* sim-fpu.c (pack_fpu): If SIM_QUIET_NAN_NEGATED is defined, use a
[binutils-gdb.git] / sim / common / sim-fpu.c
1 /* This is a software floating point library which can be used instead
2 of the floating point routines in libgcc1.c for targets without
3 hardware floating point. */
4
5 /* Copyright 1994, 1997, 1998, 2003 Free Software Foundation, Inc.
6
7 This file is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file with other programs, and to distribute
15 those programs without any restriction coming from the use of this
16 file. (The General Public License restrictions do apply in other
17 respects; for example, they cover modification of the file, and
18 distribution when not linked into another program.)
19
20 This file is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; see the file COPYING. If not, write to
27 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
28
29 /* As a special exception, if you link this library with other files,
30 some of which are compiled with GCC, to produce an executable,
31 this library does not by itself cause the resulting executable
32 to be covered by the GNU General Public License.
33 This exception does not however invalidate any other reasons why
34 the executable file might be covered by the GNU General Public License. */
35
36 /* This implements IEEE 754 format arithmetic, but does not provide a
37 mechanism for setting the rounding mode, or for generating or handling
38 exceptions.
39
40 The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
41 Wilson, all of Cygnus Support. */
42
43
44 #ifndef SIM_FPU_C
45 #define SIM_FPU_C
46
47 #include "sim-basics.h"
48 #include "sim-fpu.h"
49
50 #include "sim-io.h"
51 #include "sim-assert.h"
52
53
54 /* Debugging support.
55 If digits is -1, then print all digits. */
56
57 static void
58 print_bits (unsigned64 x,
59 int msbit,
60 int digits,
61 sim_fpu_print_func print,
62 void *arg)
63 {
64 unsigned64 bit = LSBIT64 (msbit);
65 int i = 4;
66 while (bit && digits)
67 {
68 if (i == 0)
69 print (arg, ",");
70
71 if ((x & bit))
72 print (arg, "1");
73 else
74 print (arg, "0");
75 bit >>= 1;
76
77 if (digits > 0) digits--;
78 i = (i + 1) % 4;
79 }
80 }
81
82
83
84 /* Quick and dirty conversion between a host double and host 64bit int */
85
86 typedef union {
87 double d;
88 unsigned64 i;
89 } sim_fpu_map;
90
91
92 /* A packed IEEE floating point number.
93
94 Form is <SIGN:1><BIASEDEXP:NR_EXPBITS><FRAC:NR_FRACBITS> for both
95 32 and 64 bit numbers. This number is interpreted as:
96
97 Normalized (0 < BIASEDEXP && BIASEDEXP < EXPMAX):
98 (sign ? '-' : '+') 1.<FRAC> x 2 ^ (BIASEDEXP - EXPBIAS)
99
100 Denormalized (0 == BIASEDEXP && FRAC != 0):
101 (sign ? "-" : "+") 0.<FRAC> x 2 ^ (- EXPBIAS)
102
103 Zero (0 == BIASEDEXP && FRAC == 0):
104 (sign ? "-" : "+") 0.0
105
106 Infinity (BIASEDEXP == EXPMAX && FRAC == 0):
107 (sign ? "-" : "+") "infinity"
108
109 SignalingNaN (BIASEDEXP == EXPMAX && FRAC > 0 && FRAC < QUIET_NAN):
110 SNaN.FRAC
111
112 QuietNaN (BIASEDEXP == EXPMAX && FRAC > 0 && FRAC > QUIET_NAN):
113 QNaN.FRAC
114
115 */
116
117 #define NR_EXPBITS (is_double ? 11 : 8)
118 #define NR_FRACBITS (is_double ? 52 : 23)
119 #define SIGNBIT (is_double ? MSBIT64 (0) : MSBIT64 (32))
120
121 #define EXPMAX32 (255)
122 #define EXMPAX64 (2047)
123 #define EXPMAX ((unsigned) (is_double ? EXMPAX64 : EXPMAX32))
124
125 #define EXPBIAS32 (127)
126 #define EXPBIAS64 (1023)
127 #define EXPBIAS (is_double ? EXPBIAS64 : EXPBIAS32)
128
129 #define QUIET_NAN LSBIT64 (NR_FRACBITS - 1)
130
131
132
133 /* An unpacked floating point number.
134
135 When unpacked, the fraction of both a 32 and 64 bit floating point
136 number is stored using the same format:
137
138 64 bit - <IMPLICIT_1:1><FRACBITS:52><GUARDS:8><PAD:00>
139 32 bit - <IMPLICIT_1:1><FRACBITS:23><GUARDS:7><PAD:30> */
140
141 #define NR_PAD32 (30)
142 #define NR_PAD64 (0)
143 #define NR_PAD (is_double ? NR_PAD64 : NR_PAD32)
144 #define PADMASK (is_double ? 0 : LSMASK64 (NR_PAD32 - 1, 0))
145
146 #define NR_GUARDS32 (7 + NR_PAD32)
147 #define NR_GUARDS64 (8 + NR_PAD64)
148 #define NR_GUARDS (is_double ? NR_GUARDS64 : NR_GUARDS32)
149 #define GUARDMASK LSMASK64 (NR_GUARDS - 1, 0)
150
151 #define GUARDMSB LSBIT64 (NR_GUARDS - 1)
152 #define GUARDLSB LSBIT64 (NR_PAD)
153 #define GUARDROUND LSMASK64 (NR_GUARDS - 2, 0)
154
155 #define NR_FRAC_GUARD (60)
156 #define IMPLICIT_1 LSBIT64 (NR_FRAC_GUARD)
157 #define IMPLICIT_2 LSBIT64 (NR_FRAC_GUARD + 1)
158 #define IMPLICIT_4 LSBIT64 (NR_FRAC_GUARD + 2)
159 #define NR_SPARE 2
160
161 #define FRAC32MASK LSMASK64 (63, NR_FRAC_GUARD - 32 + 1)
162
163 #define NORMAL_EXPMIN (-(EXPBIAS)+1)
164
165 #define NORMAL_EXPMAX32 (EXPBIAS32)
166 #define NORMAL_EXPMAX64 (EXPBIAS64)
167 #define NORMAL_EXPMAX (EXPBIAS)
168
169
170 /* Integer constants */
171
172 #define MAX_INT32 ((signed64) LSMASK64 (30, 0))
173 #define MAX_UINT32 LSMASK64 (31, 0)
174 #define MIN_INT32 ((signed64) LSMASK64 (63, 31))
175
176 #define MAX_INT64 ((signed64) LSMASK64 (62, 0))
177 #define MAX_UINT64 LSMASK64 (63, 0)
178 #define MIN_INT64 ((signed64) LSMASK64 (63, 63))
179
180 #define MAX_INT (is_64bit ? MAX_INT64 : MAX_INT32)
181 #define MIN_INT (is_64bit ? MIN_INT64 : MIN_INT32)
182 #define MAX_UINT (is_64bit ? MAX_UINT64 : MAX_UINT32)
183 #define NR_INTBITS (is_64bit ? 64 : 32)
184
185 /* Squeese an unpacked sim_fpu struct into a 32/64 bit integer */
186 STATIC_INLINE_SIM_FPU (unsigned64)
187 pack_fpu (const sim_fpu *src,
188 int is_double)
189 {
190 int sign;
191 unsigned64 exp;
192 unsigned64 fraction;
193 unsigned64 packed;
194
195 switch (src->class)
196 {
197 /* create a NaN */
198 case sim_fpu_class_qnan:
199 sign = src->sign;
200 exp = EXPMAX;
201 /* force fraction to correct class */
202 fraction = src->fraction;
203 fraction >>= NR_GUARDS;
204 #ifdef SIM_QUIET_NAN_NEGATED
205 fraction |= QUIET_NAN - 1;
206 #else
207 fraction |= QUIET_NAN;
208 #endif
209 break;
210 case sim_fpu_class_snan:
211 sign = src->sign;
212 exp = EXPMAX;
213 /* force fraction to correct class */
214 fraction = src->fraction;
215 fraction >>= NR_GUARDS;
216 fraction &= ~QUIET_NAN;
217 break;
218 case sim_fpu_class_infinity:
219 sign = src->sign;
220 exp = EXPMAX;
221 fraction = 0;
222 break;
223 case sim_fpu_class_zero:
224 sign = src->sign;
225 exp = 0;
226 fraction = 0;
227 break;
228 case sim_fpu_class_number:
229 case sim_fpu_class_denorm:
230 ASSERT (src->fraction >= IMPLICIT_1);
231 ASSERT (src->fraction < IMPLICIT_2);
232 if (src->normal_exp < NORMAL_EXPMIN)
233 {
234 /* This number's exponent is too low to fit into the bits
235 available in the number We'll denormalize the number by
236 storing zero in the exponent and shift the fraction to
237 the right to make up for it. */
238 int nr_shift = NORMAL_EXPMIN - src->normal_exp;
239 if (nr_shift > NR_FRACBITS)
240 {
241 /* underflow, just make the number zero */
242 sign = src->sign;
243 exp = 0;
244 fraction = 0;
245 }
246 else
247 {
248 sign = src->sign;
249 exp = 0;
250 /* Shift by the value */
251 fraction = src->fraction;
252 fraction >>= NR_GUARDS;
253 fraction >>= nr_shift;
254 }
255 }
256 else if (src->normal_exp > NORMAL_EXPMAX)
257 {
258 /* Infinity */
259 sign = src->sign;
260 exp = EXPMAX;
261 fraction = 0;
262 }
263 else
264 {
265 exp = (src->normal_exp + EXPBIAS);
266 sign = src->sign;
267 fraction = src->fraction;
268 /* FIXME: Need to round according to WITH_SIM_FPU_ROUNDING
269 or some such */
270 /* Round to nearest: If the guard bits are the all zero, but
271 the first, then we're half way between two numbers,
272 choose the one which makes the lsb of the answer 0. */
273 if ((fraction & GUARDMASK) == GUARDMSB)
274 {
275 if ((fraction & (GUARDMSB << 1)))
276 fraction += (GUARDMSB << 1);
277 }
278 else
279 {
280 /* Add a one to the guards to force round to nearest */
281 fraction += GUARDROUND;
282 }
283 if ((fraction & IMPLICIT_2)) /* rounding resulted in carry */
284 {
285 exp += 1;
286 fraction >>= 1;
287 }
288 fraction >>= NR_GUARDS;
289 /* When exp == EXPMAX (overflow from carry) fraction must
290 have been made zero */
291 ASSERT ((exp == EXPMAX) <= ((fraction & ~IMPLICIT_1) == 0));
292 }
293 break;
294 default:
295 abort ();
296 }
297
298 packed = ((sign ? SIGNBIT : 0)
299 | (exp << NR_FRACBITS)
300 | LSMASKED64 (fraction, NR_FRACBITS - 1, 0));
301
302 /* trace operation */
303 #if 0
304 if (is_double)
305 {
306 }
307 else
308 {
309 printf ("pack_fpu: ");
310 printf ("-> %c%0lX.%06lX\n",
311 LSMASKED32 (packed, 31, 31) ? '8' : '0',
312 (long) LSEXTRACTED32 (packed, 30, 23),
313 (long) LSEXTRACTED32 (packed, 23 - 1, 0));
314 }
315 #endif
316
317 return packed;
318 }
319
320
321 /* Unpack a 32/64 bit integer into a sim_fpu structure */
322 STATIC_INLINE_SIM_FPU (void)
323 unpack_fpu (sim_fpu *dst, unsigned64 packed, int is_double)
324 {
325 unsigned64 fraction = LSMASKED64 (packed, NR_FRACBITS - 1, 0);
326 unsigned exp = LSEXTRACTED64 (packed, NR_EXPBITS + NR_FRACBITS - 1, NR_FRACBITS);
327 int sign = (packed & SIGNBIT) != 0;
328
329 if (exp == 0)
330 {
331 /* Hmm. Looks like 0 */
332 if (fraction == 0)
333 {
334 /* tastes like zero */
335 dst->class = sim_fpu_class_zero;
336 dst->sign = sign;
337 dst->normal_exp = 0;
338 }
339 else
340 {
341 /* Zero exponent with non zero fraction - it's denormalized,
342 so there isn't a leading implicit one - we'll shift it so
343 it gets one. */
344 dst->normal_exp = exp - EXPBIAS + 1;
345 dst->class = sim_fpu_class_denorm;
346 dst->sign = sign;
347 fraction <<= NR_GUARDS;
348 while (fraction < IMPLICIT_1)
349 {
350 fraction <<= 1;
351 dst->normal_exp--;
352 }
353 dst->fraction = fraction;
354 }
355 }
356 else if (exp == EXPMAX)
357 {
358 /* Huge exponent*/
359 if (fraction == 0)
360 {
361 /* Attached to a zero fraction - means infinity */
362 dst->class = sim_fpu_class_infinity;
363 dst->sign = sign;
364 /* dst->normal_exp = EXPBIAS; */
365 /* dst->fraction = 0; */
366 }
367 else
368 {
369 int qnan;
370
371 /* Non zero fraction, means NaN */
372 dst->sign = sign;
373 dst->fraction = (fraction << NR_GUARDS);
374 #ifdef SIM_QUIET_NAN_NEGATED
375 qnan = (fraction & QUIET_NAN) == 0;
376 #else
377 qnan = fraction >= QUIET_NAN;
378 #endif
379 if (qnan)
380 dst->class = sim_fpu_class_qnan;
381 else
382 dst->class = sim_fpu_class_snan;
383 }
384 }
385 else
386 {
387 /* Nothing strange about this number */
388 dst->class = sim_fpu_class_number;
389 dst->sign = sign;
390 dst->fraction = ((fraction << NR_GUARDS) | IMPLICIT_1);
391 dst->normal_exp = exp - EXPBIAS;
392 }
393
394 /* trace operation */
395 #if 0
396 if (is_double)
397 {
398 }
399 else
400 {
401 printf ("unpack_fpu: %c%02lX.%06lX ->\n",
402 LSMASKED32 (packed, 31, 31) ? '8' : '0',
403 (long) LSEXTRACTED32 (packed, 30, 23),
404 (long) LSEXTRACTED32 (packed, 23 - 1, 0));
405 }
406 #endif
407
408 /* sanity checks */
409 {
410 sim_fpu_map val;
411 val.i = pack_fpu (dst, 1);
412 if (is_double)
413 {
414 ASSERT (val.i == packed);
415 }
416 else
417 {
418 unsigned32 val = pack_fpu (dst, 0);
419 unsigned32 org = packed;
420 ASSERT (val == org);
421 }
422 }
423 }
424
425
426 /* Convert a floating point into an integer */
427 STATIC_INLINE_SIM_FPU (int)
428 fpu2i (signed64 *i,
429 const sim_fpu *s,
430 int is_64bit,
431 sim_fpu_round round)
432 {
433 unsigned64 tmp;
434 int shift;
435 int status = 0;
436 if (sim_fpu_is_zero (s))
437 {
438 *i = 0;
439 return 0;
440 }
441 if (sim_fpu_is_snan (s))
442 {
443 *i = MIN_INT; /* FIXME */
444 return sim_fpu_status_invalid_cvi;
445 }
446 if (sim_fpu_is_qnan (s))
447 {
448 *i = MIN_INT; /* FIXME */
449 return sim_fpu_status_invalid_cvi;
450 }
451 /* map infinity onto MAX_INT... */
452 if (sim_fpu_is_infinity (s))
453 {
454 *i = s->sign ? MIN_INT : MAX_INT;
455 return sim_fpu_status_invalid_cvi;
456 }
457 /* it is a number, but a small one */
458 if (s->normal_exp < 0)
459 {
460 *i = 0;
461 return sim_fpu_status_inexact;
462 }
463 /* Is the floating point MIN_INT or just close? */
464 if (s->sign && s->normal_exp == (NR_INTBITS - 1))
465 {
466 *i = MIN_INT;
467 ASSERT (s->fraction >= IMPLICIT_1);
468 if (s->fraction == IMPLICIT_1)
469 return 0; /* exact */
470 if (is_64bit) /* can't round */
471 return sim_fpu_status_invalid_cvi; /* must be overflow */
472 /* For a 32bit with MAX_INT, rounding is possible */
473 switch (round)
474 {
475 case sim_fpu_round_default:
476 abort ();
477 case sim_fpu_round_zero:
478 if ((s->fraction & FRAC32MASK) != IMPLICIT_1)
479 return sim_fpu_status_invalid_cvi;
480 else
481 return sim_fpu_status_inexact;
482 break;
483 case sim_fpu_round_near:
484 {
485 if ((s->fraction & FRAC32MASK) != IMPLICIT_1)
486 return sim_fpu_status_invalid_cvi;
487 else if ((s->fraction & !FRAC32MASK) >= (~FRAC32MASK >> 1))
488 return sim_fpu_status_invalid_cvi;
489 else
490 return sim_fpu_status_inexact;
491 }
492 case sim_fpu_round_up:
493 if ((s->fraction & FRAC32MASK) == IMPLICIT_1)
494 return sim_fpu_status_inexact;
495 else
496 return sim_fpu_status_invalid_cvi;
497 case sim_fpu_round_down:
498 return sim_fpu_status_invalid_cvi;
499 }
500 }
501 /* Would right shifting result in the FRAC being shifted into
502 (through) the integer's sign bit? */
503 if (s->normal_exp > (NR_INTBITS - 2))
504 {
505 *i = s->sign ? MIN_INT : MAX_INT;
506 return sim_fpu_status_invalid_cvi;
507 }
508 /* normal number shift it into place */
509 tmp = s->fraction;
510 shift = (s->normal_exp - (NR_FRAC_GUARD));
511 if (shift > 0)
512 {
513 tmp <<= shift;
514 }
515 else
516 {
517 shift = -shift;
518 if (tmp & ((SIGNED64 (1) << shift) - 1))
519 status |= sim_fpu_status_inexact;
520 tmp >>= shift;
521 }
522 *i = s->sign ? (-tmp) : (tmp);
523 return status;
524 }
525
526 /* convert an integer into a floating point */
527 STATIC_INLINE_SIM_FPU (int)
528 i2fpu (sim_fpu *f, signed64 i, int is_64bit)
529 {
530 int status = 0;
531 if (i == 0)
532 {
533 f->class = sim_fpu_class_zero;
534 f->sign = 0;
535 f->normal_exp = 0;
536 }
537 else
538 {
539 f->class = sim_fpu_class_number;
540 f->sign = (i < 0);
541 f->normal_exp = NR_FRAC_GUARD;
542
543 if (f->sign)
544 {
545 /* Special case for minint, since there is no corresponding
546 +ve integer representation for it */
547 if (i == MIN_INT)
548 {
549 f->fraction = IMPLICIT_1;
550 f->normal_exp = NR_INTBITS - 1;
551 }
552 else
553 f->fraction = (-i);
554 }
555 else
556 f->fraction = i;
557
558 if (f->fraction >= IMPLICIT_2)
559 {
560 do
561 {
562 f->fraction = (f->fraction >> 1) | (f->fraction & 1);
563 f->normal_exp += 1;
564 }
565 while (f->fraction >= IMPLICIT_2);
566 }
567 else if (f->fraction < IMPLICIT_1)
568 {
569 do
570 {
571 f->fraction <<= 1;
572 f->normal_exp -= 1;
573 }
574 while (f->fraction < IMPLICIT_1);
575 }
576 }
577
578 /* trace operation */
579 #if 0
580 {
581 printf ("i2fpu: 0x%08lX ->\n", (long) i);
582 }
583 #endif
584
585 /* sanity check */
586 {
587 signed64 val;
588 fpu2i (&val, f, is_64bit, sim_fpu_round_zero);
589 if (i >= MIN_INT32 && i <= MAX_INT32)
590 {
591 ASSERT (val == i);
592 }
593 }
594
595 return status;
596 }
597
598
599 /* Convert a floating point into an integer */
600 STATIC_INLINE_SIM_FPU (int)
601 fpu2u (unsigned64 *u, const sim_fpu *s, int is_64bit)
602 {
603 const int is_double = 1;
604 unsigned64 tmp;
605 int shift;
606 if (sim_fpu_is_zero (s))
607 {
608 *u = 0;
609 return 0;
610 }
611 if (sim_fpu_is_nan (s))
612 {
613 *u = 0;
614 return 0;
615 }
616 /* it is a negative number */
617 if (s->sign)
618 {
619 *u = 0;
620 return 0;
621 }
622 /* get reasonable MAX_USI_INT... */
623 if (sim_fpu_is_infinity (s))
624 {
625 *u = MAX_UINT;
626 return 0;
627 }
628 /* it is a number, but a small one */
629 if (s->normal_exp < 0)
630 {
631 *u = 0;
632 return 0;
633 }
634 /* overflow */
635 if (s->normal_exp > (NR_INTBITS - 1))
636 {
637 *u = MAX_UINT;
638 return 0;
639 }
640 /* normal number */
641 tmp = (s->fraction & ~PADMASK);
642 shift = (s->normal_exp - (NR_FRACBITS + NR_GUARDS));
643 if (shift > 0)
644 {
645 tmp <<= shift;
646 }
647 else
648 {
649 shift = -shift;
650 tmp >>= shift;
651 }
652 *u = tmp;
653 return 0;
654 }
655
656 /* Convert an unsigned integer into a floating point */
657 STATIC_INLINE_SIM_FPU (int)
658 u2fpu (sim_fpu *f, unsigned64 u, int is_64bit)
659 {
660 if (u == 0)
661 {
662 f->class = sim_fpu_class_zero;
663 f->sign = 0;
664 f->normal_exp = 0;
665 }
666 else
667 {
668 f->class = sim_fpu_class_number;
669 f->sign = 0;
670 f->normal_exp = NR_FRAC_GUARD;
671 f->fraction = u;
672
673 while (f->fraction < IMPLICIT_1)
674 {
675 f->fraction <<= 1;
676 f->normal_exp -= 1;
677 }
678 }
679 return 0;
680 }
681
682
683 /* register <-> sim_fpu */
684
685 INLINE_SIM_FPU (void)
686 sim_fpu_32to (sim_fpu *f, unsigned32 s)
687 {
688 unpack_fpu (f, s, 0);
689 }
690
691
692 INLINE_SIM_FPU (void)
693 sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l)
694 {
695 unsigned64 s = h;
696 s = (s << 32) | l;
697 unpack_fpu (f, s, 1);
698 }
699
700
701 INLINE_SIM_FPU (void)
702 sim_fpu_64to (sim_fpu *f, unsigned64 s)
703 {
704 unpack_fpu (f, s, 1);
705 }
706
707
708 INLINE_SIM_FPU (void)
709 sim_fpu_to32 (unsigned32 *s,
710 const sim_fpu *f)
711 {
712 *s = pack_fpu (f, 0);
713 }
714
715
716 INLINE_SIM_FPU (void)
717 sim_fpu_to232 (unsigned32 *h, unsigned32 *l,
718 const sim_fpu *f)
719 {
720 unsigned64 s = pack_fpu (f, 1);
721 *l = s;
722 *h = (s >> 32);
723 }
724
725
726 INLINE_SIM_FPU (void)
727 sim_fpu_to64 (unsigned64 *u,
728 const sim_fpu *f)
729 {
730 *u = pack_fpu (f, 1);
731 }
732
733
734 INLINE_SIM_FPU (void)
735 sim_fpu_fractionto (sim_fpu *f,
736 int sign,
737 int normal_exp,
738 unsigned64 fraction,
739 int precision)
740 {
741 int shift = (NR_FRAC_GUARD - precision);
742 f->class = sim_fpu_class_number;
743 f->sign = sign;
744 f->normal_exp = normal_exp;
745 /* shift the fraction to where sim-fpu expects it */
746 if (shift >= 0)
747 f->fraction = (fraction << shift);
748 else
749 f->fraction = (fraction >> -shift);
750 f->fraction |= IMPLICIT_1;
751 }
752
753
754 INLINE_SIM_FPU (unsigned64)
755 sim_fpu_tofraction (const sim_fpu *d,
756 int precision)
757 {
758 /* we have NR_FRAC_GUARD bits, we want only PRECISION bits */
759 int shift = (NR_FRAC_GUARD - precision);
760 unsigned64 fraction = (d->fraction & ~IMPLICIT_1);
761 if (shift >= 0)
762 return fraction >> shift;
763 else
764 return fraction << -shift;
765 }
766
767
768 /* Rounding */
769
770 STATIC_INLINE_SIM_FPU (int)
771 do_normal_overflow (sim_fpu *f,
772 int is_double,
773 sim_fpu_round round)
774 {
775 switch (round)
776 {
777 case sim_fpu_round_default:
778 return 0;
779 case sim_fpu_round_near:
780 f->class = sim_fpu_class_infinity;
781 break;
782 case sim_fpu_round_up:
783 if (!f->sign)
784 f->class = sim_fpu_class_infinity;
785 break;
786 case sim_fpu_round_down:
787 if (f->sign)
788 f->class = sim_fpu_class_infinity;
789 break;
790 case sim_fpu_round_zero:
791 break;
792 }
793 f->normal_exp = NORMAL_EXPMAX;
794 f->fraction = LSMASK64 (NR_FRAC_GUARD, NR_GUARDS);
795 return (sim_fpu_status_overflow | sim_fpu_status_inexact);
796 }
797
798 STATIC_INLINE_SIM_FPU (int)
799 do_normal_underflow (sim_fpu *f,
800 int is_double,
801 sim_fpu_round round)
802 {
803 switch (round)
804 {
805 case sim_fpu_round_default:
806 return 0;
807 case sim_fpu_round_near:
808 f->class = sim_fpu_class_zero;
809 break;
810 case sim_fpu_round_up:
811 if (f->sign)
812 f->class = sim_fpu_class_zero;
813 break;
814 case sim_fpu_round_down:
815 if (!f->sign)
816 f->class = sim_fpu_class_zero;
817 break;
818 case sim_fpu_round_zero:
819 f->class = sim_fpu_class_zero;
820 break;
821 }
822 f->normal_exp = NORMAL_EXPMIN - NR_FRACBITS;
823 f->fraction = IMPLICIT_1;
824 return (sim_fpu_status_inexact | sim_fpu_status_underflow);
825 }
826
827
828
829 /* Round a number using NR_GUARDS.
830 Will return the rounded number or F->FRACTION == 0 when underflow */
831
832 STATIC_INLINE_SIM_FPU (int)
833 do_normal_round (sim_fpu *f,
834 int nr_guards,
835 sim_fpu_round round)
836 {
837 unsigned64 guardmask = LSMASK64 (nr_guards - 1, 0);
838 unsigned64 guardmsb = LSBIT64 (nr_guards - 1);
839 unsigned64 fraclsb = guardmsb << 1;
840 if ((f->fraction & guardmask))
841 {
842 int status = sim_fpu_status_inexact;
843 switch (round)
844 {
845 case sim_fpu_round_default:
846 return 0;
847 case sim_fpu_round_near:
848 if ((f->fraction & guardmsb))
849 {
850 if ((f->fraction & fraclsb))
851 {
852 status |= sim_fpu_status_rounded;
853 }
854 else if ((f->fraction & (guardmask >> 1)))
855 {
856 status |= sim_fpu_status_rounded;
857 }
858 }
859 break;
860 case sim_fpu_round_up:
861 if (!f->sign)
862 status |= sim_fpu_status_rounded;
863 break;
864 case sim_fpu_round_down:
865 if (f->sign)
866 status |= sim_fpu_status_rounded;
867 break;
868 case sim_fpu_round_zero:
869 break;
870 }
871 f->fraction &= ~guardmask;
872 /* round if needed, handle resulting overflow */
873 if ((status & sim_fpu_status_rounded))
874 {
875 f->fraction += fraclsb;
876 if ((f->fraction & IMPLICIT_2))
877 {
878 f->fraction >>= 1;
879 f->normal_exp += 1;
880 }
881 }
882 return status;
883 }
884 else
885 return 0;
886 }
887
888
889 STATIC_INLINE_SIM_FPU (int)
890 do_round (sim_fpu *f,
891 int is_double,
892 sim_fpu_round round,
893 sim_fpu_denorm denorm)
894 {
895 switch (f->class)
896 {
897 case sim_fpu_class_qnan:
898 case sim_fpu_class_zero:
899 case sim_fpu_class_infinity:
900 return 0;
901 break;
902 case sim_fpu_class_snan:
903 /* Quieten a SignalingNaN */
904 f->class = sim_fpu_class_qnan;
905 return sim_fpu_status_invalid_snan;
906 break;
907 case sim_fpu_class_number:
908 case sim_fpu_class_denorm:
909 {
910 int status;
911 ASSERT (f->fraction < IMPLICIT_2);
912 ASSERT (f->fraction >= IMPLICIT_1);
913 if (f->normal_exp < NORMAL_EXPMIN)
914 {
915 /* This number's exponent is too low to fit into the bits
916 available in the number. Round off any bits that will be
917 discarded as a result of denormalization. Edge case is
918 the implicit bit shifted to GUARD0 and then rounded
919 up. */
920 int shift = NORMAL_EXPMIN - f->normal_exp;
921 if (shift + NR_GUARDS <= NR_FRAC_GUARD + 1
922 && !(denorm & sim_fpu_denorm_zero))
923 {
924 status = do_normal_round (f, shift + NR_GUARDS, round);
925 if (f->fraction == 0) /* rounding underflowed */
926 {
927 status |= do_normal_underflow (f, is_double, round);
928 }
929 else if (f->normal_exp < NORMAL_EXPMIN) /* still underflow? */
930 {
931 status |= sim_fpu_status_denorm;
932 /* Any loss of precision when denormalizing is
933 underflow. Some processors check for underflow
934 before rounding, some after! */
935 if (status & sim_fpu_status_inexact)
936 status |= sim_fpu_status_underflow;
937 /* Flag that resultant value has been denormalized */
938 f->class = sim_fpu_class_denorm;
939 }
940 else if ((denorm & sim_fpu_denorm_underflow_inexact))
941 {
942 if ((status & sim_fpu_status_inexact))
943 status |= sim_fpu_status_underflow;
944 }
945 }
946 else
947 {
948 status = do_normal_underflow (f, is_double, round);
949 }
950 }
951 else if (f->normal_exp > NORMAL_EXPMAX)
952 {
953 /* Infinity */
954 status = do_normal_overflow (f, is_double, round);
955 }
956 else
957 {
958 status = do_normal_round (f, NR_GUARDS, round);
959 if (f->fraction == 0)
960 /* f->class = sim_fpu_class_zero; */
961 status |= do_normal_underflow (f, is_double, round);
962 else if (f->normal_exp > NORMAL_EXPMAX)
963 /* oops! rounding caused overflow */
964 status |= do_normal_overflow (f, is_double, round);
965 }
966 ASSERT ((f->class == sim_fpu_class_number
967 || f->class == sim_fpu_class_denorm)
968 <= (f->fraction < IMPLICIT_2 && f->fraction >= IMPLICIT_1));
969 return status;
970 }
971 }
972 return 0;
973 }
974
975 INLINE_SIM_FPU (int)
976 sim_fpu_round_32 (sim_fpu *f,
977 sim_fpu_round round,
978 sim_fpu_denorm denorm)
979 {
980 return do_round (f, 0, round, denorm);
981 }
982
983 INLINE_SIM_FPU (int)
984 sim_fpu_round_64 (sim_fpu *f,
985 sim_fpu_round round,
986 sim_fpu_denorm denorm)
987 {
988 return do_round (f, 1, round, denorm);
989 }
990
991
992
993 /* Arithmetic ops */
994
995 INLINE_SIM_FPU (int)
996 sim_fpu_add (sim_fpu *f,
997 const sim_fpu *l,
998 const sim_fpu *r)
999 {
1000 if (sim_fpu_is_snan (l))
1001 {
1002 *f = *l;
1003 f->class = sim_fpu_class_qnan;
1004 return sim_fpu_status_invalid_snan;
1005 }
1006 if (sim_fpu_is_snan (r))
1007 {
1008 *f = *r;
1009 f->class = sim_fpu_class_qnan;
1010 return sim_fpu_status_invalid_snan;
1011 }
1012 if (sim_fpu_is_qnan (l))
1013 {
1014 *f = *l;
1015 return 0;
1016 }
1017 if (sim_fpu_is_qnan (r))
1018 {
1019 *f = *r;
1020 return 0;
1021 }
1022 if (sim_fpu_is_infinity (l))
1023 {
1024 if (sim_fpu_is_infinity (r)
1025 && l->sign != r->sign)
1026 {
1027 *f = sim_fpu_qnan;
1028 return sim_fpu_status_invalid_isi;
1029 }
1030 *f = *l;
1031 return 0;
1032 }
1033 if (sim_fpu_is_infinity (r))
1034 {
1035 *f = *r;
1036 return 0;
1037 }
1038 if (sim_fpu_is_zero (l))
1039 {
1040 if (sim_fpu_is_zero (r))
1041 {
1042 *f = sim_fpu_zero;
1043 f->sign = l->sign & r->sign;
1044 }
1045 else
1046 *f = *r;
1047 return 0;
1048 }
1049 if (sim_fpu_is_zero (r))
1050 {
1051 *f = *l;
1052 return 0;
1053 }
1054 {
1055 int status = 0;
1056 int shift = l->normal_exp - r->normal_exp;
1057 unsigned64 lfraction;
1058 unsigned64 rfraction;
1059 /* use exp of larger */
1060 if (shift >= NR_FRAC_GUARD)
1061 {
1062 /* left has much bigger magnitute */
1063 *f = *l;
1064 return sim_fpu_status_inexact;
1065 }
1066 if (shift <= - NR_FRAC_GUARD)
1067 {
1068 /* right has much bigger magnitute */
1069 *f = *r;
1070 return sim_fpu_status_inexact;
1071 }
1072 lfraction = l->fraction;
1073 rfraction = r->fraction;
1074 if (shift > 0)
1075 {
1076 f->normal_exp = l->normal_exp;
1077 if (rfraction & LSMASK64 (shift - 1, 0))
1078 {
1079 status |= sim_fpu_status_inexact;
1080 rfraction |= LSBIT64 (shift); /* stick LSBit */
1081 }
1082 rfraction >>= shift;
1083 }
1084 else if (shift < 0)
1085 {
1086 f->normal_exp = r->normal_exp;
1087 if (lfraction & LSMASK64 (- shift - 1, 0))
1088 {
1089 status |= sim_fpu_status_inexact;
1090 lfraction |= LSBIT64 (- shift); /* stick LSBit */
1091 }
1092 lfraction >>= -shift;
1093 }
1094 else
1095 {
1096 f->normal_exp = r->normal_exp;
1097 }
1098
1099 /* perform the addition */
1100 if (l->sign)
1101 lfraction = - lfraction;
1102 if (r->sign)
1103 rfraction = - rfraction;
1104 f->fraction = lfraction + rfraction;
1105
1106 /* zero? */
1107 if (f->fraction == 0)
1108 {
1109 *f = sim_fpu_zero;
1110 return 0;
1111 }
1112
1113 /* sign? */
1114 f->class = sim_fpu_class_number;
1115 if ((signed64) f->fraction >= 0)
1116 f->sign = 0;
1117 else
1118 {
1119 f->sign = 1;
1120 f->fraction = - f->fraction;
1121 }
1122
1123 /* normalize it */
1124 if ((f->fraction & IMPLICIT_2))
1125 {
1126 f->fraction = (f->fraction >> 1) | (f->fraction & 1);
1127 f->normal_exp ++;
1128 }
1129 else if (f->fraction < IMPLICIT_1)
1130 {
1131 do
1132 {
1133 f->fraction <<= 1;
1134 f->normal_exp --;
1135 }
1136 while (f->fraction < IMPLICIT_1);
1137 }
1138 ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
1139 return status;
1140 }
1141 }
1142
1143
1144 INLINE_SIM_FPU (int)
1145 sim_fpu_sub (sim_fpu *f,
1146 const sim_fpu *l,
1147 const sim_fpu *r)
1148 {
1149 if (sim_fpu_is_snan (l))
1150 {
1151 *f = *l;
1152 f->class = sim_fpu_class_qnan;
1153 return sim_fpu_status_invalid_snan;
1154 }
1155 if (sim_fpu_is_snan (r))
1156 {
1157 *f = *r;
1158 f->class = sim_fpu_class_qnan;
1159 return sim_fpu_status_invalid_snan;
1160 }
1161 if (sim_fpu_is_qnan (l))
1162 {
1163 *f = *l;
1164 return 0;
1165 }
1166 if (sim_fpu_is_qnan (r))
1167 {
1168 *f = *r;
1169 return 0;
1170 }
1171 if (sim_fpu_is_infinity (l))
1172 {
1173 if (sim_fpu_is_infinity (r)
1174 && l->sign == r->sign)
1175 {
1176 *f = sim_fpu_qnan;
1177 return sim_fpu_status_invalid_isi;
1178 }
1179 *f = *l;
1180 return 0;
1181 }
1182 if (sim_fpu_is_infinity (r))
1183 {
1184 *f = *r;
1185 f->sign = !r->sign;
1186 return 0;
1187 }
1188 if (sim_fpu_is_zero (l))
1189 {
1190 if (sim_fpu_is_zero (r))
1191 {
1192 *f = sim_fpu_zero;
1193 f->sign = l->sign & !r->sign;
1194 }
1195 else
1196 {
1197 *f = *r;
1198 f->sign = !r->sign;
1199 }
1200 return 0;
1201 }
1202 if (sim_fpu_is_zero (r))
1203 {
1204 *f = *l;
1205 return 0;
1206 }
1207 {
1208 int status = 0;
1209 int shift = l->normal_exp - r->normal_exp;
1210 unsigned64 lfraction;
1211 unsigned64 rfraction;
1212 /* use exp of larger */
1213 if (shift >= NR_FRAC_GUARD)
1214 {
1215 /* left has much bigger magnitute */
1216 *f = *l;
1217 return sim_fpu_status_inexact;
1218 }
1219 if (shift <= - NR_FRAC_GUARD)
1220 {
1221 /* right has much bigger magnitute */
1222 *f = *r;
1223 f->sign = !r->sign;
1224 return sim_fpu_status_inexact;
1225 }
1226 lfraction = l->fraction;
1227 rfraction = r->fraction;
1228 if (shift > 0)
1229 {
1230 f->normal_exp = l->normal_exp;
1231 if (rfraction & LSMASK64 (shift - 1, 0))
1232 {
1233 status |= sim_fpu_status_inexact;
1234 rfraction |= LSBIT64 (shift); /* stick LSBit */
1235 }
1236 rfraction >>= shift;
1237 }
1238 else if (shift < 0)
1239 {
1240 f->normal_exp = r->normal_exp;
1241 if (lfraction & LSMASK64 (- shift - 1, 0))
1242 {
1243 status |= sim_fpu_status_inexact;
1244 lfraction |= LSBIT64 (- shift); /* stick LSBit */
1245 }
1246 lfraction >>= -shift;
1247 }
1248 else
1249 {
1250 f->normal_exp = r->normal_exp;
1251 }
1252
1253 /* perform the subtraction */
1254 if (l->sign)
1255 lfraction = - lfraction;
1256 if (!r->sign)
1257 rfraction = - rfraction;
1258 f->fraction = lfraction + rfraction;
1259
1260 /* zero? */
1261 if (f->fraction == 0)
1262 {
1263 *f = sim_fpu_zero;
1264 return 0;
1265 }
1266
1267 /* sign? */
1268 f->class = sim_fpu_class_number;
1269 if ((signed64) f->fraction >= 0)
1270 f->sign = 0;
1271 else
1272 {
1273 f->sign = 1;
1274 f->fraction = - f->fraction;
1275 }
1276
1277 /* normalize it */
1278 if ((f->fraction & IMPLICIT_2))
1279 {
1280 f->fraction = (f->fraction >> 1) | (f->fraction & 1);
1281 f->normal_exp ++;
1282 }
1283 else if (f->fraction < IMPLICIT_1)
1284 {
1285 do
1286 {
1287 f->fraction <<= 1;
1288 f->normal_exp --;
1289 }
1290 while (f->fraction < IMPLICIT_1);
1291 }
1292 ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
1293 return status;
1294 }
1295 }
1296
1297
1298 INLINE_SIM_FPU (int)
1299 sim_fpu_mul (sim_fpu *f,
1300 const sim_fpu *l,
1301 const sim_fpu *r)
1302 {
1303 if (sim_fpu_is_snan (l))
1304 {
1305 *f = *l;
1306 f->class = sim_fpu_class_qnan;
1307 return sim_fpu_status_invalid_snan;
1308 }
1309 if (sim_fpu_is_snan (r))
1310 {
1311 *f = *r;
1312 f->class = sim_fpu_class_qnan;
1313 return sim_fpu_status_invalid_snan;
1314 }
1315 if (sim_fpu_is_qnan (l))
1316 {
1317 *f = *l;
1318 return 0;
1319 }
1320 if (sim_fpu_is_qnan (r))
1321 {
1322 *f = *r;
1323 return 0;
1324 }
1325 if (sim_fpu_is_infinity (l))
1326 {
1327 if (sim_fpu_is_zero (r))
1328 {
1329 *f = sim_fpu_qnan;
1330 return sim_fpu_status_invalid_imz;
1331 }
1332 *f = *l;
1333 f->sign = l->sign ^ r->sign;
1334 return 0;
1335 }
1336 if (sim_fpu_is_infinity (r))
1337 {
1338 if (sim_fpu_is_zero (l))
1339 {
1340 *f = sim_fpu_qnan;
1341 return sim_fpu_status_invalid_imz;
1342 }
1343 *f = *r;
1344 f->sign = l->sign ^ r->sign;
1345 return 0;
1346 }
1347 if (sim_fpu_is_zero (l) || sim_fpu_is_zero (r))
1348 {
1349 *f = sim_fpu_zero;
1350 f->sign = l->sign ^ r->sign;
1351 return 0;
1352 }
1353 /* Calculate the mantissa by multiplying both 64bit numbers to get a
1354 128 bit number */
1355 {
1356 unsigned64 low;
1357 unsigned64 high;
1358 unsigned64 nl = l->fraction & 0xffffffff;
1359 unsigned64 nh = l->fraction >> 32;
1360 unsigned64 ml = r->fraction & 0xffffffff;
1361 unsigned64 mh = r->fraction >>32;
1362 unsigned64 pp_ll = ml * nl;
1363 unsigned64 pp_hl = mh * nl;
1364 unsigned64 pp_lh = ml * nh;
1365 unsigned64 pp_hh = mh * nh;
1366 unsigned64 res2 = 0;
1367 unsigned64 res0 = 0;
1368 unsigned64 ps_hh__ = pp_hl + pp_lh;
1369 if (ps_hh__ < pp_hl)
1370 res2 += UNSIGNED64 (0x100000000);
1371 pp_hl = (ps_hh__ << 32) & UNSIGNED64 (0xffffffff00000000);
1372 res0 = pp_ll + pp_hl;
1373 if (res0 < pp_ll)
1374 res2++;
1375 res2 += ((ps_hh__ >> 32) & 0xffffffff) + pp_hh;
1376 high = res2;
1377 low = res0;
1378
1379 f->normal_exp = l->normal_exp + r->normal_exp;
1380 f->sign = l->sign ^ r->sign;
1381 f->class = sim_fpu_class_number;
1382
1383 /* Input is bounded by [1,2) ; [2^60,2^61)
1384 Output is bounded by [1,4) ; [2^120,2^122) */
1385
1386 /* Adjust the exponent according to where the decimal point ended
1387 up in the high 64 bit word. In the source the decimal point
1388 was at NR_FRAC_GUARD. */
1389 f->normal_exp += NR_FRAC_GUARD + 64 - (NR_FRAC_GUARD * 2);
1390
1391 /* The high word is bounded according to the above. Consequently
1392 it has never overflowed into IMPLICIT_2. */
1393 ASSERT (high < LSBIT64 (((NR_FRAC_GUARD + 1) * 2) - 64));
1394 ASSERT (high >= LSBIT64 ((NR_FRAC_GUARD * 2) - 64));
1395 ASSERT (LSBIT64 (((NR_FRAC_GUARD + 1) * 2) - 64) < IMPLICIT_1);
1396
1397 /* normalize */
1398 do
1399 {
1400 f->normal_exp--;
1401 high <<= 1;
1402 if (low & LSBIT64 (63))
1403 high |= 1;
1404 low <<= 1;
1405 }
1406 while (high < IMPLICIT_1);
1407
1408 ASSERT (high >= IMPLICIT_1 && high < IMPLICIT_2);
1409 if (low != 0)
1410 {
1411 f->fraction = (high | 1); /* sticky */
1412 return sim_fpu_status_inexact;
1413 }
1414 else
1415 {
1416 f->fraction = high;
1417 return 0;
1418 }
1419 return 0;
1420 }
1421 }
1422
1423 INLINE_SIM_FPU (int)
1424 sim_fpu_div (sim_fpu *f,
1425 const sim_fpu *l,
1426 const sim_fpu *r)
1427 {
1428 if (sim_fpu_is_snan (l))
1429 {
1430 *f = *l;
1431 f->class = sim_fpu_class_qnan;
1432 return sim_fpu_status_invalid_snan;
1433 }
1434 if (sim_fpu_is_snan (r))
1435 {
1436 *f = *r;
1437 f->class = sim_fpu_class_qnan;
1438 return sim_fpu_status_invalid_snan;
1439 }
1440 if (sim_fpu_is_qnan (l))
1441 {
1442 *f = *l;
1443 f->class = sim_fpu_class_qnan;
1444 return 0;
1445 }
1446 if (sim_fpu_is_qnan (r))
1447 {
1448 *f = *r;
1449 f->class = sim_fpu_class_qnan;
1450 return 0;
1451 }
1452 if (sim_fpu_is_infinity (l))
1453 {
1454 if (sim_fpu_is_infinity (r))
1455 {
1456 *f = sim_fpu_qnan;
1457 return sim_fpu_status_invalid_idi;
1458 }
1459 else
1460 {
1461 *f = *l;
1462 f->sign = l->sign ^ r->sign;
1463 return 0;
1464 }
1465 }
1466 if (sim_fpu_is_zero (l))
1467 {
1468 if (sim_fpu_is_zero (r))
1469 {
1470 *f = sim_fpu_qnan;
1471 return sim_fpu_status_invalid_zdz;
1472 }
1473 else
1474 {
1475 *f = *l;
1476 f->sign = l->sign ^ r->sign;
1477 return 0;
1478 }
1479 }
1480 if (sim_fpu_is_infinity (r))
1481 {
1482 *f = sim_fpu_zero;
1483 f->sign = l->sign ^ r->sign;
1484 return 0;
1485 }
1486 if (sim_fpu_is_zero (r))
1487 {
1488 f->class = sim_fpu_class_infinity;
1489 f->sign = l->sign ^ r->sign;
1490 return sim_fpu_status_invalid_div0;
1491 }
1492
1493 /* Calculate the mantissa by multiplying both 64bit numbers to get a
1494 128 bit number */
1495 {
1496 /* quotient = ( ( numerator / denominator)
1497 x 2^(numerator exponent - denominator exponent)
1498 */
1499 unsigned64 numerator;
1500 unsigned64 denominator;
1501 unsigned64 quotient;
1502 unsigned64 bit;
1503
1504 f->class = sim_fpu_class_number;
1505 f->sign = l->sign ^ r->sign;
1506 f->normal_exp = l->normal_exp - r->normal_exp;
1507
1508 numerator = l->fraction;
1509 denominator = r->fraction;
1510
1511 /* Fraction will be less than 1.0 */
1512 if (numerator < denominator)
1513 {
1514 numerator <<= 1;
1515 f->normal_exp--;
1516 }
1517 ASSERT (numerator >= denominator);
1518
1519 /* Gain extra precision, already used one spare bit */
1520 numerator <<= NR_SPARE;
1521 denominator <<= NR_SPARE;
1522
1523 /* Does divide one bit at a time. Optimize??? */
1524 quotient = 0;
1525 bit = (IMPLICIT_1 << NR_SPARE);
1526 while (bit)
1527 {
1528 if (numerator >= denominator)
1529 {
1530 quotient |= bit;
1531 numerator -= denominator;
1532 }
1533 bit >>= 1;
1534 numerator <<= 1;
1535 }
1536
1537 /* discard (but save) the extra bits */
1538 if ((quotient & LSMASK64 (NR_SPARE -1, 0)))
1539 quotient = (quotient >> NR_SPARE) | 1;
1540 else
1541 quotient = (quotient >> NR_SPARE);
1542
1543 f->fraction = quotient;
1544 ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
1545 if (numerator != 0)
1546 {
1547 f->fraction |= 1; /* stick remaining bits */
1548 return sim_fpu_status_inexact;
1549 }
1550 else
1551 return 0;
1552 }
1553 }
1554
1555
1556 INLINE_SIM_FPU (int)
1557 sim_fpu_max (sim_fpu *f,
1558 const sim_fpu *l,
1559 const sim_fpu *r)
1560 {
1561 if (sim_fpu_is_snan (l))
1562 {
1563 *f = *l;
1564 f->class = sim_fpu_class_qnan;
1565 return sim_fpu_status_invalid_snan;
1566 }
1567 if (sim_fpu_is_snan (r))
1568 {
1569 *f = *r;
1570 f->class = sim_fpu_class_qnan;
1571 return sim_fpu_status_invalid_snan;
1572 }
1573 if (sim_fpu_is_qnan (l))
1574 {
1575 *f = *l;
1576 return 0;
1577 }
1578 if (sim_fpu_is_qnan (r))
1579 {
1580 *f = *r;
1581 return 0;
1582 }
1583 if (sim_fpu_is_infinity (l))
1584 {
1585 if (sim_fpu_is_infinity (r)
1586 && l->sign == r->sign)
1587 {
1588 *f = sim_fpu_qnan;
1589 return sim_fpu_status_invalid_isi;
1590 }
1591 if (l->sign)
1592 *f = *r; /* -inf < anything */
1593 else
1594 *f = *l; /* +inf > anthing */
1595 return 0;
1596 }
1597 if (sim_fpu_is_infinity (r))
1598 {
1599 if (r->sign)
1600 *f = *l; /* anything > -inf */
1601 else
1602 *f = *r; /* anthing < +inf */
1603 return 0;
1604 }
1605 if (l->sign > r->sign)
1606 {
1607 *f = *r; /* -ve < +ve */
1608 return 0;
1609 }
1610 if (l->sign < r->sign)
1611 {
1612 *f = *l; /* +ve > -ve */
1613 return 0;
1614 }
1615 ASSERT (l->sign == r->sign);
1616 if (l->normal_exp > r->normal_exp
1617 || (l->normal_exp == r->normal_exp &&
1618 l->fraction > r->fraction))
1619 {
1620 /* |l| > |r| */
1621 if (l->sign)
1622 *f = *r; /* -ve < -ve */
1623 else
1624 *f = *l; /* +ve > +ve */
1625 return 0;
1626 }
1627 else
1628 {
1629 /* |l| <= |r| */
1630 if (l->sign)
1631 *f = *l; /* -ve > -ve */
1632 else
1633 *f = *r; /* +ve < +ve */
1634 return 0;
1635 }
1636 }
1637
1638
1639 INLINE_SIM_FPU (int)
1640 sim_fpu_min (sim_fpu *f,
1641 const sim_fpu *l,
1642 const sim_fpu *r)
1643 {
1644 if (sim_fpu_is_snan (l))
1645 {
1646 *f = *l;
1647 f->class = sim_fpu_class_qnan;
1648 return sim_fpu_status_invalid_snan;
1649 }
1650 if (sim_fpu_is_snan (r))
1651 {
1652 *f = *r;
1653 f->class = sim_fpu_class_qnan;
1654 return sim_fpu_status_invalid_snan;
1655 }
1656 if (sim_fpu_is_qnan (l))
1657 {
1658 *f = *l;
1659 return 0;
1660 }
1661 if (sim_fpu_is_qnan (r))
1662 {
1663 *f = *r;
1664 return 0;
1665 }
1666 if (sim_fpu_is_infinity (l))
1667 {
1668 if (sim_fpu_is_infinity (r)
1669 && l->sign == r->sign)
1670 {
1671 *f = sim_fpu_qnan;
1672 return sim_fpu_status_invalid_isi;
1673 }
1674 if (l->sign)
1675 *f = *l; /* -inf < anything */
1676 else
1677 *f = *r; /* +inf > anthing */
1678 return 0;
1679 }
1680 if (sim_fpu_is_infinity (r))
1681 {
1682 if (r->sign)
1683 *f = *r; /* anything > -inf */
1684 else
1685 *f = *l; /* anything < +inf */
1686 return 0;
1687 }
1688 if (l->sign > r->sign)
1689 {
1690 *f = *l; /* -ve < +ve */
1691 return 0;
1692 }
1693 if (l->sign < r->sign)
1694 {
1695 *f = *r; /* +ve > -ve */
1696 return 0;
1697 }
1698 ASSERT (l->sign == r->sign);
1699 if (l->normal_exp > r->normal_exp
1700 || (l->normal_exp == r->normal_exp &&
1701 l->fraction > r->fraction))
1702 {
1703 /* |l| > |r| */
1704 if (l->sign)
1705 *f = *l; /* -ve < -ve */
1706 else
1707 *f = *r; /* +ve > +ve */
1708 return 0;
1709 }
1710 else
1711 {
1712 /* |l| <= |r| */
1713 if (l->sign)
1714 *f = *r; /* -ve > -ve */
1715 else
1716 *f = *l; /* +ve < +ve */
1717 return 0;
1718 }
1719 }
1720
1721
1722 INLINE_SIM_FPU (int)
1723 sim_fpu_neg (sim_fpu *f,
1724 const sim_fpu *r)
1725 {
1726 if (sim_fpu_is_snan (r))
1727 {
1728 *f = *r;
1729 f->class = sim_fpu_class_qnan;
1730 return sim_fpu_status_invalid_snan;
1731 }
1732 if (sim_fpu_is_qnan (r))
1733 {
1734 *f = *r;
1735 return 0;
1736 }
1737 *f = *r;
1738 f->sign = !r->sign;
1739 return 0;
1740 }
1741
1742
1743 INLINE_SIM_FPU (int)
1744 sim_fpu_abs (sim_fpu *f,
1745 const sim_fpu *r)
1746 {
1747 if (sim_fpu_is_snan (r))
1748 {
1749 *f = *r;
1750 f->class = sim_fpu_class_qnan;
1751 return sim_fpu_status_invalid_snan;
1752 }
1753 if (sim_fpu_is_qnan (r))
1754 {
1755 *f = *r;
1756 return 0;
1757 }
1758 *f = *r;
1759 f->sign = 0;
1760 return 0;
1761 }
1762
1763
1764 INLINE_SIM_FPU (int)
1765 sim_fpu_inv (sim_fpu *f,
1766 const sim_fpu *r)
1767 {
1768 return sim_fpu_div (f, &sim_fpu_one, r);
1769 }
1770
1771
1772 INLINE_SIM_FPU (int)
1773 sim_fpu_sqrt (sim_fpu *f,
1774 const sim_fpu *r)
1775 {
1776 if (sim_fpu_is_snan (r))
1777 {
1778 *f = sim_fpu_qnan;
1779 return sim_fpu_status_invalid_snan;
1780 }
1781 if (sim_fpu_is_qnan (r))
1782 {
1783 *f = sim_fpu_qnan;
1784 return 0;
1785 }
1786 if (sim_fpu_is_zero (r))
1787 {
1788 f->class = sim_fpu_class_zero;
1789 f->sign = r->sign;
1790 f->normal_exp = 0;
1791 return 0;
1792 }
1793 if (sim_fpu_is_infinity (r))
1794 {
1795 if (r->sign)
1796 {
1797 *f = sim_fpu_qnan;
1798 return sim_fpu_status_invalid_sqrt;
1799 }
1800 else
1801 {
1802 f->class = sim_fpu_class_infinity;
1803 f->sign = 0;
1804 f->sign = 0;
1805 return 0;
1806 }
1807 }
1808 if (r->sign)
1809 {
1810 *f = sim_fpu_qnan;
1811 return sim_fpu_status_invalid_sqrt;
1812 }
1813
1814 /* @(#)e_sqrt.c 5.1 93/09/24 */
1815 /*
1816 * ====================================================
1817 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
1818 *
1819 * Developed at SunPro, a Sun Microsystems, Inc. business.
1820 * Permission to use, copy, modify, and distribute this
1821 * software is freely granted, provided that this notice
1822 * is preserved.
1823 * ====================================================
1824 */
1825
1826 /* __ieee754_sqrt(x)
1827 * Return correctly rounded sqrt.
1828 * ------------------------------------------
1829 * | Use the hardware sqrt if you have one |
1830 * ------------------------------------------
1831 * Method:
1832 * Bit by bit method using integer arithmetic. (Slow, but portable)
1833 * 1. Normalization
1834 * Scale x to y in [1,4) with even powers of 2:
1835 * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
1836 * sqrt(x) = 2^k * sqrt(y)
1837 -
1838 - Since:
1839 - sqrt ( x*2^(2m) ) = sqrt(x).2^m ; m even
1840 - sqrt ( x*2^(2m + 1) ) = sqrt(2.x).2^m ; m odd
1841 - Define:
1842 - y = ((m even) ? x : 2.x)
1843 - Then:
1844 - y in [1, 4) ; [IMPLICIT_1,IMPLICIT_4)
1845 - And:
1846 - sqrt (y) in [1, 2) ; [IMPLICIT_1,IMPLICIT_2)
1847 -
1848 * 2. Bit by bit computation
1849 * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
1850 * i 0
1851 * i+1 2
1852 * s = 2*q , and y = 2 * ( y - q ). (1)
1853 * i i i i
1854 *
1855 * To compute q from q , one checks whether
1856 * i+1 i
1857 *
1858 * -(i+1) 2
1859 * (q + 2 ) <= y. (2)
1860 * i
1861 * -(i+1)
1862 * If (2) is false, then q = q ; otherwise q = q + 2 .
1863 * i+1 i i+1 i
1864 *
1865 * With some algebric manipulation, it is not difficult to see
1866 * that (2) is equivalent to
1867 * -(i+1)
1868 * s + 2 <= y (3)
1869 * i i
1870 *
1871 * The advantage of (3) is that s and y can be computed by
1872 * i i
1873 * the following recurrence formula:
1874 * if (3) is false
1875 *
1876 * s = s , y = y ; (4)
1877 * i+1 i i+1 i
1878 *
1879 -
1880 - NOTE: y = 2*y
1881 - i+1 i
1882 -
1883 * otherwise,
1884 * -i -(i+1)
1885 * s = s + 2 , y = y - s - 2 (5)
1886 * i+1 i i+1 i i
1887 *
1888 -
1889 - -(i+1)
1890 - NOTE: y = 2 (y - s - 2 )
1891 - i+1 i i
1892 -
1893 * One may easily use induction to prove (4) and (5).
1894 * Note. Since the left hand side of (3) contain only i+2 bits,
1895 * it does not necessary to do a full (53-bit) comparison
1896 * in (3).
1897 * 3. Final rounding
1898 * After generating the 53 bits result, we compute one more bit.
1899 * Together with the remainder, we can decide whether the
1900 * result is exact, bigger than 1/2ulp, or less than 1/2ulp
1901 * (it will never equal to 1/2ulp).
1902 * The rounding mode can be detected by checking whether
1903 * huge + tiny is equal to huge, and whether huge - tiny is
1904 * equal to huge for some floating point number "huge" and "tiny".
1905 *
1906 * Special cases:
1907 * sqrt(+-0) = +-0 ... exact
1908 * sqrt(inf) = inf
1909 * sqrt(-ve) = NaN ... with invalid signal
1910 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
1911 *
1912 * Other methods : see the appended file at the end of the program below.
1913 *---------------
1914 */
1915
1916 {
1917 /* generate sqrt(x) bit by bit */
1918 unsigned64 y;
1919 unsigned64 q;
1920 unsigned64 s;
1921 unsigned64 b;
1922
1923 f->class = sim_fpu_class_number;
1924 f->sign = 0;
1925 y = r->fraction;
1926 f->normal_exp = (r->normal_exp >> 1); /* exp = [exp/2] */
1927
1928 /* odd exp, double x to make it even */
1929 ASSERT (y >= IMPLICIT_1 && y < IMPLICIT_4);
1930 if ((r->normal_exp & 1))
1931 {
1932 y += y;
1933 }
1934 ASSERT (y >= IMPLICIT_1 && y < (IMPLICIT_2 << 1));
1935
1936 /* Let loop determine first value of s (either 1 or 2) */
1937 b = IMPLICIT_1;
1938 q = 0;
1939 s = 0;
1940
1941 while (b)
1942 {
1943 unsigned64 t = s + b;
1944 if (t <= y)
1945 {
1946 s |= (b << 1);
1947 y -= t;
1948 q |= b;
1949 }
1950 y <<= 1;
1951 b >>= 1;
1952 }
1953
1954 ASSERT (q >= IMPLICIT_1 && q < IMPLICIT_2);
1955 f->fraction = q;
1956 if (y != 0)
1957 {
1958 f->fraction |= 1; /* stick remaining bits */
1959 return sim_fpu_status_inexact;
1960 }
1961 else
1962 return 0;
1963 }
1964 }
1965
1966
1967 /* int/long <-> sim_fpu */
1968
1969 INLINE_SIM_FPU (int)
1970 sim_fpu_i32to (sim_fpu *f,
1971 signed32 i,
1972 sim_fpu_round round)
1973 {
1974 i2fpu (f, i, 0);
1975 return 0;
1976 }
1977
1978 INLINE_SIM_FPU (int)
1979 sim_fpu_u32to (sim_fpu *f,
1980 unsigned32 u,
1981 sim_fpu_round round)
1982 {
1983 u2fpu (f, u, 0);
1984 return 0;
1985 }
1986
1987 INLINE_SIM_FPU (int)
1988 sim_fpu_i64to (sim_fpu *f,
1989 signed64 i,
1990 sim_fpu_round round)
1991 {
1992 i2fpu (f, i, 1);
1993 return 0;
1994 }
1995
1996 INLINE_SIM_FPU (int)
1997 sim_fpu_u64to (sim_fpu *f,
1998 unsigned64 u,
1999 sim_fpu_round round)
2000 {
2001 u2fpu (f, u, 1);
2002 return 0;
2003 }
2004
2005
2006 INLINE_SIM_FPU (int)
2007 sim_fpu_to32i (signed32 *i,
2008 const sim_fpu *f,
2009 sim_fpu_round round)
2010 {
2011 signed64 i64;
2012 int status = fpu2i (&i64, f, 0, round);
2013 *i = i64;
2014 return status;
2015 }
2016
2017 INLINE_SIM_FPU (int)
2018 sim_fpu_to32u (unsigned32 *u,
2019 const sim_fpu *f,
2020 sim_fpu_round round)
2021 {
2022 unsigned64 u64;
2023 int status = fpu2u (&u64, f, 0);
2024 *u = u64;
2025 return status;
2026 }
2027
2028 INLINE_SIM_FPU (int)
2029 sim_fpu_to64i (signed64 *i,
2030 const sim_fpu *f,
2031 sim_fpu_round round)
2032 {
2033 return fpu2i (i, f, 1, round);
2034 }
2035
2036
2037 INLINE_SIM_FPU (int)
2038 sim_fpu_to64u (unsigned64 *u,
2039 const sim_fpu *f,
2040 sim_fpu_round round)
2041 {
2042 return fpu2u (u, f, 1);
2043 }
2044
2045
2046
2047 /* sim_fpu -> host format */
2048
2049 #if 0
2050 INLINE_SIM_FPU (float)
2051 sim_fpu_2f (const sim_fpu *f)
2052 {
2053 return fval.d;
2054 }
2055 #endif
2056
2057
2058 INLINE_SIM_FPU (double)
2059 sim_fpu_2d (const sim_fpu *s)
2060 {
2061 sim_fpu_map val;
2062 if (sim_fpu_is_snan (s))
2063 {
2064 /* gag SNaN's */
2065 sim_fpu n = *s;
2066 n.class = sim_fpu_class_qnan;
2067 val.i = pack_fpu (&n, 1);
2068 }
2069 else
2070 {
2071 val.i = pack_fpu (s, 1);
2072 }
2073 return val.d;
2074 }
2075
2076
2077 #if 0
2078 INLINE_SIM_FPU (void)
2079 sim_fpu_f2 (sim_fpu *f,
2080 float s)
2081 {
2082 sim_fpu_map val;
2083 val.d = s;
2084 unpack_fpu (f, val.i, 1);
2085 }
2086 #endif
2087
2088
2089 INLINE_SIM_FPU (void)
2090 sim_fpu_d2 (sim_fpu *f,
2091 double d)
2092 {
2093 sim_fpu_map val;
2094 val.d = d;
2095 unpack_fpu (f, val.i, 1);
2096 }
2097
2098
2099 /* General */
2100
2101 INLINE_SIM_FPU (int)
2102 sim_fpu_is_nan (const sim_fpu *d)
2103 {
2104 switch (d->class)
2105 {
2106 case sim_fpu_class_qnan:
2107 case sim_fpu_class_snan:
2108 return 1;
2109 default:
2110 return 0;
2111 }
2112 }
2113
2114 INLINE_SIM_FPU (int)
2115 sim_fpu_is_qnan (const sim_fpu *d)
2116 {
2117 switch (d->class)
2118 {
2119 case sim_fpu_class_qnan:
2120 return 1;
2121 default:
2122 return 0;
2123 }
2124 }
2125
2126 INLINE_SIM_FPU (int)
2127 sim_fpu_is_snan (const sim_fpu *d)
2128 {
2129 switch (d->class)
2130 {
2131 case sim_fpu_class_snan:
2132 return 1;
2133 default:
2134 return 0;
2135 }
2136 }
2137
2138 INLINE_SIM_FPU (int)
2139 sim_fpu_is_zero (const sim_fpu *d)
2140 {
2141 switch (d->class)
2142 {
2143 case sim_fpu_class_zero:
2144 return 1;
2145 default:
2146 return 0;
2147 }
2148 }
2149
2150 INLINE_SIM_FPU (int)
2151 sim_fpu_is_infinity (const sim_fpu *d)
2152 {
2153 switch (d->class)
2154 {
2155 case sim_fpu_class_infinity:
2156 return 1;
2157 default:
2158 return 0;
2159 }
2160 }
2161
2162 INLINE_SIM_FPU (int)
2163 sim_fpu_is_number (const sim_fpu *d)
2164 {
2165 switch (d->class)
2166 {
2167 case sim_fpu_class_denorm:
2168 case sim_fpu_class_number:
2169 return 1;
2170 default:
2171 return 0;
2172 }
2173 }
2174
2175 INLINE_SIM_FPU (int)
2176 sim_fpu_is_denorm (const sim_fpu *d)
2177 {
2178 switch (d->class)
2179 {
2180 case sim_fpu_class_denorm:
2181 return 1;
2182 default:
2183 return 0;
2184 }
2185 }
2186
2187
2188 INLINE_SIM_FPU (int)
2189 sim_fpu_sign (const sim_fpu *d)
2190 {
2191 return d->sign;
2192 }
2193
2194
2195 INLINE_SIM_FPU (int)
2196 sim_fpu_exp (const sim_fpu *d)
2197 {
2198 return d->normal_exp;
2199 }
2200
2201
2202 INLINE_SIM_FPU (unsigned64)
2203 sim_fpu_fraction (const sim_fpu *d)
2204 {
2205 return d->fraction;
2206 }
2207
2208
2209 INLINE_SIM_FPU (unsigned64)
2210 sim_fpu_guard (const sim_fpu *d, int is_double)
2211 {
2212 unsigned64 rv;
2213 unsigned64 guardmask = LSMASK64 (NR_GUARDS - 1, 0);
2214 rv = (d->fraction & guardmask) >> NR_PAD;
2215 return rv;
2216 }
2217
2218
2219 INLINE_SIM_FPU (int)
2220 sim_fpu_is (const sim_fpu *d)
2221 {
2222 switch (d->class)
2223 {
2224 case sim_fpu_class_qnan:
2225 return SIM_FPU_IS_QNAN;
2226 case sim_fpu_class_snan:
2227 return SIM_FPU_IS_SNAN;
2228 case sim_fpu_class_infinity:
2229 if (d->sign)
2230 return SIM_FPU_IS_NINF;
2231 else
2232 return SIM_FPU_IS_PINF;
2233 case sim_fpu_class_number:
2234 if (d->sign)
2235 return SIM_FPU_IS_NNUMBER;
2236 else
2237 return SIM_FPU_IS_PNUMBER;
2238 case sim_fpu_class_denorm:
2239 if (d->sign)
2240 return SIM_FPU_IS_NDENORM;
2241 else
2242 return SIM_FPU_IS_PDENORM;
2243 case sim_fpu_class_zero:
2244 if (d->sign)
2245 return SIM_FPU_IS_NZERO;
2246 else
2247 return SIM_FPU_IS_PZERO;
2248 default:
2249 return -1;
2250 abort ();
2251 }
2252 }
2253
2254 INLINE_SIM_FPU (int)
2255 sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r)
2256 {
2257 sim_fpu res;
2258 sim_fpu_sub (&res, l, r);
2259 return sim_fpu_is (&res);
2260 }
2261
2262 INLINE_SIM_FPU (int)
2263 sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r)
2264 {
2265 int status;
2266 sim_fpu_lt (&status, l, r);
2267 return status;
2268 }
2269
2270 INLINE_SIM_FPU (int)
2271 sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r)
2272 {
2273 int is;
2274 sim_fpu_le (&is, l, r);
2275 return is;
2276 }
2277
2278 INLINE_SIM_FPU (int)
2279 sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r)
2280 {
2281 int is;
2282 sim_fpu_eq (&is, l, r);
2283 return is;
2284 }
2285
2286 INLINE_SIM_FPU (int)
2287 sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r)
2288 {
2289 int is;
2290 sim_fpu_ne (&is, l, r);
2291 return is;
2292 }
2293
2294 INLINE_SIM_FPU (int)
2295 sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r)
2296 {
2297 int is;
2298 sim_fpu_ge (&is, l, r);
2299 return is;
2300 }
2301
2302 INLINE_SIM_FPU (int)
2303 sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r)
2304 {
2305 int is;
2306 sim_fpu_gt (&is, l, r);
2307 return is;
2308 }
2309
2310
2311 /* Compare operators */
2312
2313 INLINE_SIM_FPU (int)
2314 sim_fpu_lt (int *is,
2315 const sim_fpu *l,
2316 const sim_fpu *r)
2317 {
2318 if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
2319 {
2320 sim_fpu_map lval;
2321 sim_fpu_map rval;
2322 lval.i = pack_fpu (l, 1);
2323 rval.i = pack_fpu (r, 1);
2324 (*is) = (lval.d < rval.d);
2325 return 0;
2326 }
2327 else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
2328 {
2329 *is = 0;
2330 return sim_fpu_status_invalid_snan;
2331 }
2332 else
2333 {
2334 *is = 0;
2335 return sim_fpu_status_invalid_qnan;
2336 }
2337 }
2338
2339 INLINE_SIM_FPU (int)
2340 sim_fpu_le (int *is,
2341 const sim_fpu *l,
2342 const sim_fpu *r)
2343 {
2344 if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
2345 {
2346 sim_fpu_map lval;
2347 sim_fpu_map rval;
2348 lval.i = pack_fpu (l, 1);
2349 rval.i = pack_fpu (r, 1);
2350 *is = (lval.d <= rval.d);
2351 return 0;
2352 }
2353 else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
2354 {
2355 *is = 0;
2356 return sim_fpu_status_invalid_snan;
2357 }
2358 else
2359 {
2360 *is = 0;
2361 return sim_fpu_status_invalid_qnan;
2362 }
2363 }
2364
2365 INLINE_SIM_FPU (int)
2366 sim_fpu_eq (int *is,
2367 const sim_fpu *l,
2368 const sim_fpu *r)
2369 {
2370 if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
2371 {
2372 sim_fpu_map lval;
2373 sim_fpu_map rval;
2374 lval.i = pack_fpu (l, 1);
2375 rval.i = pack_fpu (r, 1);
2376 (*is) = (lval.d == rval.d);
2377 return 0;
2378 }
2379 else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
2380 {
2381 *is = 0;
2382 return sim_fpu_status_invalid_snan;
2383 }
2384 else
2385 {
2386 *is = 0;
2387 return sim_fpu_status_invalid_qnan;
2388 }
2389 }
2390
2391 INLINE_SIM_FPU (int)
2392 sim_fpu_ne (int *is,
2393 const sim_fpu *l,
2394 const sim_fpu *r)
2395 {
2396 if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
2397 {
2398 sim_fpu_map lval;
2399 sim_fpu_map rval;
2400 lval.i = pack_fpu (l, 1);
2401 rval.i = pack_fpu (r, 1);
2402 (*is) = (lval.d != rval.d);
2403 return 0;
2404 }
2405 else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
2406 {
2407 *is = 0;
2408 return sim_fpu_status_invalid_snan;
2409 }
2410 else
2411 {
2412 *is = 0;
2413 return sim_fpu_status_invalid_qnan;
2414 }
2415 }
2416
2417 INLINE_SIM_FPU (int)
2418 sim_fpu_ge (int *is,
2419 const sim_fpu *l,
2420 const sim_fpu *r)
2421 {
2422 return sim_fpu_le (is, r, l);
2423 }
2424
2425 INLINE_SIM_FPU (int)
2426 sim_fpu_gt (int *is,
2427 const sim_fpu *l,
2428 const sim_fpu *r)
2429 {
2430 return sim_fpu_lt (is, r, l);
2431 }
2432
2433
2434 /* A number of useful constants */
2435
2436 #if EXTERN_SIM_FPU_P
2437 const sim_fpu sim_fpu_zero = {
2438 sim_fpu_class_zero,
2439 };
2440 const sim_fpu sim_fpu_qnan = {
2441 sim_fpu_class_qnan,
2442 };
2443 const sim_fpu sim_fpu_one = {
2444 sim_fpu_class_number, 0, IMPLICIT_1, 0
2445 };
2446 const sim_fpu sim_fpu_two = {
2447 sim_fpu_class_number, 0, IMPLICIT_1, 1
2448 };
2449 const sim_fpu sim_fpu_max32 = {
2450 sim_fpu_class_number, 0, LSMASK64 (NR_FRAC_GUARD, NR_GUARDS32), NORMAL_EXPMAX32
2451 };
2452 const sim_fpu sim_fpu_max64 = {
2453 sim_fpu_class_number, 0, LSMASK64 (NR_FRAC_GUARD, NR_GUARDS64), NORMAL_EXPMAX64
2454 };
2455 #endif
2456
2457
2458 /* For debugging */
2459
2460 INLINE_SIM_FPU (void)
2461 sim_fpu_print_fpu (const sim_fpu *f,
2462 sim_fpu_print_func *print,
2463 void *arg)
2464 {
2465 sim_fpu_printn_fpu (f, print, -1, arg);
2466 }
2467
2468 INLINE_SIM_FPU (void)
2469 sim_fpu_printn_fpu (const sim_fpu *f,
2470 sim_fpu_print_func *print,
2471 int digits,
2472 void *arg)
2473 {
2474 print (arg, "%s", f->sign ? "-" : "+");
2475 switch (f->class)
2476 {
2477 case sim_fpu_class_qnan:
2478 print (arg, "0.");
2479 print_bits (f->fraction, NR_FRAC_GUARD - 1, digits, print, arg);
2480 print (arg, "*QuietNaN");
2481 break;
2482 case sim_fpu_class_snan:
2483 print (arg, "0.");
2484 print_bits (f->fraction, NR_FRAC_GUARD - 1, digits, print, arg);
2485 print (arg, "*SignalNaN");
2486 break;
2487 case sim_fpu_class_zero:
2488 print (arg, "0.0");
2489 break;
2490 case sim_fpu_class_infinity:
2491 print (arg, "INF");
2492 break;
2493 case sim_fpu_class_number:
2494 case sim_fpu_class_denorm:
2495 print (arg, "1.");
2496 print_bits (f->fraction, NR_FRAC_GUARD - 1, digits, print, arg);
2497 print (arg, "*2^%+d", f->normal_exp);
2498 ASSERT (f->fraction >= IMPLICIT_1);
2499 ASSERT (f->fraction < IMPLICIT_2);
2500 }
2501 }
2502
2503
2504 INLINE_SIM_FPU (void)
2505 sim_fpu_print_status (int status,
2506 sim_fpu_print_func *print,
2507 void *arg)
2508 {
2509 int i = 1;
2510 char *prefix = "";
2511 while (status >= i)
2512 {
2513 switch ((sim_fpu_status) (status & i))
2514 {
2515 case sim_fpu_status_denorm:
2516 print (arg, "%sD", prefix);
2517 break;
2518 case sim_fpu_status_invalid_snan:
2519 print (arg, "%sSNaN", prefix);
2520 break;
2521 case sim_fpu_status_invalid_qnan:
2522 print (arg, "%sQNaN", prefix);
2523 break;
2524 case sim_fpu_status_invalid_isi:
2525 print (arg, "%sISI", prefix);
2526 break;
2527 case sim_fpu_status_invalid_idi:
2528 print (arg, "%sIDI", prefix);
2529 break;
2530 case sim_fpu_status_invalid_zdz:
2531 print (arg, "%sZDZ", prefix);
2532 break;
2533 case sim_fpu_status_invalid_imz:
2534 print (arg, "%sIMZ", prefix);
2535 break;
2536 case sim_fpu_status_invalid_cvi:
2537 print (arg, "%sCVI", prefix);
2538 break;
2539 case sim_fpu_status_invalid_cmp:
2540 print (arg, "%sCMP", prefix);
2541 break;
2542 case sim_fpu_status_invalid_sqrt:
2543 print (arg, "%sSQRT", prefix);
2544 break;
2545 break;
2546 case sim_fpu_status_inexact:
2547 print (arg, "%sX", prefix);
2548 break;
2549 break;
2550 case sim_fpu_status_overflow:
2551 print (arg, "%sO", prefix);
2552 break;
2553 break;
2554 case sim_fpu_status_underflow:
2555 print (arg, "%sU", prefix);
2556 break;
2557 break;
2558 case sim_fpu_status_invalid_div0:
2559 print (arg, "%s/", prefix);
2560 break;
2561 break;
2562 case sim_fpu_status_rounded:
2563 print (arg, "%sR", prefix);
2564 break;
2565 break;
2566 }
2567 i <<= 1;
2568 prefix = ",";
2569 }
2570 }
2571
2572 #endif