tree generation scripts
399 * <https://debugger.medium.com/why-is-apples-m1-chip-so-fast-3262b158cba2> N1
400 * <https://codeberg.org/tok/librecell> Libre Cell Library
401 * <https://wiki.f-si.org/index.php/FSiC2019>
402 * <https://fusesoc.net>
403 * <https://www.lowrisc.org/open-silicon/>
404 * <http://fpgacpu.ca/fpga/Pipeline_Skid_Buffer.html> pipeline skid buffer
405 * <https://pyvcd.readthedocs.io/en/latest/vcd.gtkw.html> GTKwave
406 * <https://github.com/Ben1152000/sootty> - console-based vcd viewer
407 * <https://github.com/ics-jku/wal> - Waveform Analysis
408 * <http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_Resets.pdf>
409 Synchronous Resets? Asynchronous Resets? I am so confused! How will I
410 ever know which to use? by Clifford E. Cummings
411 * <http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf>
412 Clock Domain Crossing (CDC) Design & Verification Techniques Using
413 SystemVerilog, by Clifford E. Cummings
414 In particular, see section 5.8.2: Multi-bit CDC signal passing using
415 1-deep / 2-register FIFO synchronizer.
416 * <http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.pdf>
417 Understanding Latency Hiding on GPUs, by Vasily Volkov
418 * Efabless "Openlane" <https://github.com/efabless/openlane>
419 * example of openlane with nmigen
420 <https://github.com/lethalbit/nmigen/tree/openlane>
421 * Co-simulation plugin for verilator, transferring to ECP5
422 <https://github.com/vmware/cascade>
423 * Multi-read/write ported memories
424 <https://tomverbeure.github.io/2019/08/03/Multiport-Memories.html>
425 * Data-dependent fail-on-first aka "Fault-tolerant speculative vectorisation"
426 <https://arxiv.org/pdf/1803.06185.pdf>
427 * OpenPOWER Foundation Membership
428 <https://openpowerfoundation.org/membership/how-to-join/membership-kit-9-27-16-4/>
429 * Clock switching (and formal verification)
430 <https://zipcpu.com/formal/2018/05/31/clkswitch.html>
431 * Circuit of Compunit <http://home.macintosh.garden/~mepy2/libre-soc/comp_unit_req_rel.html>
432 * Circuitverse 16-bit <https://circuitverse.org/users/17603/projects/54486>
433 * Nice example model of a Tomasulo-based architecture, with multi-issue, in-order issue, out-of-order execution, in-order commit, with reservation stations and reorder buffers, and hazard avoidance.
434 <https://www.brown.edu/Departments/Engineering/Courses/En164/Tomasulo_10.pdf>
435 * adrian_b architecture comparison <https://news.ycombinator.com/item?id=24459041>
436 * ericandecscent RISC-V <https://libre-soc.org/irclog/%23libre-soc.2021-07-11.log.html>
437
438 # Real/Physical Projects
439
440 * [Samuel's KC5 code](http://chiselapp.com/user/kc5tja/repository/kestrel-3/dir?ci=6c559135a301f321&name=cores/cpu)
441 * <https://chips4makers.io/blog/>
442 * <https://hackaday.io/project/7817-zynqberry>
443 * <https://github.com/efabless/raven-picorv32>
444 * <https://efabless.com>
445 * <https://efabless.com/design_catalog/default>
446 * <https://wiki.f-si.org/index.php/The_Raven_chip:_First-time_silicon_success_with_qflow_and_efabless>
447 * <https://mshahrad.github.io/openpiton-asplos16.html>
448
449 # ASIC tape-out pricing
450
451 * <https://europractice-ic.com/wp-content/uploads/2020/05/General-MPW-EUROPRACTICE-200505-v8.pdf>
452
453 # Funding
454
455 * <https://toyota-ai.ventures/>
456 * [NLNet Applications](http://bugs.libre-riscv.org/buglist.cgi?columnlist=assigned_to%2Cbug_status%2Cresolution%2Cshort_desc%2Ccf_budget&f1=cf_nlnet_milestone&o1=equals&query_format=advanced&resolution=---&v1=NLnet.2019.02)
457
458 # Good Programming/Design Practices
459
460 * [Liskov Substitution Principle](https://en.wikipedia.org/wiki/Liskov_substitution_principle)
461 * [Principle of Least Astonishment](https://en.wikipedia.org/wiki/Principle_of_least_astonishment)
462 * <https://peertube.f-si.org/videos/watch/379ef007-40b7-4a51-ba1a-0db4f48e8b16>
463 * [Rust-Lang Philosophy and Consensus](http://smallcultfollowing.com/babysteps/blog/2019/04/19/aic-adventures-in-consensus/)
464
465 * <https://youtu.be/o5Ihqg72T3c>
466 * <http://flopoco.gforge.inria.fr/>
467 * Fundamentals of Modern VLSI Devices
468 <https://groups.google.com/a/groups.riscv.org/d/msg/hw-dev/b4pPvlzBzu0/7hDfxArEAgAJ>
469
470 # 12 skills summary
471
472 * <https://www.crnhq.org/cr-kit/>
473
474 # Analog Simulation
475
476 * <https://github.com/Isotel/mixedsim>
477 * <http://www.vlsiacademy.org/open-source-cad-tools.html>
478 * <http://ngspice.sourceforge.net/adms.html>
479 * <https://en.wikipedia.org/wiki/Verilog-AMS#Open_Source_Implementations>
480
481 # Libre-SOC Standards
482
483 This list auto-generated from a page tag "standards":
484
485 [[!inline pages="tagged(standards)" actions="no" archive="yes" quick="yes"]]
486
487 # Server setup
488
489 * [[resources/server-setup/web-server]]
490 * [[resources/server-setup/git-mirroring]]
491 * [[resources/server-setup/nagios-monitoring]]
492
493 # Testbeds
494
495 * <https://www.fed4fire.eu/testbeds/>
496
497 # Really Useful Stuff
498
499 * <https://github.com/im-tomu/fomu-workshop/blob/master/docs/requirements.txt>
500 * <https://github.com/im-tomu/fomu-workshop/blob/master/docs/conf.py#L39-L47>
501
502 # Digilent Arty
503
504 * https://store.digilentinc.com/pmod-sf3-32-mb-serial-nor-flash/
505 * https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
506 * https://store.digilentinc.com/pmod-vga-video-graphics-array/
507 * https://store.digilentinc.com/pmod-microsd-microsd-card-slot/
508 * https://store.digilentinc.com/pmod-rtcc-real-time-clock-calendar/
509 * https://store.digilentinc.com/pmod-i2s2-stereo-audio-input-and-output/
510
511 # CircuitJS experiments
512
513 * [[resources/high-speed-serdes-in-circuitjs]]
514
515 # Logic Simulator 2
516 * <https://github.com/dkilfoyle/logic2>
517 [Live web version](https://dkilfoyle.github.io/logic2/)
518
519 > ## Features
520 > 1. Micro-subset verilog-like DSL for coding the array of logic gates (parsed using Antlr)
521 > 2. Monaco-based code editor with automatic linting/error reporting, smart indentation, code folding, hints
522 > 3. IDE docking ui courtesy of JupyterLab's Lumino widgets
523 > 4. Schematic visualisation courtesy of d3-hwschematic
524 > 5. Testbench simulation with graphical trace output and schematic animation
525 > 6. Circuit description as gates, boolean logic or verilog behavioural model
526 > 7. Generate arbitrary outputs from truth table and Sum of Products or Karnaugh Map
527
528 [from the GitHub page. As of 2021/03/29]
529
530 # ASIC Timing and Design flow resources
531
532 * <https://www.linkedin.com/pulse/asic-design-flow-introduction-timing-constraints-mahmoud-abdellatif/>
533 * <https://www.icdesigntips.com/2020/10/setup-and-hold-time-explained.html>
534 * <https://www.vlsiguide.com/2018/07/clock-tree-synthesis-cts.html>
535 * <https://en.wikipedia.org/wiki/Frequency_divider>
536
537 # Geometric Haskell Library
538
539 * <https://github.com/julialongtin/hslice/blob/master/Graphics/Slicer/Math/GeometricAlgebra.hs>
540 * <https://github.com/julialongtin/hslice/blob/master/Graphics/Slicer/Math/PGA.hs>
541 * <https://arxiv.org/pdf/1501.06511.pdf>
542 * <https://bivector.net/index.html>
543
544 # Handy Compiler Algorithms for SimpleV
545
546 Requires aligned registers:
547 * [Graph Coloring Register Allocation for Processors with Multi-Register Operands](https://dl.acm.org/doi/pdf/10.1145/93548.93552)
548 More general:
549 * [Retargetable Graph-Coloring Register Allocation for Irregular Architectures](https://user.it.uu.se/~svenolof/wpo/AllocSCOPES2003.20030626b.pdf)
550
551 # TODO investigate
552
553 ```
554 https://www.nextplatform.com/2022/08/22/the-expanding-cxl-memory-hierarchy-is-inevitable-and-good-enough/
555 https://github.com/idea-fasoc/OpenFASOC
556 https://www.quicklogic.com/2020/06/18/the-tipping-point/
557 https://www.quicklogic.com/blog/
558 https://www.quicklogic.com/2020/09/15/why-open-source-ecosystems-make-good-business-sense/
559 https://www.quicklogic.com/qorc/
560 https://en.wikipedia.org/wiki/RAD750
561 The RAD750 system has a price that is comparable to the RAD6000, the latter of which as of 2002 was listed at US$200,000 (equivalent to $284,292 in 2019).
562 https://theamphour.com/525-open-fpga-toolchains-and-machine-learning-with-brian-faith-of-quicklogic/
563 https://github.blog/2021-03-22-open-innovation-winning-strategy-digital-sovereignty-human-progress/
564 https://github.com/olofk/edalize
565 https://github.com/hdl/containers
566 https://twitter.com/OlofKindgren/status/1374848733746192394
567 You might also want to check out https://umarcor.github.io/osvb/index.html
568 https://www.linkedin.com/pulse/1932021-python-now-replaces-tcl-all-besteda-apis-avidan-efody/
569 “TCL has served us well, over the years, allowing us to provide an API, and at the same time ensure nobody will ever use it. I will miss it”.
570 https://sphinxcontrib-hdl-diagrams.readthedocs.io/en/latest/examples/comb-full-adder.html
571 https://sphinxcontrib-hdl-diagrams.readthedocs.io/en/latest/examples/carry4.html
572 FuseSoC is used by MicroWatt and Western Digital cores
573 OpenTitan also uses FuseSoC
574 LowRISC is UK based
575 https://antmicro.com/blog/2020/12/ibex-support-in-verilator-yosys-via-uhdm-surelog/
576 https://cirosantilli.com/x86-paging
577 https://stackoverflow.com/questions/18431261/how-does-x86-paging-work
578 http://denninginstitute.com/modules/vm/red/i486page.html
579 ```