Change pointers from char * to unsigned char *
[binutils-gdb.git] / sim / arm / armsupp.c
1 /* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator.
2 Copyright (C) 1994 Advanced RISC Machines Ltd.
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 3 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, see <http://www.gnu.org/licenses/>. */
16
17 #include "armdefs.h"
18 #include "armemu.h"
19 #include "ansidecl.h"
20
21 /* Definitions for the support routines. */
22
23 static ARMword ModeToBank (ARMword);
24 static void EnvokeList (ARMul_State *, unsigned long, unsigned long);
25
26 struct EventNode
27 { /* An event list node. */
28 unsigned (*func) (ARMul_State *); /* The function to call. */
29 struct EventNode *next;
30 };
31
32 /* This routine returns the value of a register from a mode. */
33
34 ARMword
35 ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg)
36 {
37 mode &= MODEBITS;
38 if (mode != state->Mode)
39 return (state->RegBank[ModeToBank ((ARMword) mode)][reg]);
40 else
41 return (state->Reg[reg]);
42 }
43
44 /* This routine sets the value of a register for a mode. */
45
46 void
47 ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg, ARMword value)
48 {
49 mode &= MODEBITS;
50 if (mode != state->Mode)
51 state->RegBank[ModeToBank ((ARMword) mode)][reg] = value;
52 else
53 state->Reg[reg] = value;
54 }
55
56 /* This routine returns the value of the PC, mode independently. */
57
58 ARMword
59 ARMul_GetPC (ARMul_State * state)
60 {
61 if (state->Mode > SVC26MODE)
62 return state->Reg[15];
63 else
64 return R15PC;
65 }
66
67 /* This routine returns the value of the PC, mode independently. */
68
69 ARMword
70 ARMul_GetNextPC (ARMul_State * state)
71 {
72 if (state->Mode > SVC26MODE)
73 return state->Reg[15] + isize;
74 else
75 return (state->Reg[15] + isize) & R15PCBITS;
76 }
77
78 /* This routine sets the value of the PC. */
79
80 void
81 ARMul_SetPC (ARMul_State * state, ARMword value)
82 {
83 if (ARMul_MODE32BIT)
84 state->Reg[15] = value & PCBITS;
85 else
86 state->Reg[15] = R15CCINTMODE | (value & R15PCBITS);
87 FLUSHPIPE;
88 }
89
90 /* This routine returns the value of register 15, mode independently. */
91
92 ARMword
93 ARMul_GetR15 (ARMul_State * state)
94 {
95 if (state->Mode > SVC26MODE)
96 return (state->Reg[15]);
97 else
98 return (R15PC | ECC | ER15INT | EMODE);
99 }
100
101 /* This routine sets the value of Register 15. */
102
103 void
104 ARMul_SetR15 (ARMul_State * state, ARMword value)
105 {
106 if (ARMul_MODE32BIT)
107 state->Reg[15] = value & PCBITS;
108 else
109 {
110 state->Reg[15] = value;
111 ARMul_R15Altered (state);
112 }
113 FLUSHPIPE;
114 }
115
116 /* This routine returns the value of the CPSR. */
117
118 ARMword
119 ARMul_GetCPSR (ARMul_State * state)
120 {
121 return (CPSR | state->Cpsr);
122 }
123
124 /* This routine sets the value of the CPSR. */
125
126 void
127 ARMul_SetCPSR (ARMul_State * state, ARMword value)
128 {
129 state->Cpsr = value;
130 ARMul_CPSRAltered (state);
131 }
132
133 /* This routine does all the nasty bits involved in a write to the CPSR,
134 including updating the register bank, given a MSR instruction. */
135
136 void
137 ARMul_FixCPSR (ARMul_State * state, ARMword instr, ARMword rhs)
138 {
139 state->Cpsr = ARMul_GetCPSR (state);
140
141 if (state->Mode != USER26MODE
142 && state->Mode != USER32MODE)
143 {
144 /* In user mode, only write flags. */
145 if (BIT (16))
146 SETPSR_C (state->Cpsr, rhs);
147 if (BIT (17))
148 SETPSR_X (state->Cpsr, rhs);
149 if (BIT (18))
150 SETPSR_S (state->Cpsr, rhs);
151 }
152 if (BIT (19))
153 SETPSR_F (state->Cpsr, rhs);
154 ARMul_CPSRAltered (state);
155 }
156
157 /* Get an SPSR from the specified mode. */
158
159 ARMword
160 ARMul_GetSPSR (ARMul_State * state, ARMword mode)
161 {
162 ARMword bank = ModeToBank (mode & MODEBITS);
163
164 if (! BANK_CAN_ACCESS_SPSR (bank))
165 return ARMul_GetCPSR (state);
166
167 return state->Spsr[bank];
168 }
169
170 /* This routine does a write to an SPSR. */
171
172 void
173 ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value)
174 {
175 ARMword bank = ModeToBank (mode & MODEBITS);
176
177 if (BANK_CAN_ACCESS_SPSR (bank))
178 state->Spsr[bank] = value;
179 }
180
181 /* This routine does a write to the current SPSR, given an MSR instruction. */
182
183 void
184 ARMul_FixSPSR (ARMul_State * state, ARMword instr, ARMword rhs)
185 {
186 if (BANK_CAN_ACCESS_SPSR (state->Bank))
187 {
188 if (BIT (16))
189 SETPSR_C (state->Spsr[state->Bank], rhs);
190 if (BIT (17))
191 SETPSR_X (state->Spsr[state->Bank], rhs);
192 if (BIT (18))
193 SETPSR_S (state->Spsr[state->Bank], rhs);
194 if (BIT (19))
195 SETPSR_F (state->Spsr[state->Bank], rhs);
196 }
197 }
198
199 /* This routine updates the state of the emulator after the Cpsr has been
200 changed. Both the processor flags and register bank are updated. */
201
202 void
203 ARMul_CPSRAltered (ARMul_State * state)
204 {
205 ARMword oldmode;
206
207 if (state->prog32Sig == LOW)
208 state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS);
209
210 oldmode = state->Mode;
211
212 if (state->Mode != (state->Cpsr & MODEBITS))
213 {
214 state->Mode =
215 ARMul_SwitchMode (state, state->Mode, state->Cpsr & MODEBITS);
216
217 state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
218 }
219 state->Cpsr &= ~MODEBITS;
220
221 ASSIGNINT (state->Cpsr & INTBITS);
222 state->Cpsr &= ~INTBITS;
223 ASSIGNN ((state->Cpsr & NBIT) != 0);
224 state->Cpsr &= ~NBIT;
225 ASSIGNZ ((state->Cpsr & ZBIT) != 0);
226 state->Cpsr &= ~ZBIT;
227 ASSIGNC ((state->Cpsr & CBIT) != 0);
228 state->Cpsr &= ~CBIT;
229 ASSIGNV ((state->Cpsr & VBIT) != 0);
230 state->Cpsr &= ~VBIT;
231 ASSIGNS ((state->Cpsr & SBIT) != 0);
232 state->Cpsr &= ~SBIT;
233 #ifdef MODET
234 ASSIGNT ((state->Cpsr & TBIT) != 0);
235 state->Cpsr &= ~TBIT;
236 #endif
237
238 if (oldmode > SVC26MODE)
239 {
240 if (state->Mode <= SVC26MODE)
241 {
242 state->Emulate = CHANGEMODE;
243 state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
244 }
245 }
246 else
247 {
248 if (state->Mode > SVC26MODE)
249 {
250 state->Emulate = CHANGEMODE;
251 state->Reg[15] = R15PC;
252 }
253 else
254 state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
255 }
256 }
257
258 /* This routine updates the state of the emulator after register 15 has
259 been changed. Both the processor flags and register bank are updated.
260 This routine should only be called from a 26 bit mode. */
261
262 void
263 ARMul_R15Altered (ARMul_State * state)
264 {
265 if (state->Mode != R15MODE)
266 {
267 state->Mode = ARMul_SwitchMode (state, state->Mode, R15MODE);
268 state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
269 }
270
271 if (state->Mode > SVC26MODE)
272 state->Emulate = CHANGEMODE;
273
274 ASSIGNR15INT (R15INT);
275
276 ASSIGNN ((state->Reg[15] & NBIT) != 0);
277 ASSIGNZ ((state->Reg[15] & ZBIT) != 0);
278 ASSIGNC ((state->Reg[15] & CBIT) != 0);
279 ASSIGNV ((state->Reg[15] & VBIT) != 0);
280 }
281
282 /* This routine controls the saving and restoring of registers across mode
283 changes. The regbank matrix is largely unused, only rows 13 and 14 are
284 used across all modes, 8 to 14 are used for FIQ, all others use the USER
285 column. It's easier this way. old and new parameter are modes numbers.
286 Notice the side effect of changing the Bank variable. */
287
288 ARMword
289 ARMul_SwitchMode (ARMul_State * state, ARMword oldmode, ARMword newmode)
290 {
291 unsigned i;
292 ARMword oldbank;
293 ARMword newbank;
294
295 oldbank = ModeToBank (oldmode);
296 newbank = state->Bank = ModeToBank (newmode);
297
298 /* Do we really need to do it? */
299 if (oldbank != newbank)
300 {
301 /* Save away the old registers. */
302 switch (oldbank)
303 {
304 case USERBANK:
305 case IRQBANK:
306 case SVCBANK:
307 case ABORTBANK:
308 case UNDEFBANK:
309 if (newbank == FIQBANK)
310 for (i = 8; i < 13; i++)
311 state->RegBank[USERBANK][i] = state->Reg[i];
312 state->RegBank[oldbank][13] = state->Reg[13];
313 state->RegBank[oldbank][14] = state->Reg[14];
314 break;
315 case FIQBANK:
316 for (i = 8; i < 15; i++)
317 state->RegBank[FIQBANK][i] = state->Reg[i];
318 break;
319 case DUMMYBANK:
320 for (i = 8; i < 15; i++)
321 state->RegBank[DUMMYBANK][i] = 0;
322 break;
323 default:
324 abort ();
325 }
326
327 /* Restore the new registers. */
328 switch (newbank)
329 {
330 case USERBANK:
331 case IRQBANK:
332 case SVCBANK:
333 case ABORTBANK:
334 case UNDEFBANK:
335 if (oldbank == FIQBANK)
336 for (i = 8; i < 13; i++)
337 state->Reg[i] = state->RegBank[USERBANK][i];
338 state->Reg[13] = state->RegBank[newbank][13];
339 state->Reg[14] = state->RegBank[newbank][14];
340 break;
341 case FIQBANK:
342 for (i = 8; i < 15; i++)
343 state->Reg[i] = state->RegBank[FIQBANK][i];
344 break;
345 case DUMMYBANK:
346 for (i = 8; i < 15; i++)
347 state->Reg[i] = 0;
348 break;
349 default:
350 abort ();
351 }
352 }
353
354 return newmode;
355 }
356
357 /* Given a processor mode, this routine returns the
358 register bank that will be accessed in that mode. */
359
360 static ARMword
361 ModeToBank (ARMword mode)
362 {
363 static ARMword bankofmode[] =
364 {
365 USERBANK, FIQBANK, IRQBANK, SVCBANK,
366 DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
367 DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
368 DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
369 USERBANK, FIQBANK, IRQBANK, SVCBANK,
370 DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK,
371 DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK,
372 DUMMYBANK, DUMMYBANK, DUMMYBANK, SYSTEMBANK
373 };
374
375 if (mode >= (sizeof (bankofmode) / sizeof (bankofmode[0])))
376 return DUMMYBANK;
377
378 return bankofmode[mode];
379 }
380
381 /* Returns the register number of the nth register in a reg list. */
382
383 unsigned
384 ARMul_NthReg (ARMword instr, unsigned number)
385 {
386 unsigned bit, upto;
387
388 for (bit = 0, upto = 0; upto <= number; bit ++)
389 if (BIT (bit))
390 upto ++;
391
392 return (bit - 1);
393 }
394
395 /* Assigns the N and Z flags depending on the value of result. */
396
397 void
398 ARMul_NegZero (ARMul_State * state, ARMword result)
399 {
400 if (NEG (result))
401 {
402 SETN;
403 CLEARZ;
404 }
405 else if (result == 0)
406 {
407 CLEARN;
408 SETZ;
409 }
410 else
411 {
412 CLEARN;
413 CLEARZ;
414 }
415 }
416
417 /* Compute whether an addition of A and B, giving RESULT, overflowed. */
418
419 int
420 AddOverflow (ARMword a, ARMword b, ARMword result)
421 {
422 return ((NEG (a) && NEG (b) && POS (result))
423 || (POS (a) && POS (b) && NEG (result)));
424 }
425
426 /* Compute whether a subtraction of A and B, giving RESULT, overflowed. */
427
428 int
429 SubOverflow (ARMword a, ARMword b, ARMword result)
430 {
431 return ((NEG (a) && POS (b) && POS (result))
432 || (POS (a) && NEG (b) && NEG (result)));
433 }
434
435 /* Assigns the C flag after an addition of a and b to give result. */
436
437 void
438 ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
439 {
440 ASSIGNC ((NEG (a) && NEG (b)) ||
441 (NEG (a) && POS (result)) || (NEG (b) && POS (result)));
442 }
443
444 /* Assigns the V flag after an addition of a and b to give result. */
445
446 void
447 ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
448 {
449 ASSIGNV (AddOverflow (a, b, result));
450 }
451
452 /* Assigns the C flag after an subtraction of a and b to give result. */
453
454 void
455 ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
456 {
457 ASSIGNC ((NEG (a) && POS (b)) ||
458 (NEG (a) && POS (result)) || (POS (b) && POS (result)));
459 }
460
461 /* Assigns the V flag after an subtraction of a and b to give result. */
462
463 void
464 ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
465 {
466 ASSIGNV (SubOverflow (a, b, result));
467 }
468
469 /* This function does the work of generating the addresses used in an
470 LDC instruction. The code here is always post-indexed, it's up to the
471 caller to get the input address correct and to handle base register
472 modification. It also handles the Busy-Waiting. */
473
474 void
475 ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address)
476 {
477 unsigned cpab;
478 ARMword data;
479
480 UNDEF_LSCPCBaseWb;
481
482 if (! CP_ACCESS_ALLOWED (state, CPNum))
483 {
484 ARMul_UndefInstr (state, instr);
485 return;
486 }
487
488 if (ADDREXCEPT (address))
489 INTERNALABORT (address);
490
491 cpab = (state->LDC[CPNum]) (state, ARMul_FIRST, instr, 0);
492 while (cpab == ARMul_BUSY)
493 {
494 ARMul_Icycles (state, 1, 0);
495
496 if (IntPending (state))
497 {
498 cpab = (state->LDC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
499 return;
500 }
501 else
502 cpab = (state->LDC[CPNum]) (state, ARMul_BUSY, instr, 0);
503 }
504 if (cpab == ARMul_CANT)
505 {
506 CPTAKEABORT;
507 return;
508 }
509
510 cpab = (state->LDC[CPNum]) (state, ARMul_TRANSFER, instr, 0);
511 data = ARMul_LoadWordN (state, address);
512 BUSUSEDINCPCN;
513
514 if (BIT (21))
515 LSBase = state->Base;
516 cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
517
518 while (cpab == ARMul_INC)
519 {
520 address += 4;
521 data = ARMul_LoadWordN (state, address);
522 cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
523 }
524
525 if (state->abortSig || state->Aborted)
526 TAKEABORT;
527 }
528
529 /* This function does the work of generating the addresses used in an
530 STC instruction. The code here is always post-indexed, it's up to the
531 caller to get the input address correct and to handle base register
532 modification. It also handles the Busy-Waiting. */
533
534 void
535 ARMul_STC (ARMul_State * state, ARMword instr, ARMword address)
536 {
537 unsigned cpab;
538 ARMword data;
539
540 UNDEF_LSCPCBaseWb;
541
542 if (! CP_ACCESS_ALLOWED (state, CPNum))
543 {
544 ARMul_UndefInstr (state, instr);
545 return;
546 }
547
548 if (ADDREXCEPT (address) || VECTORACCESS (address))
549 INTERNALABORT (address);
550
551 cpab = (state->STC[CPNum]) (state, ARMul_FIRST, instr, &data);
552 while (cpab == ARMul_BUSY)
553 {
554 ARMul_Icycles (state, 1, 0);
555 if (IntPending (state))
556 {
557 cpab = (state->STC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
558 return;
559 }
560 else
561 cpab = (state->STC[CPNum]) (state, ARMul_BUSY, instr, &data);
562 }
563
564 if (cpab == ARMul_CANT)
565 {
566 CPTAKEABORT;
567 return;
568 }
569 #ifndef MODE32
570 if (ADDREXCEPT (address) || VECTORACCESS (address))
571 INTERNALABORT (address);
572 #endif
573 BUSUSEDINCPCN;
574 if (BIT (21))
575 LSBase = state->Base;
576 cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
577 ARMul_StoreWordN (state, address, data);
578
579 while (cpab == ARMul_INC)
580 {
581 address += 4;
582 cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
583 ARMul_StoreWordN (state, address, data);
584 }
585
586 if (state->abortSig || state->Aborted)
587 TAKEABORT;
588 }
589
590 /* This function does the Busy-Waiting for an MCR instruction. */
591
592 void
593 ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source)
594 {
595 unsigned cpab;
596
597 if (! CP_ACCESS_ALLOWED (state, CPNum))
598 {
599 ARMul_UndefInstr (state, instr);
600 return;
601 }
602
603 cpab = (state->MCR[CPNum]) (state, ARMul_FIRST, instr, source);
604
605 while (cpab == ARMul_BUSY)
606 {
607 ARMul_Icycles (state, 1, 0);
608
609 if (IntPending (state))
610 {
611 cpab = (state->MCR[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
612 return;
613 }
614 else
615 cpab = (state->MCR[CPNum]) (state, ARMul_BUSY, instr, source);
616 }
617
618 if (cpab == ARMul_CANT)
619 ARMul_Abort (state, ARMul_UndefinedInstrV);
620 else
621 {
622 BUSUSEDINCPCN;
623 ARMul_Ccycles (state, 1, 0);
624 }
625 }
626
627 /* This function does the Busy-Waiting for an MRC instruction. */
628
629 ARMword
630 ARMul_MRC (ARMul_State * state, ARMword instr)
631 {
632 unsigned cpab;
633 ARMword result = 0;
634
635 if (! CP_ACCESS_ALLOWED (state, CPNum))
636 {
637 ARMul_UndefInstr (state, instr);
638 return result;
639 }
640
641 cpab = (state->MRC[CPNum]) (state, ARMul_FIRST, instr, &result);
642 while (cpab == ARMul_BUSY)
643 {
644 ARMul_Icycles (state, 1, 0);
645 if (IntPending (state))
646 {
647 cpab = (state->MRC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
648 return (0);
649 }
650 else
651 cpab = (state->MRC[CPNum]) (state, ARMul_BUSY, instr, &result);
652 }
653 if (cpab == ARMul_CANT)
654 {
655 ARMul_Abort (state, ARMul_UndefinedInstrV);
656 /* Parent will destroy the flags otherwise. */
657 result = ECC;
658 }
659 else
660 {
661 BUSUSEDINCPCN;
662 ARMul_Ccycles (state, 1, 0);
663 ARMul_Icycles (state, 1, 0);
664 }
665
666 return result;
667 }
668
669 /* This function does the Busy-Waiting for an CDP instruction. */
670
671 void
672 ARMul_CDP (ARMul_State * state, ARMword instr)
673 {
674 unsigned cpab;
675
676 if (! CP_ACCESS_ALLOWED (state, CPNum))
677 {
678 ARMul_UndefInstr (state, instr);
679 return;
680 }
681
682 cpab = (state->CDP[CPNum]) (state, ARMul_FIRST, instr);
683 while (cpab == ARMul_BUSY)
684 {
685 ARMul_Icycles (state, 1, 0);
686 if (IntPending (state))
687 {
688 cpab = (state->CDP[CPNum]) (state, ARMul_INTERRUPT, instr);
689 return;
690 }
691 else
692 cpab = (state->CDP[CPNum]) (state, ARMul_BUSY, instr);
693 }
694 if (cpab == ARMul_CANT)
695 ARMul_Abort (state, ARMul_UndefinedInstrV);
696 else
697 BUSUSEDN;
698 }
699
700 /* This function handles Undefined instructions, as CP isntruction. */
701
702 void
703 ARMul_UndefInstr (ARMul_State * state, ARMword instr ATTRIBUTE_UNUSED)
704 {
705 ARMul_Abort (state, ARMul_UndefinedInstrV);
706 }
707
708 /* Return TRUE if an interrupt is pending, FALSE otherwise. */
709
710 unsigned
711 IntPending (ARMul_State * state)
712 {
713 if (state->Exception)
714 {
715 /* Any exceptions. */
716 if (state->NresetSig == LOW)
717 {
718 ARMul_Abort (state, ARMul_ResetV);
719 return TRUE;
720 }
721 else if (!state->NfiqSig && !FFLAG)
722 {
723 ARMul_Abort (state, ARMul_FIQV);
724 return TRUE;
725 }
726 else if (!state->NirqSig && !IFLAG)
727 {
728 ARMul_Abort (state, ARMul_IRQV);
729 return TRUE;
730 }
731 }
732
733 return FALSE;
734 }
735
736 /* Align a word access to a non word boundary. */
737
738 ARMword
739 ARMul_Align (ARMul_State *state ATTRIBUTE_UNUSED, ARMword address, ARMword data)
740 {
741 /* This code assumes the address is really unaligned,
742 as a shift by 32 is undefined in C. */
743
744 address = (address & 3) << 3; /* Get the word address. */
745 return ((data >> address) | (data << (32 - address))); /* rot right */
746 }
747
748 /* This routine is used to call another routine after a certain number of
749 cycles have been executed. The first parameter is the number of cycles
750 delay before the function is called, the second argument is a pointer
751 to the function. A delay of zero doesn't work, just call the function. */
752
753 void
754 ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay,
755 unsigned (*what) (ARMul_State *))
756 {
757 unsigned long when;
758 struct EventNode *event;
759
760 if (state->EventSet++ == 0)
761 state->Now = ARMul_Time (state);
762 when = (state->Now + delay) % EVENTLISTSIZE;
763 event = (struct EventNode *) malloc (sizeof (struct EventNode));
764 event->func = what;
765 event->next = *(state->EventPtr + when);
766 *(state->EventPtr + when) = event;
767 }
768
769 /* This routine is called at the beginning of
770 every cycle, to envoke scheduled events. */
771
772 void
773 ARMul_EnvokeEvent (ARMul_State * state)
774 {
775 static unsigned long then;
776
777 then = state->Now;
778 state->Now = ARMul_Time (state) % EVENTLISTSIZE;
779 if (then < state->Now)
780 /* Schedule events. */
781 EnvokeList (state, then, state->Now);
782 else if (then > state->Now)
783 {
784 /* Need to wrap around the list. */
785 EnvokeList (state, then, EVENTLISTSIZE - 1L);
786 EnvokeList (state, 0L, state->Now);
787 }
788 }
789
790 /* Envokes all the entries in a range. */
791
792 static void
793 EnvokeList (ARMul_State * state, unsigned long from, unsigned long to)
794 {
795 for (; from <= to; from++)
796 {
797 struct EventNode *anevent;
798
799 anevent = *(state->EventPtr + from);
800 while (anevent)
801 {
802 (anevent->func) (state);
803 state->EventSet--;
804 anevent = anevent->next;
805 }
806 *(state->EventPtr + from) = NULL;
807 }
808 }
809
810 /* This routine is returns the number of clock ticks since the last reset. */
811
812 unsigned long
813 ARMul_Time (ARMul_State * state)
814 {
815 return (state->NumScycles + state->NumNcycles +
816 state->NumIcycles + state->NumCcycles + state->NumFcycles);
817 }