8bcd8e2cc9dfcf4e0cca5c4fe2d0c5f093815083
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "simif.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, simif_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31
32 disassembler = new disassembler_t(max_xlen);
33 if (ext)
34 for (auto disasm_insn : ext->get_disasms())
35 disassembler->add_insn(disasm_insn);
36
37 reset();
38 }
39
40 processor_t::~processor_t()
41 {
42 #ifdef RISCV_ENABLE_HISTOGRAM
43 if (histogram_enabled)
44 {
45 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
46 for (auto it : pc_histogram)
47 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
48 }
49 #endif
50
51 delete mmu;
52 delete disassembler;
53 }
54
55 static void bad_isa_string(const char* isa)
56 {
57 fprintf(stderr, "error: bad --isa option %s\n", isa);
58 abort();
59 }
60
61 void processor_t::parse_isa_string(const char* str)
62 {
63 std::string lowercase, tmp;
64 for (const char *r = str; *r; r++)
65 lowercase += std::tolower(*r);
66
67 const char* p = lowercase.c_str();
68 const char* all_subsets = "imafdqc";
69
70 max_xlen = 64;
71 state.misa = reg_t(2) << 62;
72
73 if (strncmp(p, "rv32", 4) == 0)
74 max_xlen = 32, state.misa = reg_t(1) << 30, p += 4;
75 else if (strncmp(p, "rv64", 4) == 0)
76 p += 4;
77 else if (strncmp(p, "rv", 2) == 0)
78 p += 2;
79
80 if (!*p) {
81 p = "imafdc";
82 } else if (*p == 'g') { // treat "G" as "IMAFD"
83 tmp = std::string("imafd") + (p+1);
84 p = &tmp[0];
85 } else if (*p != 'i') {
86 bad_isa_string(str);
87 }
88
89 isa_string = "rv" + std::to_string(max_xlen) + p;
90 state.misa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
91 state.misa |= 1L << ('u' - 'a'); // advertise support for user mode
92
93 while (*p) {
94 state.misa |= 1L << (*p - 'a');
95
96 if (auto next = strchr(all_subsets, *p)) {
97 all_subsets = next + 1;
98 p++;
99 } else if (*p == 'x') {
100 const char* ext = p+1, *end = ext;
101 while (islower(*end))
102 end++;
103 register_extension(find_extension(std::string(ext, end - ext).c_str())());
104 p = end;
105 } else {
106 bad_isa_string(str);
107 }
108 }
109
110 if (supports_extension('D') && !supports_extension('F'))
111 bad_isa_string(str);
112
113 if (supports_extension('Q') && !supports_extension('D'))
114 bad_isa_string(str);
115
116 if (supports_extension('Q') && max_xlen < 64)
117 bad_isa_string(str);
118
119 max_isa = state.misa;
120 }
121
122 void state_t::reset(reg_t max_isa)
123 {
124 memset(this, 0, sizeof(*this));
125 misa = max_isa;
126 prv = PRV_M;
127 pc = DEFAULT_RSTVEC;
128 tselect = 0;
129 for (unsigned int i = 0; i < num_triggers; i++)
130 mcontrol[i].type = 2;
131 }
132
133 void processor_t::set_debug(bool value)
134 {
135 debug = value;
136 if (ext)
137 ext->set_debug(value);
138 }
139
140 void processor_t::set_histogram(bool value)
141 {
142 histogram_enabled = value;
143 #ifndef RISCV_ENABLE_HISTOGRAM
144 if (value) {
145 fprintf(stderr, "PC Histogram support has not been properly enabled;");
146 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
147 }
148 #endif
149 }
150
151 void processor_t::reset()
152 {
153 state.reset(max_isa);
154 state.dcsr.halt = halt_on_reset;
155 halt_on_reset = false;
156 set_csr(CSR_MSTATUS, state.mstatus);
157
158 if (ext)
159 ext->reset(); // reset the extension
160
161 if (sim)
162 sim->proc_reset(id);
163 }
164
165 // Count number of contiguous 0 bits starting from the LSB.
166 static int ctz(reg_t val)
167 {
168 int res = 0;
169 if (val)
170 while ((val & 1) == 0)
171 val >>= 1, res++;
172 return res;
173 }
174
175 void processor_t::take_interrupt(reg_t pending_interrupts)
176 {
177 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
178 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
179 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
180
181 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
182 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
183 // M-ints have highest priority; consider S-ints only if no M-ints pending
184 if (enabled_interrupts == 0)
185 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
186
187 if (state.dcsr.cause == 0 && enabled_interrupts) {
188 // nonstandard interrupts have highest priority
189 if (enabled_interrupts >> IRQ_M_EXT)
190 enabled_interrupts = enabled_interrupts >> IRQ_M_EXT << IRQ_M_EXT;
191 // external interrupts have next-highest priority
192 else if (enabled_interrupts & (MIP_MEIP | MIP_SEIP))
193 enabled_interrupts = enabled_interrupts & (MIP_MEIP | MIP_SEIP);
194 // software interrupts have next-highest priority
195 else if (enabled_interrupts & (MIP_MSIP | MIP_SSIP))
196 enabled_interrupts = enabled_interrupts & (MIP_MSIP | MIP_SSIP);
197 // timer interrupts have next-highest priority
198 else if (enabled_interrupts & (MIP_MTIP | MIP_STIP))
199 enabled_interrupts = enabled_interrupts & (MIP_MTIP | MIP_STIP);
200 else
201 abort();
202
203 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
204 }
205 }
206
207 static int xlen_to_uxl(int xlen)
208 {
209 if (xlen == 32)
210 return 1;
211 if (xlen == 64)
212 return 2;
213 abort();
214 }
215
216 reg_t processor_t::legalize_privilege(reg_t prv)
217 {
218 assert(prv <= PRV_M);
219
220 if (!supports_extension('U'))
221 return PRV_M;
222
223 if (prv == PRV_H || !supports_extension('S'))
224 return PRV_U;
225
226 return prv;
227 }
228
229 void processor_t::set_privilege(reg_t prv)
230 {
231 mmu->flush_tlb();
232 state.prv = legalize_privilege(prv);
233 }
234
235 void processor_t::enter_debug_mode(uint8_t cause)
236 {
237 state.dcsr.cause = cause;
238 state.dcsr.prv = state.prv;
239 set_privilege(PRV_M);
240 state.dpc = state.pc;
241 state.pc = DEBUG_ROM_ENTRY;
242 }
243
244 void processor_t::take_trap(trap_t& t, reg_t epc)
245 {
246 if (debug) {
247 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
248 id, t.name(), epc);
249 if (t.has_tval())
250 fprintf(stderr, "core %3d: tval 0x%016" PRIx64 "\n", id,
251 t.get_tval());
252 }
253
254 if (state.dcsr.cause) {
255 if (t.cause() == CAUSE_BREAKPOINT) {
256 state.pc = DEBUG_ROM_ENTRY;
257 } else {
258 state.pc = DEBUG_ROM_TVEC;
259 }
260 return;
261 }
262
263 if (t.cause() == CAUSE_BREAKPOINT && (
264 (state.prv == PRV_M && state.dcsr.ebreakm) ||
265 (state.prv == PRV_S && state.dcsr.ebreaks) ||
266 (state.prv == PRV_U && state.dcsr.ebreaku))) {
267 enter_debug_mode(DCSR_CAUSE_SWBP);
268 return;
269 }
270
271 // by default, trap to M-mode, unless delegated to S-mode
272 reg_t bit = t.cause();
273 reg_t deleg = state.medeleg;
274 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
275 if (interrupt)
276 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
277 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
278 // handle the trap in S-mode
279 state.pc = state.stvec;
280 state.scause = t.cause();
281 state.sepc = epc;
282 state.stval = t.get_tval();
283
284 reg_t s = state.mstatus;
285 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
286 s = set_field(s, MSTATUS_SPP, state.prv);
287 s = set_field(s, MSTATUS_SIE, 0);
288 set_csr(CSR_MSTATUS, s);
289 set_privilege(PRV_S);
290 } else {
291 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
292 state.pc = (state.mtvec & ~(reg_t)1) + vector;
293 state.mepc = epc;
294 state.mcause = t.cause();
295 state.mtval = t.get_tval();
296
297 reg_t s = state.mstatus;
298 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
299 s = set_field(s, MSTATUS_MPP, state.prv);
300 s = set_field(s, MSTATUS_MIE, 0);
301 set_csr(CSR_MSTATUS, s);
302 set_privilege(PRV_M);
303 }
304 }
305
306 void processor_t::disasm(insn_t insn)
307 {
308 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
309 if (last_pc != state.pc || last_bits != bits) {
310 if (executions != 1) {
311 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
312 }
313
314 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
315 id, state.pc, bits, disassembler->disassemble(insn).c_str());
316 last_pc = state.pc;
317 last_bits = bits;
318 executions = 1;
319 } else {
320 executions++;
321 }
322 }
323
324 int processor_t::paddr_bits()
325 {
326 assert(xlen == max_xlen);
327 return max_xlen == 64 ? 50 : 34;
328 }
329
330 void processor_t::set_csr(int which, reg_t val)
331 {
332 val = zext_xlen(val);
333 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
334 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
335 switch (which)
336 {
337 case CSR_FFLAGS:
338 dirty_fp_state;
339 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
340 break;
341 case CSR_FRM:
342 dirty_fp_state;
343 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
344 break;
345 case CSR_FCSR:
346 dirty_fp_state;
347 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
348 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
349 break;
350 case CSR_MSTATUS: {
351 if ((val ^ state.mstatus) &
352 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
353 mmu->flush_tlb();
354
355 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
356 | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
357 | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
358 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
359 (ext ? MSTATUS_XS : 0);
360
361 reg_t requested_mpp = legalize_privilege(get_field(val, MSTATUS_MPP));
362 state.mstatus = set_field(state.mstatus, MSTATUS_MPP, requested_mpp);
363 if (supports_extension('S'))
364 mask |= MSTATUS_SPP;
365
366 state.mstatus = (state.mstatus & ~mask) | (val & mask);
367
368 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
369 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
370 if (max_xlen == 32)
371 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
372 else
373 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
374
375 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
376 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
377 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
378 // U-XLEN == S-XLEN == M-XLEN
379 xlen = max_xlen;
380 break;
381 }
382 case CSR_MIP: {
383 reg_t mask = MIP_SSIP | MIP_STIP;
384 state.mip = (state.mip & ~mask) | (val & mask);
385 break;
386 }
387 case CSR_MIE:
388 state.mie = (state.mie & ~all_ints) | (val & all_ints);
389 break;
390 case CSR_MIDELEG:
391 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
392 break;
393 case CSR_MEDELEG: {
394 reg_t mask =
395 (1 << CAUSE_MISALIGNED_FETCH) |
396 (1 << CAUSE_BREAKPOINT) |
397 (1 << CAUSE_USER_ECALL) |
398 (1 << CAUSE_FETCH_PAGE_FAULT) |
399 (1 << CAUSE_LOAD_PAGE_FAULT) |
400 (1 << CAUSE_STORE_PAGE_FAULT);
401 state.medeleg = (state.medeleg & ~mask) | (val & mask);
402 break;
403 }
404 case CSR_MINSTRET:
405 case CSR_MCYCLE:
406 if (xlen == 32)
407 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
408 else
409 state.minstret = val;
410 // The ISA mandates that if an instruction writes instret, the write
411 // takes precedence over the increment to instret. However, Spike
412 // unconditionally increments instret after executing an instruction.
413 // Correct for this artifact by decrementing instret here.
414 state.minstret--;
415 break;
416 case CSR_MINSTRETH:
417 case CSR_MCYCLEH:
418 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
419 state.minstret--; // See comment above.
420 break;
421 case CSR_SCOUNTEREN:
422 state.scounteren = val;
423 break;
424 case CSR_MCOUNTEREN:
425 state.mcounteren = val;
426 break;
427 case CSR_SSTATUS: {
428 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
429 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
430 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
431 }
432 case CSR_SIP: {
433 reg_t mask = MIP_SSIP & state.mideleg;
434 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
435 }
436 case CSR_SIE:
437 return set_csr(CSR_MIE,
438 (state.mie & ~state.mideleg) | (val & state.mideleg));
439 case CSR_SATP: {
440 mmu->flush_tlb();
441 if (max_xlen == 32)
442 state.satp = val & (SATP32_PPN | SATP32_MODE);
443 if (max_xlen == 64 && (get_field(val, SATP64_MODE) == SATP_MODE_OFF ||
444 get_field(val, SATP64_MODE) == SATP_MODE_SV39 ||
445 get_field(val, SATP64_MODE) == SATP_MODE_SV48))
446 state.satp = val & (SATP64_PPN | SATP64_MODE);
447 break;
448 }
449 case CSR_SEPC: state.sepc = val & ~(reg_t)1; break;
450 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
451 case CSR_SSCRATCH: state.sscratch = val; break;
452 case CSR_SCAUSE: state.scause = val; break;
453 case CSR_STVAL: state.stval = val; break;
454 case CSR_MEPC: state.mepc = val & ~(reg_t)1; break;
455 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
456 case CSR_MSCRATCH: state.mscratch = val; break;
457 case CSR_MCAUSE: state.mcause = val; break;
458 case CSR_MTVAL: state.mtval = val; break;
459 case CSR_MISA: {
460 // the write is ignored if increasing IALIGN would misalign the PC
461 if (!(val & (1L << ('C' - 'A'))) && (state.pc & 2))
462 break;
463
464 if (!(val & (1L << ('F' - 'A'))))
465 val &= ~(1L << ('D' - 'A'));
466
467 // allow MAFDC bits in MISA to be modified
468 reg_t mask = 0;
469 mask |= 1L << ('M' - 'A');
470 mask |= 1L << ('A' - 'A');
471 mask |= 1L << ('F' - 'A');
472 mask |= 1L << ('D' - 'A');
473 mask |= 1L << ('C' - 'A');
474 mask &= max_isa;
475
476 state.misa = (val & mask) | (state.misa & ~mask);
477 break;
478 }
479 case CSR_TSELECT:
480 if (val < state.num_triggers) {
481 state.tselect = val;
482 }
483 break;
484 case CSR_TDATA1:
485 {
486 mcontrol_t *mc = &state.mcontrol[state.tselect];
487 if (mc->dmode && !state.dcsr.cause) {
488 break;
489 }
490 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
491 mc->select = get_field(val, MCONTROL_SELECT);
492 mc->timing = get_field(val, MCONTROL_TIMING);
493 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
494 mc->chain = get_field(val, MCONTROL_CHAIN);
495 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
496 mc->m = get_field(val, MCONTROL_M);
497 mc->h = get_field(val, MCONTROL_H);
498 mc->s = get_field(val, MCONTROL_S);
499 mc->u = get_field(val, MCONTROL_U);
500 mc->execute = get_field(val, MCONTROL_EXECUTE);
501 mc->store = get_field(val, MCONTROL_STORE);
502 mc->load = get_field(val, MCONTROL_LOAD);
503 // Assume we're here because of csrw.
504 if (mc->execute)
505 mc->timing = 0;
506 trigger_updated();
507 }
508 break;
509 case CSR_TDATA2:
510 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
511 break;
512 }
513 if (state.tselect < state.num_triggers) {
514 state.tdata2[state.tselect] = val;
515 }
516 break;
517 case CSR_DCSR:
518 state.dcsr.prv = get_field(val, DCSR_PRV);
519 state.dcsr.step = get_field(val, DCSR_STEP);
520 // TODO: ndreset and fullreset
521 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
522 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
523 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
524 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
525 state.dcsr.halt = get_field(val, DCSR_HALT);
526 break;
527 case CSR_DPC:
528 state.dpc = val & ~(reg_t)1;
529 break;
530 case CSR_DSCRATCH:
531 state.dscratch = val;
532 break;
533 }
534 }
535
536 reg_t processor_t::get_csr(int which)
537 {
538 uint32_t ctr_en = -1;
539 if (state.prv < PRV_M)
540 ctr_en &= state.mcounteren;
541 if (state.prv < PRV_S)
542 ctr_en &= state.scounteren;
543 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
544
545 if (ctr_ok) {
546 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
547 return 0;
548 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
549 return 0;
550 }
551 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
552 return 0;
553 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
554 return 0;
555 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
556 return 0;
557
558 switch (which)
559 {
560 case CSR_FFLAGS:
561 require_fp;
562 if (!supports_extension('F'))
563 break;
564 return state.fflags;
565 case CSR_FRM:
566 require_fp;
567 if (!supports_extension('F'))
568 break;
569 return state.frm;
570 case CSR_FCSR:
571 require_fp;
572 if (!supports_extension('F'))
573 break;
574 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
575 case CSR_INSTRET:
576 case CSR_CYCLE:
577 if (ctr_ok)
578 return state.minstret;
579 break;
580 case CSR_MINSTRET:
581 case CSR_MCYCLE:
582 return state.minstret;
583 case CSR_INSTRETH:
584 case CSR_CYCLEH:
585 if (ctr_ok && xlen == 32)
586 return state.minstret >> 32;
587 break;
588 case CSR_MINSTRETH:
589 case CSR_MCYCLEH:
590 if (xlen == 32)
591 return state.minstret >> 32;
592 break;
593 case CSR_SCOUNTEREN: return state.scounteren;
594 case CSR_MCOUNTEREN: return state.mcounteren;
595 case CSR_SSTATUS: {
596 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
597 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR | SSTATUS_UXL;
598 reg_t sstatus = state.mstatus & mask;
599 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
600 (sstatus & SSTATUS_XS) == SSTATUS_XS)
601 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
602 return sstatus;
603 }
604 case CSR_SIP: return state.mip & state.mideleg;
605 case CSR_SIE: return state.mie & state.mideleg;
606 case CSR_SEPC: return state.sepc & pc_alignment_mask();
607 case CSR_STVAL: return state.stval;
608 case CSR_STVEC: return state.stvec;
609 case CSR_SCAUSE:
610 if (max_xlen > xlen)
611 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
612 return state.scause;
613 case CSR_SATP:
614 if (get_field(state.mstatus, MSTATUS_TVM))
615 require_privilege(PRV_M);
616 return state.satp;
617 case CSR_SSCRATCH: return state.sscratch;
618 case CSR_MSTATUS: return state.mstatus;
619 case CSR_MIP: return state.mip;
620 case CSR_MIE: return state.mie;
621 case CSR_MEPC: return state.mepc & pc_alignment_mask();
622 case CSR_MSCRATCH: return state.mscratch;
623 case CSR_MCAUSE: return state.mcause;
624 case CSR_MTVAL: return state.mtval;
625 case CSR_MISA: return state.misa;
626 case CSR_MARCHID: return 0;
627 case CSR_MIMPID: return 0;
628 case CSR_MVENDORID: return 0;
629 case CSR_MHARTID: return id;
630 case CSR_MTVEC: return state.mtvec;
631 case CSR_MEDELEG: return state.medeleg;
632 case CSR_MIDELEG: return state.mideleg;
633 case CSR_TSELECT: return state.tselect;
634 case CSR_TDATA1:
635 if (state.tselect < state.num_triggers) {
636 reg_t v = 0;
637 mcontrol_t *mc = &state.mcontrol[state.tselect];
638 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
639 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
640 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
641 v = set_field(v, MCONTROL_SELECT, mc->select);
642 v = set_field(v, MCONTROL_TIMING, mc->timing);
643 v = set_field(v, MCONTROL_ACTION, mc->action);
644 v = set_field(v, MCONTROL_CHAIN, mc->chain);
645 v = set_field(v, MCONTROL_MATCH, mc->match);
646 v = set_field(v, MCONTROL_M, mc->m);
647 v = set_field(v, MCONTROL_H, mc->h);
648 v = set_field(v, MCONTROL_S, mc->s);
649 v = set_field(v, MCONTROL_U, mc->u);
650 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
651 v = set_field(v, MCONTROL_STORE, mc->store);
652 v = set_field(v, MCONTROL_LOAD, mc->load);
653 return v;
654 } else {
655 return 0;
656 }
657 break;
658 case CSR_TDATA2:
659 if (state.tselect < state.num_triggers) {
660 return state.tdata2[state.tselect];
661 } else {
662 return 0;
663 }
664 break;
665 case CSR_TDATA3: return 0;
666 case CSR_DCSR:
667 {
668 uint32_t v = 0;
669 v = set_field(v, DCSR_XDEBUGVER, 1);
670 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
671 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
672 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
673 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
674 v = set_field(v, DCSR_STOPCYCLE, 0);
675 v = set_field(v, DCSR_STOPTIME, 0);
676 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
677 v = set_field(v, DCSR_STEP, state.dcsr.step);
678 v = set_field(v, DCSR_PRV, state.dcsr.prv);
679 return v;
680 }
681 case CSR_DPC:
682 return state.dpc & pc_alignment_mask();
683 case CSR_DSCRATCH:
684 return state.dscratch;
685 }
686 throw trap_illegal_instruction(0);
687 }
688
689 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
690 {
691 throw trap_illegal_instruction(0);
692 }
693
694 insn_func_t processor_t::decode_insn(insn_t insn)
695 {
696 // look up opcode in hash table
697 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
698 insn_desc_t desc = opcode_cache[idx];
699
700 if (unlikely(insn.bits() != desc.match)) {
701 // fall back to linear search
702 insn_desc_t* p = &instructions[0];
703 while ((insn.bits() & p->mask) != p->match)
704 p++;
705 desc = *p;
706
707 if (p->mask != 0 && p > &instructions[0]) {
708 if (p->match != (p-1)->match && p->match != (p+1)->match) {
709 // move to front of opcode list to reduce miss penalty
710 while (--p >= &instructions[0])
711 *(p+1) = *p;
712 instructions[0] = desc;
713 }
714 }
715
716 opcode_cache[idx] = desc;
717 opcode_cache[idx].match = insn.bits();
718 }
719
720 return xlen == 64 ? desc.rv64 : desc.rv32;
721 }
722
723 void processor_t::register_insn(insn_desc_t desc)
724 {
725 instructions.push_back(desc);
726 }
727
728 void processor_t::build_opcode_map()
729 {
730 struct cmp {
731 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
732 if (lhs.match == rhs.match)
733 return lhs.mask > rhs.mask;
734 return lhs.match > rhs.match;
735 }
736 };
737 std::sort(instructions.begin(), instructions.end(), cmp());
738
739 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
740 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
741 }
742
743 void processor_t::register_extension(extension_t* x)
744 {
745 for (auto insn : x->get_instructions())
746 register_insn(insn);
747 build_opcode_map();
748 for (auto disasm_insn : x->get_disasms())
749 disassembler->add_insn(disasm_insn);
750 if (ext != NULL)
751 throw std::logic_error("only one extension may be registered");
752 ext = x;
753 x->set_processor(this);
754 }
755
756 void processor_t::register_base_instructions()
757 {
758 #define DECLARE_INSN(name, match, mask) \
759 insn_bits_t name##_match = (match), name##_mask = (mask);
760 #include "encoding.h"
761 #undef DECLARE_INSN
762
763 #define DEFINE_INSN(name) \
764 REGISTER_INSN(this, name, name##_match, name##_mask)
765 #include "insn_list.h"
766 #undef DEFINE_INSN
767
768 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
769 build_opcode_map();
770 }
771
772 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
773 {
774 switch (addr)
775 {
776 case 0:
777 if (len <= 4) {
778 memset(bytes, 0, len);
779 bytes[0] = get_field(state.mip, MIP_MSIP);
780 return true;
781 }
782 break;
783 }
784
785 return false;
786 }
787
788 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
789 {
790 switch (addr)
791 {
792 case 0:
793 if (len <= 4) {
794 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
795 return true;
796 }
797 break;
798 }
799
800 return false;
801 }
802
803 void processor_t::trigger_updated()
804 {
805 mmu->flush_tlb();
806 mmu->check_triggers_fetch = false;
807 mmu->check_triggers_load = false;
808 mmu->check_triggers_store = false;
809
810 for (unsigned i = 0; i < state.num_triggers; i++) {
811 if (state.mcontrol[i].execute) {
812 mmu->check_triggers_fetch = true;
813 }
814 if (state.mcontrol[i].load) {
815 mmu->check_triggers_load = true;
816 }
817 if (state.mcontrol[i].store) {
818 mmu->check_triggers_store = true;
819 }
820 }
821 }