Change address_space to use new and delete
[binutils-gdb.git] / sim / aarch64 / interp.c
1 /* interp.c -- AArch64 sim interface to GDB.
2
3 Copyright (C) 2015-2022 Free Software Foundation, Inc.
4
5 Contributed by Red Hat.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This must come before any other includes. */
23 #include "defs.h"
24
25 #include <stdio.h>
26 #include <assert.h>
27 #include <signal.h>
28 #include <string.h>
29 #include <ctype.h>
30 #include <stdlib.h>
31
32 #include "ansidecl.h"
33 #include "bfd.h"
34 #include "sim/callback.h"
35 #include "sim/sim.h"
36 #include "gdb/signals.h"
37 #include "gdb/sim-aarch64.h"
38
39 #include "sim-main.h"
40 #include "sim-options.h"
41 #include "memory.h"
42 #include "simulator.h"
43 #include "sim-assert.h"
44
45 /* Filter out (in place) symbols that are useless for disassembly.
46 COUNT is the number of elements in SYMBOLS.
47 Return the number of useful symbols. */
48
49 static long
50 remove_useless_symbols (asymbol **symbols, long count)
51 {
52 asymbol **in_ptr = symbols;
53 asymbol **out_ptr = symbols;
54
55 while (count-- > 0)
56 {
57 asymbol *sym = *in_ptr++;
58
59 if (strstr (sym->name, "gcc2_compiled"))
60 continue;
61 if (sym->name == NULL || sym->name[0] == '\0')
62 continue;
63 if (sym->flags & (BSF_DEBUGGING))
64 continue;
65 if ( bfd_is_und_section (sym->section)
66 || bfd_is_com_section (sym->section))
67 continue;
68 if (sym->name[0] == '$')
69 continue;
70
71 *out_ptr++ = sym;
72 }
73 return out_ptr - symbols;
74 }
75
76 static signed int
77 compare_symbols (const void *ap, const void *bp)
78 {
79 const asymbol *a = * (const asymbol **) ap;
80 const asymbol *b = * (const asymbol **) bp;
81
82 if (bfd_asymbol_value (a) > bfd_asymbol_value (b))
83 return 1;
84 if (bfd_asymbol_value (a) < bfd_asymbol_value (b))
85 return -1;
86 return 0;
87 }
88
89 /* Find the name of the function at ADDR. */
90 const char *
91 aarch64_get_func (SIM_DESC sd, uint64_t addr)
92 {
93 long symcount = STATE_PROG_SYMS_COUNT (sd);
94 asymbol **symtab = STATE_PROG_SYMS (sd);
95 int min, max;
96
97 min = -1;
98 max = symcount;
99 while (min < max - 1)
100 {
101 int sym;
102 bfd_vma sa;
103
104 sym = (min + max) / 2;
105 sa = bfd_asymbol_value (symtab[sym]);
106
107 if (sa > addr)
108 max = sym;
109 else if (sa < addr)
110 min = sym;
111 else
112 {
113 min = sym;
114 break;
115 }
116 }
117
118 if (min != -1)
119 return bfd_asymbol_name (symtab [min]);
120
121 return "";
122 }
123
124 SIM_RC
125 sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
126 char * const *argv, char * const *env)
127 {
128 sim_cpu *cpu = STATE_CPU (sd, 0);
129 host_callback *cb = STATE_CALLBACK (sd);
130 bfd_vma addr = 0;
131
132 if (abfd != NULL)
133 addr = bfd_get_start_address (abfd);
134
135 aarch64_set_next_PC (cpu, addr);
136 aarch64_update_PC (cpu);
137
138 /* Standalone mode (i.e. `run`) will take care of the argv for us in
139 sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
140 with `gdb`), we need to handle it because the user can change the
141 argv on the fly via gdb's 'run'. */
142 if (STATE_PROG_ARGV (sd) != argv)
143 {
144 freeargv (STATE_PROG_ARGV (sd));
145 STATE_PROG_ARGV (sd) = dupargv (argv);
146 }
147
148 if (STATE_PROG_ENVP (sd) != env)
149 {
150 freeargv (STATE_PROG_ENVP (sd));
151 STATE_PROG_ENVP (sd) = dupargv (env);
152 }
153
154 cb->argv = STATE_PROG_ARGV (sd);
155 cb->envp = STATE_PROG_ENVP (sd);
156
157 if (trace_load_symbols (sd))
158 {
159 STATE_PROG_SYMS_COUNT (sd) =
160 remove_useless_symbols (STATE_PROG_SYMS (sd),
161 STATE_PROG_SYMS_COUNT (sd));
162 qsort (STATE_PROG_SYMS (sd), STATE_PROG_SYMS_COUNT (sd),
163 sizeof (asymbol *), compare_symbols);
164 }
165
166 aarch64_init (cpu, addr);
167
168 return SIM_RC_OK;
169 }
170
171 /* Read the LENGTH bytes at BUF as a little-endian value. */
172
173 static bfd_vma
174 get_le (unsigned char *buf, unsigned int length)
175 {
176 bfd_vma acc = 0;
177
178 while (length -- > 0)
179 acc = (acc << 8) + buf[length];
180
181 return acc;
182 }
183
184 /* Store VAL as a little-endian value in the LENGTH bytes at BUF. */
185
186 static void
187 put_le (unsigned char *buf, unsigned int length, bfd_vma val)
188 {
189 int i;
190
191 for (i = 0; i < length; i++)
192 {
193 buf[i] = val & 0xff;
194 val >>= 8;
195 }
196 }
197
198 static int
199 check_regno (int regno)
200 {
201 return 0 <= regno && regno < AARCH64_MAX_REGNO;
202 }
203
204 static size_t
205 reg_size (int regno)
206 {
207 if (regno == AARCH64_CPSR_REGNO || regno == AARCH64_FPSR_REGNO)
208 return 32;
209 return 64;
210 }
211
212 static int
213 aarch64_reg_get (SIM_CPU *cpu, int regno, unsigned char *buf, int length)
214 {
215 size_t size;
216 bfd_vma val;
217
218 if (!check_regno (regno))
219 return 0;
220
221 size = reg_size (regno);
222
223 if (length != size)
224 return 0;
225
226 switch (regno)
227 {
228 case AARCH64_MIN_GR ... AARCH64_MAX_GR:
229 val = aarch64_get_reg_u64 (cpu, regno, 0);
230 break;
231
232 case AARCH64_MIN_FR ... AARCH64_MAX_FR:
233 val = aarch64_get_FP_double (cpu, regno - 32);
234 break;
235
236 case AARCH64_PC_REGNO:
237 val = aarch64_get_PC (cpu);
238 break;
239
240 case AARCH64_CPSR_REGNO:
241 val = aarch64_get_CPSR (cpu);
242 break;
243
244 case AARCH64_FPSR_REGNO:
245 val = aarch64_get_FPSR (cpu);
246 break;
247
248 default:
249 sim_io_eprintf (CPU_STATE (cpu),
250 "sim: unrecognized register number: %d\n", regno);
251 return -1;
252 }
253
254 put_le (buf, length, val);
255
256 return size;
257 }
258
259 static int
260 aarch64_reg_set (SIM_CPU *cpu, int regno, unsigned char *buf, int length)
261 {
262 size_t size;
263 bfd_vma val;
264
265 if (!check_regno (regno))
266 return -1;
267
268 size = reg_size (regno);
269
270 if (length != size)
271 return -1;
272
273 val = get_le (buf, length);
274
275 switch (regno)
276 {
277 case AARCH64_MIN_GR ... AARCH64_MAX_GR:
278 aarch64_set_reg_u64 (cpu, regno, 1, val);
279 break;
280
281 case AARCH64_MIN_FR ... AARCH64_MAX_FR:
282 aarch64_set_FP_double (cpu, regno - 32, (double) val);
283 break;
284
285 case AARCH64_PC_REGNO:
286 aarch64_set_next_PC (cpu, val);
287 aarch64_update_PC (cpu);
288 break;
289
290 case AARCH64_CPSR_REGNO:
291 aarch64_set_CPSR (cpu, val);
292 break;
293
294 case AARCH64_FPSR_REGNO:
295 aarch64_set_FPSR (cpu, val);
296 break;
297
298 default:
299 sim_io_eprintf (CPU_STATE (cpu),
300 "sim: unrecognized register number: %d\n", regno);
301 return 0;
302 }
303
304 return size;
305 }
306
307 static sim_cia
308 aarch64_pc_get (sim_cpu *cpu)
309 {
310 return aarch64_get_PC (cpu);
311 }
312
313 static void
314 aarch64_pc_set (sim_cpu *cpu, sim_cia pc)
315 {
316 aarch64_set_next_PC (cpu, pc);
317 aarch64_update_PC (cpu);
318 }
319
320 static void
321 free_state (SIM_DESC sd)
322 {
323 if (STATE_MODULES (sd) != NULL)
324 sim_module_uninstall (sd);
325 sim_cpu_free_all (sd);
326 sim_state_free (sd);
327 }
328
329 SIM_DESC
330 sim_open (SIM_OPEN_KIND kind,
331 struct host_callback_struct * callback,
332 struct bfd * abfd,
333 char * const * argv)
334 {
335 sim_cpu *cpu;
336 SIM_DESC sd = sim_state_alloc (kind, callback);
337
338 if (sd == NULL)
339 return sd;
340
341 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
342
343 /* We use NONSTRICT_ALIGNMENT as the default because AArch64 only enforces
344 4-byte alignment, even for 8-byte reads/writes. The common core does not
345 support this, so we opt for non-strict alignment instead. */
346 current_alignment = NONSTRICT_ALIGNMENT;
347
348 /* Perform the initialization steps one by one. */
349 if (sim_cpu_alloc_all (sd, 1) != SIM_RC_OK
350 || sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK
351 || sim_parse_args (sd, argv) != SIM_RC_OK
352 || sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK
353 || sim_config (sd) != SIM_RC_OK
354 || sim_post_argv_init (sd) != SIM_RC_OK)
355 {
356 free_state (sd);
357 return NULL;
358 }
359
360 aarch64_init_LIT_table ();
361
362 assert (MAX_NR_PROCESSORS == 1);
363 cpu = STATE_CPU (sd, 0);
364 CPU_PC_FETCH (cpu) = aarch64_pc_get;
365 CPU_PC_STORE (cpu) = aarch64_pc_set;
366 CPU_REG_FETCH (cpu) = aarch64_reg_get;
367 CPU_REG_STORE (cpu) = aarch64_reg_set;
368
369 /* Set SP, FP and PC to 0 and set LR to -1
370 so we can detect a top-level return. */
371 aarch64_set_reg_u64 (cpu, SP, 1, 0);
372 aarch64_set_reg_u64 (cpu, FP, 1, 0);
373 aarch64_set_reg_u64 (cpu, LR, 1, TOP_LEVEL_RETURN_PC);
374 aarch64_set_next_PC (cpu, 0);
375 aarch64_update_PC (cpu);
376
377 /* Default to a 128 Mbyte (== 2^27) memory space. */
378 sim_do_commandf (sd, "memory-size 0x8000000");
379
380 return sd;
381 }
382
383 void
384 sim_engine_run (SIM_DESC sd,
385 int next_cpu_nr ATTRIBUTE_UNUSED,
386 int nr_cpus ATTRIBUTE_UNUSED,
387 int siggnal ATTRIBUTE_UNUSED)
388 {
389 aarch64_run (sd);
390 }