ecbe3ef483dc5b15c9102d62498eff2cce12b67b
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "simif.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, simif_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
26 {
27 disassembler = new disassembler_t(max_xlen);
28 parse_isa_string(isa);
29 register_base_instructions();
30
31 mmu = new mmu_t(sim, this);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdqc";
65
66 max_xlen = 64;
67 state.misa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, state.misa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = "imafdc";
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 state.misa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 state.misa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 state.misa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 if (supports_extension('Q') && !supports_extension('D'))
110 bad_isa_string(str);
111
112 if (supports_extension('Q') && max_xlen < 64)
113 bad_isa_string(str);
114
115 max_isa = state.misa;
116 }
117
118 void state_t::reset(reg_t max_isa)
119 {
120 memset(this, 0, sizeof(*this));
121 misa = max_isa;
122 prv = PRV_M;
123 pc = DEFAULT_RSTVEC;
124 tselect = 0;
125 for (unsigned int i = 0; i < num_triggers; i++)
126 mcontrol[i].type = 2;
127 }
128
129 void processor_t::set_debug(bool value)
130 {
131 debug = value;
132 if (ext)
133 ext->set_debug(value);
134 }
135
136 void processor_t::set_histogram(bool value)
137 {
138 histogram_enabled = value;
139 #ifndef RISCV_ENABLE_HISTOGRAM
140 if (value) {
141 fprintf(stderr, "PC Histogram support has not been properly enabled;");
142 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
143 }
144 #endif
145 }
146
147 void processor_t::reset()
148 {
149 state.reset(max_isa);
150 state.dcsr.halt = halt_on_reset;
151 halt_on_reset = false;
152 set_csr(CSR_MSTATUS, state.mstatus);
153
154 if (ext)
155 ext->reset(); // reset the extension
156
157 if (sim)
158 sim->proc_reset(id);
159 }
160
161 // Count number of contiguous 0 bits starting from the LSB.
162 static int ctz(reg_t val)
163 {
164 int res = 0;
165 if (val)
166 while ((val & 1) == 0)
167 val >>= 1, res++;
168 return res;
169 }
170
171 void processor_t::take_interrupt(reg_t pending_interrupts)
172 {
173 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
174 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
175 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
176
177 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
178 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
179 // M-ints have highest priority; consider S-ints only if no M-ints pending
180 if (enabled_interrupts == 0)
181 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
182
183 if (state.dcsr.cause == 0 && enabled_interrupts) {
184 // nonstandard interrupts have highest priority
185 if (enabled_interrupts >> IRQ_M_EXT)
186 enabled_interrupts = enabled_interrupts >> IRQ_M_EXT << IRQ_M_EXT;
187 // external interrupts have next-highest priority
188 else if (enabled_interrupts & (MIP_MEIP | MIP_SEIP))
189 enabled_interrupts = enabled_interrupts & (MIP_MEIP | MIP_SEIP);
190 // software interrupts have next-highest priority
191 else if (enabled_interrupts & (MIP_MSIP | MIP_SSIP))
192 enabled_interrupts = enabled_interrupts & (MIP_MSIP | MIP_SSIP);
193 // timer interrupts have next-highest priority
194 else if (enabled_interrupts & (MIP_MTIP | MIP_STIP))
195 enabled_interrupts = enabled_interrupts & (MIP_MTIP | MIP_STIP);
196 else
197 abort();
198
199 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
200 }
201 }
202
203 static int xlen_to_uxl(int xlen)
204 {
205 if (xlen == 32)
206 return 1;
207 if (xlen == 64)
208 return 2;
209 abort();
210 }
211
212 reg_t processor_t::legalize_privilege(reg_t prv)
213 {
214 assert(prv <= PRV_M);
215
216 if (!supports_extension('U'))
217 return PRV_M;
218
219 if (prv == PRV_H || !supports_extension('S'))
220 return PRV_U;
221
222 return prv;
223 }
224
225 void processor_t::set_privilege(reg_t prv)
226 {
227 mmu->flush_tlb();
228 state.prv = legalize_privilege(prv);
229 }
230
231 void processor_t::enter_debug_mode(uint8_t cause)
232 {
233 state.dcsr.cause = cause;
234 state.dcsr.prv = state.prv;
235 set_privilege(PRV_M);
236 state.dpc = state.pc;
237 state.pc = DEBUG_ROM_ENTRY;
238 }
239
240 void processor_t::take_trap(trap_t& t, reg_t epc)
241 {
242 if (debug) {
243 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
244 id, t.name(), epc);
245 if (t.has_tval())
246 fprintf(stderr, "core %3d: tval 0x%016" PRIx64 "\n", id,
247 t.get_tval());
248 }
249
250 if (state.dcsr.cause) {
251 if (t.cause() == CAUSE_BREAKPOINT) {
252 state.pc = DEBUG_ROM_ENTRY;
253 } else {
254 state.pc = DEBUG_ROM_TVEC;
255 }
256 return;
257 }
258
259 if (t.cause() == CAUSE_BREAKPOINT && (
260 (state.prv == PRV_M && state.dcsr.ebreakm) ||
261 (state.prv == PRV_S && state.dcsr.ebreaks) ||
262 (state.prv == PRV_U && state.dcsr.ebreaku))) {
263 enter_debug_mode(DCSR_CAUSE_SWBP);
264 return;
265 }
266
267 // by default, trap to M-mode, unless delegated to S-mode
268 reg_t bit = t.cause();
269 reg_t deleg = state.medeleg;
270 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
271 if (interrupt)
272 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
273 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
274 // handle the trap in S-mode
275 state.pc = state.stvec;
276 state.scause = t.cause();
277 state.sepc = epc;
278 state.stval = t.get_tval();
279
280 reg_t s = state.mstatus;
281 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
282 s = set_field(s, MSTATUS_SPP, state.prv);
283 s = set_field(s, MSTATUS_SIE, 0);
284 set_csr(CSR_MSTATUS, s);
285 set_privilege(PRV_S);
286 } else {
287 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
288 state.pc = (state.mtvec & ~(reg_t)1) + vector;
289 state.mepc = epc;
290 state.mcause = t.cause();
291 state.mtval = t.get_tval();
292
293 reg_t s = state.mstatus;
294 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
295 s = set_field(s, MSTATUS_MPP, state.prv);
296 s = set_field(s, MSTATUS_MIE, 0);
297 set_csr(CSR_MSTATUS, s);
298 set_privilege(PRV_M);
299 }
300 }
301
302 void processor_t::disasm(insn_t insn)
303 {
304 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
305 if (last_pc != state.pc || last_bits != bits) {
306 if (executions != 1) {
307 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
308 }
309
310 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
311 id, state.pc, bits, disassembler->disassemble(insn).c_str());
312 last_pc = state.pc;
313 last_bits = bits;
314 executions = 1;
315 } else {
316 executions++;
317 }
318 }
319
320 int processor_t::paddr_bits()
321 {
322 assert(xlen == max_xlen);
323 return max_xlen == 64 ? 50 : 34;
324 }
325
326 void processor_t::set_csr(int which, reg_t val)
327 {
328 val = zext_xlen(val);
329 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
330 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
331 switch (which)
332 {
333 case CSR_FFLAGS:
334 dirty_fp_state;
335 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
336 break;
337 case CSR_FRM:
338 dirty_fp_state;
339 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
340 break;
341 case CSR_FCSR:
342 dirty_fp_state;
343 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
344 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
345 break;
346 case CSR_MSTATUS: {
347 if ((val ^ state.mstatus) &
348 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
349 mmu->flush_tlb();
350
351 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
352 | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
353 | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
354 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
355 (ext ? MSTATUS_XS : 0);
356
357 reg_t requested_mpp = legalize_privilege(get_field(val, MSTATUS_MPP));
358 state.mstatus = set_field(state.mstatus, MSTATUS_MPP, requested_mpp);
359 if (supports_extension('S'))
360 mask |= MSTATUS_SPP;
361
362 state.mstatus = (state.mstatus & ~mask) | (val & mask);
363
364 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
365 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
366 if (max_xlen == 32)
367 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
368 else
369 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
370
371 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
372 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
373 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
374 // U-XLEN == S-XLEN == M-XLEN
375 xlen = max_xlen;
376 break;
377 }
378 case CSR_MIP: {
379 reg_t mask = MIP_SSIP | MIP_STIP;
380 state.mip = (state.mip & ~mask) | (val & mask);
381 break;
382 }
383 case CSR_MIE:
384 state.mie = (state.mie & ~all_ints) | (val & all_ints);
385 break;
386 case CSR_MIDELEG:
387 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
388 break;
389 case CSR_MEDELEG: {
390 reg_t mask =
391 (1 << CAUSE_MISALIGNED_FETCH) |
392 (1 << CAUSE_BREAKPOINT) |
393 (1 << CAUSE_USER_ECALL) |
394 (1 << CAUSE_FETCH_PAGE_FAULT) |
395 (1 << CAUSE_LOAD_PAGE_FAULT) |
396 (1 << CAUSE_STORE_PAGE_FAULT);
397 state.medeleg = (state.medeleg & ~mask) | (val & mask);
398 break;
399 }
400 case CSR_MINSTRET:
401 case CSR_MCYCLE:
402 if (xlen == 32)
403 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
404 else
405 state.minstret = val;
406 // The ISA mandates that if an instruction writes instret, the write
407 // takes precedence over the increment to instret. However, Spike
408 // unconditionally increments instret after executing an instruction.
409 // Correct for this artifact by decrementing instret here.
410 state.minstret--;
411 break;
412 case CSR_MINSTRETH:
413 case CSR_MCYCLEH:
414 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
415 state.minstret--; // See comment above.
416 break;
417 case CSR_SCOUNTEREN:
418 state.scounteren = val;
419 break;
420 case CSR_MCOUNTEREN:
421 state.mcounteren = val;
422 break;
423 case CSR_SSTATUS: {
424 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
425 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
426 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
427 }
428 case CSR_SIP: {
429 reg_t mask = MIP_SSIP & state.mideleg;
430 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
431 }
432 case CSR_SIE:
433 return set_csr(CSR_MIE,
434 (state.mie & ~state.mideleg) | (val & state.mideleg));
435 case CSR_SATP: {
436 mmu->flush_tlb();
437 if (max_xlen == 32)
438 state.satp = val & (SATP32_PPN | SATP32_MODE);
439 if (max_xlen == 64 && (get_field(val, SATP64_MODE) == SATP_MODE_OFF ||
440 get_field(val, SATP64_MODE) == SATP_MODE_SV39 ||
441 get_field(val, SATP64_MODE) == SATP_MODE_SV48))
442 state.satp = val & (SATP64_PPN | SATP64_MODE);
443 break;
444 }
445 case CSR_SEPC: state.sepc = val & ~(reg_t)1; break;
446 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
447 case CSR_SSCRATCH: state.sscratch = val; break;
448 case CSR_SCAUSE: state.scause = val; break;
449 case CSR_STVAL: state.stval = val; break;
450 case CSR_MEPC: state.mepc = val & ~(reg_t)1; break;
451 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
452 case CSR_MSCRATCH: state.mscratch = val; break;
453 case CSR_MCAUSE: state.mcause = val; break;
454 case CSR_MTVAL: state.mtval = val; break;
455 case CSR_MISA: {
456 // the write is ignored if increasing IALIGN would misalign the PC
457 if (!(val & (1L << ('C' - 'A'))) && (state.pc & 2))
458 break;
459
460 if (!(val & (1L << ('F' - 'A'))))
461 val &= ~(1L << ('D' - 'A'));
462
463 // allow MAFDC bits in MISA to be modified
464 reg_t mask = 0;
465 mask |= 1L << ('M' - 'A');
466 mask |= 1L << ('A' - 'A');
467 mask |= 1L << ('F' - 'A');
468 mask |= 1L << ('D' - 'A');
469 mask |= 1L << ('C' - 'A');
470 mask &= max_isa;
471
472 state.misa = (val & mask) | (state.misa & ~mask);
473 break;
474 }
475 case CSR_TSELECT:
476 if (val < state.num_triggers) {
477 state.tselect = val;
478 }
479 break;
480 case CSR_TDATA1:
481 {
482 mcontrol_t *mc = &state.mcontrol[state.tselect];
483 if (mc->dmode && !state.dcsr.cause) {
484 break;
485 }
486 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
487 mc->select = get_field(val, MCONTROL_SELECT);
488 mc->timing = get_field(val, MCONTROL_TIMING);
489 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
490 mc->chain = get_field(val, MCONTROL_CHAIN);
491 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
492 mc->m = get_field(val, MCONTROL_M);
493 mc->h = get_field(val, MCONTROL_H);
494 mc->s = get_field(val, MCONTROL_S);
495 mc->u = get_field(val, MCONTROL_U);
496 mc->execute = get_field(val, MCONTROL_EXECUTE);
497 mc->store = get_field(val, MCONTROL_STORE);
498 mc->load = get_field(val, MCONTROL_LOAD);
499 // Assume we're here because of csrw.
500 if (mc->execute)
501 mc->timing = 0;
502 trigger_updated();
503 }
504 break;
505 case CSR_TDATA2:
506 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
507 break;
508 }
509 if (state.tselect < state.num_triggers) {
510 state.tdata2[state.tselect] = val;
511 }
512 break;
513 case CSR_DCSR:
514 state.dcsr.prv = get_field(val, DCSR_PRV);
515 state.dcsr.step = get_field(val, DCSR_STEP);
516 // TODO: ndreset and fullreset
517 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
518 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
519 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
520 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
521 state.dcsr.halt = get_field(val, DCSR_HALT);
522 break;
523 case CSR_DPC:
524 state.dpc = val & ~(reg_t)1;
525 break;
526 case CSR_DSCRATCH:
527 state.dscratch = val;
528 break;
529 }
530 }
531
532 reg_t processor_t::get_csr(int which)
533 {
534 uint32_t ctr_en = -1;
535 if (state.prv < PRV_M)
536 ctr_en &= state.mcounteren;
537 if (state.prv < PRV_S)
538 ctr_en &= state.scounteren;
539 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
540
541 if (ctr_ok) {
542 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
543 return 0;
544 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
545 return 0;
546 }
547 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
548 return 0;
549 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
550 return 0;
551 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
552 return 0;
553
554 switch (which)
555 {
556 case CSR_FFLAGS:
557 require_fp;
558 if (!supports_extension('F'))
559 break;
560 return state.fflags;
561 case CSR_FRM:
562 require_fp;
563 if (!supports_extension('F'))
564 break;
565 return state.frm;
566 case CSR_FCSR:
567 require_fp;
568 if (!supports_extension('F'))
569 break;
570 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
571 case CSR_INSTRET:
572 case CSR_CYCLE:
573 if (ctr_ok)
574 return state.minstret;
575 break;
576 case CSR_MINSTRET:
577 case CSR_MCYCLE:
578 return state.minstret;
579 case CSR_INSTRETH:
580 case CSR_CYCLEH:
581 if (ctr_ok && xlen == 32)
582 return state.minstret >> 32;
583 break;
584 case CSR_MINSTRETH:
585 case CSR_MCYCLEH:
586 if (xlen == 32)
587 return state.minstret >> 32;
588 break;
589 case CSR_SCOUNTEREN: return state.scounteren;
590 case CSR_MCOUNTEREN: return state.mcounteren;
591 case CSR_SSTATUS: {
592 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
593 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR | SSTATUS_UXL;
594 reg_t sstatus = state.mstatus & mask;
595 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
596 (sstatus & SSTATUS_XS) == SSTATUS_XS)
597 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
598 return sstatus;
599 }
600 case CSR_SIP: return state.mip & state.mideleg;
601 case CSR_SIE: return state.mie & state.mideleg;
602 case CSR_SEPC: return state.sepc & pc_alignment_mask();
603 case CSR_STVAL: return state.stval;
604 case CSR_STVEC: return state.stvec;
605 case CSR_SCAUSE:
606 if (max_xlen > xlen)
607 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
608 return state.scause;
609 case CSR_SATP:
610 if (get_field(state.mstatus, MSTATUS_TVM))
611 require_privilege(PRV_M);
612 return state.satp;
613 case CSR_SSCRATCH: return state.sscratch;
614 case CSR_MSTATUS: return state.mstatus;
615 case CSR_MIP: return state.mip;
616 case CSR_MIE: return state.mie;
617 case CSR_MEPC: return state.mepc & pc_alignment_mask();
618 case CSR_MSCRATCH: return state.mscratch;
619 case CSR_MCAUSE: return state.mcause;
620 case CSR_MTVAL: return state.mtval;
621 case CSR_MISA: return state.misa;
622 case CSR_MARCHID: return 0;
623 case CSR_MIMPID: return 0;
624 case CSR_MVENDORID: return 0;
625 case CSR_MHARTID: return id;
626 case CSR_MTVEC: return state.mtvec;
627 case CSR_MEDELEG: return state.medeleg;
628 case CSR_MIDELEG: return state.mideleg;
629 case CSR_TSELECT: return state.tselect;
630 case CSR_TDATA1:
631 if (state.tselect < state.num_triggers) {
632 reg_t v = 0;
633 mcontrol_t *mc = &state.mcontrol[state.tselect];
634 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
635 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
636 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
637 v = set_field(v, MCONTROL_SELECT, mc->select);
638 v = set_field(v, MCONTROL_TIMING, mc->timing);
639 v = set_field(v, MCONTROL_ACTION, mc->action);
640 v = set_field(v, MCONTROL_CHAIN, mc->chain);
641 v = set_field(v, MCONTROL_MATCH, mc->match);
642 v = set_field(v, MCONTROL_M, mc->m);
643 v = set_field(v, MCONTROL_H, mc->h);
644 v = set_field(v, MCONTROL_S, mc->s);
645 v = set_field(v, MCONTROL_U, mc->u);
646 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
647 v = set_field(v, MCONTROL_STORE, mc->store);
648 v = set_field(v, MCONTROL_LOAD, mc->load);
649 return v;
650 } else {
651 return 0;
652 }
653 break;
654 case CSR_TDATA2:
655 if (state.tselect < state.num_triggers) {
656 return state.tdata2[state.tselect];
657 } else {
658 return 0;
659 }
660 break;
661 case CSR_TDATA3: return 0;
662 case CSR_DCSR:
663 {
664 uint32_t v = 0;
665 v = set_field(v, DCSR_XDEBUGVER, 1);
666 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
667 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
668 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
669 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
670 v = set_field(v, DCSR_STOPCYCLE, 0);
671 v = set_field(v, DCSR_STOPTIME, 0);
672 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
673 v = set_field(v, DCSR_STEP, state.dcsr.step);
674 v = set_field(v, DCSR_PRV, state.dcsr.prv);
675 return v;
676 }
677 case CSR_DPC:
678 return state.dpc & pc_alignment_mask();
679 case CSR_DSCRATCH:
680 return state.dscratch;
681 }
682 throw trap_illegal_instruction(0);
683 }
684
685 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
686 {
687 throw trap_illegal_instruction(0);
688 }
689
690 insn_func_t processor_t::decode_insn(insn_t insn)
691 {
692 // look up opcode in hash table
693 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
694 insn_desc_t desc = opcode_cache[idx];
695
696 if (unlikely(insn.bits() != desc.match)) {
697 // fall back to linear search
698 insn_desc_t* p = &instructions[0];
699 while ((insn.bits() & p->mask) != p->match)
700 p++;
701 desc = *p;
702
703 if (p->mask != 0 && p > &instructions[0]) {
704 if (p->match != (p-1)->match && p->match != (p+1)->match) {
705 // move to front of opcode list to reduce miss penalty
706 while (--p >= &instructions[0])
707 *(p+1) = *p;
708 instructions[0] = desc;
709 }
710 }
711
712 opcode_cache[idx] = desc;
713 opcode_cache[idx].match = insn.bits();
714 }
715
716 return xlen == 64 ? desc.rv64 : desc.rv32;
717 }
718
719 void processor_t::register_insn(insn_desc_t desc)
720 {
721 instructions.push_back(desc);
722 }
723
724 void processor_t::build_opcode_map()
725 {
726 struct cmp {
727 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
728 if (lhs.match == rhs.match)
729 return lhs.mask > rhs.mask;
730 return lhs.match > rhs.match;
731 }
732 };
733 std::sort(instructions.begin(), instructions.end(), cmp());
734
735 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
736 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
737 }
738
739 void processor_t::register_extension(extension_t* x)
740 {
741 for (auto insn : x->get_instructions())
742 register_insn(insn);
743 build_opcode_map();
744 for (auto disasm_insn : x->get_disasms())
745 disassembler->add_insn(disasm_insn);
746 if (ext != NULL)
747 throw std::logic_error("only one extension may be registered");
748 ext = x;
749 x->set_processor(this);
750 }
751
752 void processor_t::register_base_instructions()
753 {
754 #define DECLARE_INSN(name, match, mask) \
755 insn_bits_t name##_match = (match), name##_mask = (mask);
756 #include "encoding.h"
757 #undef DECLARE_INSN
758
759 #define DEFINE_INSN(name) \
760 REGISTER_INSN(this, name, name##_match, name##_mask)
761 #include "insn_list.h"
762 #undef DEFINE_INSN
763
764 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
765 build_opcode_map();
766 }
767
768 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
769 {
770 switch (addr)
771 {
772 case 0:
773 if (len <= 4) {
774 memset(bytes, 0, len);
775 bytes[0] = get_field(state.mip, MIP_MSIP);
776 return true;
777 }
778 break;
779 }
780
781 return false;
782 }
783
784 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
785 {
786 switch (addr)
787 {
788 case 0:
789 if (len <= 4) {
790 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
791 return true;
792 }
793 break;
794 }
795
796 return false;
797 }
798
799 void processor_t::trigger_updated()
800 {
801 mmu->flush_tlb();
802 mmu->check_triggers_fetch = false;
803 mmu->check_triggers_load = false;
804 mmu->check_triggers_store = false;
805
806 for (unsigned i = 0; i < state.num_triggers; i++) {
807 if (state.mcontrol[i].execute) {
808 mmu->check_triggers_fetch = true;
809 }
810 if (state.mcontrol[i].load) {
811 mmu->check_triggers_load = true;
812 }
813 if (state.mcontrol[i].store) {
814 mmu->check_triggers_store = true;
815 }
816 }
817 }