Flush defunct sim_kill.
[binutils-gdb.git] / sim / h8300 / compile.c
1 /*
2 * Simulator for the Hitachi H8/300 architecture.
3 *
4 * Written by Steve Chamberlain of Cygnus Support. sac@cygnus.com
5 *
6 * This file is part of H8/300 sim
7 *
8 *
9 * THIS SOFTWARE IS NOT COPYRIGHTED
10 *
11 * Cygnus offers the following for use in the public domain. Cygnus makes no
12 * warranty with regard to the software or its performance and the user
13 * accepts the software "AS IS" with all faults.
14 *
15 * CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS
16 * SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
17 * AND FITNESS FOR A PARTICULAR PURPOSE.
18 */
19
20 #include "config.h"
21
22 #include <signal.h>
23 #ifdef HAVE_TIME_H
24 #include <time.h>
25 #endif
26 #ifdef HAVE_STDLIB_H
27 #include <stdlib.h>
28 #endif
29 #include <sys/param.h>
30 #include "wait.h"
31 #include "ansidecl.h"
32 #include "bfd.h"
33 #include "callback.h"
34 #include "remote-sim.h"
35
36 int debug;
37
38 host_callback *sim_callback;
39
40 static SIM_OPEN_KIND sim_kind;
41 static char *myname;
42
43 /* FIXME: Needs to live in header file.
44 This header should also include the things in remote-sim.h.
45 One could move this to remote-sim.h but this function isn't needed
46 by gdb. */
47 void sim_set_simcache_size PARAMS ((int));
48
49 #define X(op, size) op*4+size
50
51 #define SP (h8300hmode ? SL:SW)
52 #define SB 0
53 #define SW 1
54 #define SL 2
55 #define OP_REG 1
56 #define OP_DEC 2
57 #define OP_DISP 3
58 #define OP_INC 4
59 #define OP_PCREL 5
60 #define OP_MEM 6
61 #define OP_CCR 7
62 #define OP_IMM 8
63 #define OP_ABS 10
64 #define h8_opcodes ops
65 #define DEFINE_TABLE
66 #include "opcode/h8300.h"
67
68 #include "inst.h"
69
70 #define LOW_BYTE(x) ((x) & 0xff)
71 #define HIGH_BYTE(x) (((x)>>8) & 0xff)
72 #define P(X,Y) ((X<<8) | Y)
73
74 #define BUILDSR() cpu.ccr = (N << 3) | (Z << 2) | (V<<1) | C;
75
76 #define GETSR() \
77 c = (cpu.ccr >> 0) & 1;\
78 v = (cpu.ccr >> 1) & 1;\
79 nz = !((cpu.ccr >> 2) & 1);\
80 n = (cpu.ccr >> 3) & 1;
81
82 #ifdef __CHAR_IS_SIGNED__
83 #define SEXTCHAR(x) ((char)(x))
84 #endif
85
86 #ifndef SEXTCHAR
87 #define SEXTCHAR(x) ((x & 0x80) ? (x | ~0xff): x & 0xff)
88 #endif
89
90 #define UEXTCHAR(x) ((x) & 0xff)
91 #define UEXTSHORT(x) ((x) & 0xffff)
92 #define SEXTSHORT(x) ((short)(x))
93
94 static cpu_state_type cpu;
95
96 int h8300hmode = 0;
97 int h8300smode = 0;
98
99 static int memory_size;
100
101
102 static int
103 get_now ()
104 {
105 #ifndef WIN32
106 return time (0);
107 #endif
108 return 0;
109 }
110
111 static int
112 now_persec ()
113 {
114 return 1;
115 }
116
117
118 static int
119 bitfrom (x)
120 {
121 switch (x & SIZE)
122 {
123 case L_8:
124 return SB;
125 case L_16:
126 return SW;
127 case L_32:
128 return SL;
129 case L_P:
130 return h8300hmode ? SL : SW;
131 }
132 }
133
134 static
135 unsigned int
136 lvalue (x, rn)
137 {
138 switch (x / 4)
139 {
140 case OP_DISP:
141 if (rn == 8)
142 {
143 return X (OP_IMM, SP);
144 }
145 return X (OP_REG, SP);
146
147 case OP_MEM:
148
149 return X (OP_MEM, SP);
150 default:
151 abort ();
152 }
153 }
154
155 static unsigned int
156 decode (addr, data, dst)
157 int addr;
158 unsigned char *data;
159 decoded_inst *dst;
160
161 {
162 int rs = 0;
163 int rd = 0;
164 int rdisp = 0;
165 int abs = 0;
166 int plen = 0;
167 int bit = 0;
168
169 struct h8_opcode *q = h8_opcodes;
170 int size = 0;
171 dst->dst.type = -1;
172 dst->src.type = -1;
173 /* Find the exact opcode/arg combo */
174 while (q->name)
175 {
176 op_type *nib;
177 unsigned int len = 0;
178
179 nib = q->data.nib;
180
181 while (1)
182 {
183 op_type looking_for = *nib;
184 int thisnib = data[len >> 1];
185
186 thisnib = (len & 1) ? (thisnib & 0xf) : ((thisnib >> 4) & 0xf);
187
188 if (looking_for < 16 && looking_for >= 0)
189 {
190 if (looking_for != thisnib)
191 goto fail;
192 }
193 else
194 {
195 if ((int) looking_for & (int) B31)
196 {
197 if (!(((int) thisnib & 0x8) != 0))
198 goto fail;
199 looking_for = (op_type) ((int) looking_for & ~(int)
200 B31);
201 thisnib &= 0x7;
202 }
203 if ((int) looking_for & (int) B30)
204 {
205 if (!(((int) thisnib & 0x8) == 0))
206 goto fail;
207 looking_for = (op_type) ((int) looking_for & ~(int) B30);
208 }
209 if (looking_for & DBIT)
210 {
211 if ((looking_for & 5) != (thisnib & 5))
212 goto fail;
213 abs = (thisnib & 0x8) ? 2 : 1;
214 }
215 else if (looking_for & (REG | IND | INC | DEC))
216 {
217 if (looking_for & REG)
218 {
219 /*
220 * Can work out size from the
221 * register
222 */
223 size = bitfrom (looking_for);
224 }
225 if (looking_for & SRC)
226 {
227 rs = thisnib;
228 }
229 else
230 {
231 rd = thisnib;
232 }
233 }
234 else if (looking_for & L_16)
235 {
236 abs = (data[len >> 1]) * 256 + data[(len + 2) >> 1];
237 plen = 16;
238 if (looking_for & (PCREL | DISP))
239 {
240 abs = (short) (abs);
241 }
242 }
243 else if (looking_for & ABSJMP)
244 {
245 abs =
246 (data[1] << 16)
247 | (data[2] << 8)
248 | (data[3]);
249 }
250 else if (looking_for & MEMIND)
251 {
252 abs = data[1];
253 }
254 else if (looking_for & L_32)
255 {
256 int i = len >> 1;
257 abs = (data[i] << 24)
258 | (data[i + 1] << 16)
259 | (data[i + 2] << 8)
260 | (data[i + 3]);
261
262 plen = 32;
263 }
264 else if (looking_for & L_24)
265 {
266 int i = len >> 1;
267 abs = (data[i] << 16) | (data[i + 1] << 8) | (data[i + 2]);
268 plen = 24;
269 }
270 else if (looking_for & IGNORE)
271 {
272 /* nothing to do */
273 }
274 else if (looking_for & DISPREG)
275 {
276 rdisp = thisnib & 0x7;
277 }
278 else if (looking_for & KBIT)
279 {
280 switch (thisnib)
281 {
282 case 9:
283 abs = 4;
284 break;
285 case 8:
286 abs = 2;
287 break;
288 case 0:
289 abs = 1;
290 break;
291 }
292 }
293 else if (looking_for & L_8)
294 {
295 plen = 8;
296
297 if (looking_for & PCREL)
298 {
299 abs = SEXTCHAR (data[len >> 1]);
300 }
301 else if (looking_for & ABS8MEM)
302 {
303 plen = 8;
304 abs = h8300hmode ? ~0xff0000ff : ~0xffff00ff;
305 abs |= data[len >> 1] & 0xff ;
306 }
307 else
308 {
309 abs = data[len >> 1] & 0xff;
310 }
311 }
312 else if (looking_for & L_3)
313 {
314 plen = 3;
315
316 bit = thisnib;
317 }
318 else if (looking_for == E)
319 {
320 dst->op = q;
321
322 /* Fill in the args */
323 {
324 op_type *args = q->args.nib;
325 int hadone = 0;
326
327 while (*args != E)
328 {
329 int x = *args;
330 int rn = (x & DST) ? rd : rs;
331 ea_type *p;
332
333 if (x & DST)
334 {
335 p = &(dst->dst);
336 }
337 else
338 {
339 p = &(dst->src);
340 }
341
342 if (x & (L_3))
343 {
344 p->type = X (OP_IMM, size);
345 p->literal = bit;
346 }
347 else if (x & (IMM | KBIT | DBIT))
348 {
349 p->type = X (OP_IMM, size);
350 p->literal = abs;
351 }
352 else if (x & REG)
353 {
354 /* Reset the size, some
355 ops (like mul) have two sizes */
356
357 size = bitfrom (x);
358 p->type = X (OP_REG, size);
359 p->reg = rn;
360 }
361 else if (x & INC)
362 {
363 p->type = X (OP_INC, size);
364 p->reg = rn & 0x7;
365 }
366 else if (x & DEC)
367 {
368 p->type = X (OP_DEC, size);
369 p->reg = rn & 0x7;
370 }
371 else if (x & IND)
372 {
373 p->type = X (OP_DISP, size);
374 p->reg = rn & 0x7;
375 p->literal = 0;
376 }
377 else if (x & (ABS | ABSJMP | ABS8MEM))
378 {
379 p->type = X (OP_DISP, size);
380 p->literal = abs;
381 p->reg = 8;
382 }
383 else if (x & MEMIND)
384 {
385 p->type = X (OP_MEM, size);
386 p->literal = abs;
387 }
388 else if (x & PCREL)
389 {
390 p->type = X (OP_PCREL, size);
391 p->literal = abs + addr + 2;
392 if (x & L_16)
393 p->literal += 2;
394 }
395 else if (x & ABSJMP)
396 {
397 p->type = X (OP_IMM, SP);
398 p->literal = abs;
399 }
400 else if (x & DISP)
401 {
402 p->type = X (OP_DISP, size);
403 p->literal = abs;
404 p->reg = rdisp & 0x7;
405 }
406 else if (x & CCR)
407 {
408 p->type = OP_CCR;
409 }
410 else
411 printf ("Hmmmm %x", x);
412
413 args++;
414 }
415 }
416
417 /*
418 * But a jmp or a jsr gets
419 * automagically lvalued, since we
420 * branch to their address not their
421 * contents
422 */
423 if (q->how == O (O_JSR, SB)
424 || q->how == O (O_JMP, SB))
425 {
426 dst->src.type = lvalue (dst->src.type, dst->src.reg);
427 }
428
429 if (dst->dst.type == -1)
430 dst->dst = dst->src;
431
432 dst->opcode = q->how;
433 dst->cycles = q->time;
434
435 /* And a jsr to 0xc4 is turned into a magic trap */
436
437 if (dst->opcode == O (O_JSR, SB))
438 {
439 if (dst->src.literal == 0xc4)
440 {
441 dst->opcode = O (O_SYSCALL, SB);
442 }
443 }
444
445 dst->next_pc = addr + len / 2;
446 return;
447 }
448 else
449 {
450 printf ("Dont understand %x \n", looking_for);
451 }
452 }
453
454 len++;
455 nib++;
456 }
457
458 fail:
459 q++;
460 }
461
462 dst->opcode = O (O_ILL, SB);
463 }
464
465
466 static void
467 compile (pc)
468 {
469 int idx;
470
471 /* find the next cache entry to use */
472
473 idx = cpu.cache_top + 1;
474 cpu.compiles++;
475 if (idx >= cpu.csize)
476 {
477 idx = 1;
478 }
479 cpu.cache_top = idx;
480
481 /* Throw away its old meaning */
482 cpu.cache_idx[cpu.cache[idx].oldpc] = 0;
483
484 /* set to new address */
485 cpu.cache[idx].oldpc = pc;
486
487 /* fill in instruction info */
488 decode (pc, cpu.memory + pc, cpu.cache + idx);
489
490 /* point to new cache entry */
491 cpu.cache_idx[pc] = idx;
492 }
493
494
495 static unsigned char *breg[18];
496 static unsigned short *wreg[18];
497 static unsigned int *lreg[18];
498
499 #define GET_B_REG(x) *(breg[x])
500 #define SET_B_REG(x,y) (*(breg[x])) = (y)
501 #define GET_W_REG(x) *(wreg[x])
502 #define SET_W_REG(x,y) (*(wreg[x])) = (y)
503
504 #define GET_L_REG(x) *(lreg[x])
505 #define SET_L_REG(x,y) (*(lreg[x])) = (y)
506
507 #define GET_MEMORY_L(x) \
508 (x < memory_size \
509 ? ((cpu.memory[x+0] << 24) | (cpu.memory[x+1] << 16) \
510 | (cpu.memory[x+2] << 8) | cpu.memory[x+3]) \
511 : ((cpu.eightbit[(x+0) & 0xff] << 24) | (cpu.eightbit[(x+1) & 0xff] << 16) \
512 | (cpu.eightbit[(x+2) & 0xff] << 8) | cpu.eightbit[(x+3) & 0xff]))
513
514 #define GET_MEMORY_W(x) \
515 (x < memory_size \
516 ? ((cpu.memory[x+0] << 8) | (cpu.memory[x+1] << 0)) \
517 : ((cpu.eightbit[(x+0) & 0xff] << 8) | (cpu.eightbit[(x+1) & 0xff] << 0)))
518
519
520 #define GET_MEMORY_B(x) \
521 (x < memory_size ? (cpu.memory[x]) : (cpu.eightbit[x & 0xff]))
522
523 #define SET_MEMORY_L(x,y) \
524 { register unsigned char *_p; register int __y = y; \
525 _p = (x < memory_size ? cpu.memory+x : cpu.eightbit + (x & 0xff)); \
526 _p[0] = (__y)>>24; _p[1] = (__y)>>16; \
527 _p[2] = (__y)>>8; _p[3] = (__y)>>0;}
528
529 #define SET_MEMORY_W(x,y) \
530 { register unsigned char *_p; register int __y = y; \
531 _p = (x < memory_size ? cpu.memory+x : cpu.eightbit + (x & 0xff)); \
532 _p[0] = (__y)>>8; _p[1] =(__y);}
533
534 #define SET_MEMORY_B(x,y) \
535 (x < memory_size ? (cpu.memory[(x)] = y) : (cpu.eightbit[x & 0xff] = y))
536
537 int
538 fetch (arg, n)
539 ea_type *arg;
540 {
541 int rn = arg->reg;
542 int abs = arg->literal;
543 int r;
544 int t;
545
546 switch (arg->type)
547 {
548 case X (OP_REG, SB):
549 return GET_B_REG (rn);
550 case X (OP_REG, SW):
551 return GET_W_REG (rn);
552 case X (OP_REG, SL):
553 return GET_L_REG (rn);
554 case X (OP_IMM, SB):
555 case X (OP_IMM, SW):
556 case X (OP_IMM, SL):
557 return abs;
558 case X (OP_DEC, SB):
559 abort ();
560
561 case X (OP_INC, SB):
562 t = GET_L_REG (rn);
563 t &= cpu.mask;
564 r = GET_MEMORY_B (t);
565 t++;
566 t = t & cpu.mask;
567 SET_L_REG (rn, t);
568 return r;
569 break;
570 case X (OP_INC, SW):
571 t = GET_L_REG (rn);
572 t &= cpu.mask;
573 r = GET_MEMORY_W (t);
574 t += 2;
575 t = t & cpu.mask;
576 SET_L_REG (rn, t);
577 return r;
578 case X (OP_INC, SL):
579 t = GET_L_REG (rn);
580 t &= cpu.mask;
581 r = GET_MEMORY_L (t);
582
583 t += 4;
584 t = t & cpu.mask;
585 SET_L_REG (rn, t);
586 return r;
587
588 case X (OP_DISP, SB):
589 t = GET_L_REG (rn) + abs;
590 t &= cpu.mask;
591 return GET_MEMORY_B (t);
592
593 case X (OP_DISP, SW):
594 t = GET_L_REG (rn) + abs;
595 t &= cpu.mask;
596 return GET_MEMORY_W (t);
597
598 case X (OP_DISP, SL):
599 t = GET_L_REG (rn) + abs;
600 t &= cpu.mask;
601 return GET_MEMORY_L (t);
602
603 case X (OP_MEM, SL):
604 t = GET_MEMORY_L (abs);
605 t &= cpu.mask;
606 return t;
607
608 case X (OP_MEM, SW):
609 t = GET_MEMORY_W (abs);
610 t &= cpu.mask;
611 return t;
612
613 default:
614 abort ();
615
616 }
617 }
618
619
620 static
621 void
622 store (arg, n)
623 ea_type *arg;
624 int n;
625 {
626 int rn = arg->reg;
627 int abs = arg->literal;
628 int t;
629
630 switch (arg->type)
631 {
632 case X (OP_REG, SB):
633 SET_B_REG (rn, n);
634 break;
635 case X (OP_REG, SW):
636 SET_W_REG (rn, n);
637 break;
638 case X (OP_REG, SL):
639 SET_L_REG (rn, n);
640 break;
641
642 case X (OP_DEC, SB):
643 t = GET_L_REG (rn) - 1;
644 t &= cpu.mask;
645 SET_L_REG (rn, t);
646 SET_MEMORY_B (t, n);
647
648 break;
649 case X (OP_DEC, SW):
650 t = (GET_L_REG (rn) - 2) & cpu.mask;
651 SET_L_REG (rn, t);
652 SET_MEMORY_W (t, n);
653 break;
654
655 case X (OP_DEC, SL):
656 t = (GET_L_REG (rn) - 4) & cpu.mask;
657 SET_L_REG (rn, t);
658 SET_MEMORY_L (t, n);
659 break;
660
661 case X (OP_DISP, SB):
662 t = GET_L_REG (rn) + abs;
663 t &= cpu.mask;
664 SET_MEMORY_B (t, n);
665 break;
666
667 case X (OP_DISP, SW):
668 t = GET_L_REG (rn) + abs;
669 t &= cpu.mask;
670 SET_MEMORY_W (t, n);
671 break;
672
673 case X (OP_DISP, SL):
674 t = GET_L_REG (rn) + abs;
675 t &= cpu.mask;
676 SET_MEMORY_L (t, n);
677 break;
678 default:
679 abort ();
680 }
681 }
682
683
684 static union
685 {
686 short int i;
687 struct
688 {
689 char low;
690 char high;
691 }
692 u;
693 }
694
695 littleendian;
696
697 static
698 void
699 init_pointers ()
700 {
701 static int init;
702
703 if (!init)
704 {
705 int i;
706
707 init = 1;
708 littleendian.i = 1;
709
710 if (h8300hmode)
711 memory_size = H8300H_MSIZE;
712 else
713 memory_size = H8300_MSIZE;
714 cpu.memory = (unsigned char *) calloc (sizeof (char), memory_size);
715 cpu.cache_idx = (unsigned short *) calloc (sizeof (short), memory_size);
716 cpu.eightbit = (unsigned char *) calloc (sizeof (char), 256);
717
718 /* `msize' must be a power of two */
719 if ((memory_size & (memory_size - 1)) != 0)
720 abort ();
721 cpu.mask = memory_size - 1;
722
723 for (i = 0; i < 9; i++)
724 {
725 cpu.regs[i] = 0;
726 }
727
728 for (i = 0; i < 8; i++)
729 {
730 unsigned char *p = (unsigned char *) (cpu.regs + i);
731 unsigned char *e = (unsigned char *) (cpu.regs + i + 1);
732 unsigned short *q = (unsigned short *) (cpu.regs + i);
733 unsigned short *u = (unsigned short *) (cpu.regs + i + 1);
734 cpu.regs[i] = 0x00112233;
735 while (p < e)
736 {
737 if (*p == 0x22)
738 {
739 breg[i] = p;
740 }
741 if (*p == 0x33)
742 {
743 breg[i + 8] = p;
744 }
745 p++;
746 }
747 while (q < u)
748 {
749 if (*q == 0x2233)
750 {
751 wreg[i] = q;
752 }
753 if (*q == 0x0011)
754 {
755 wreg[i + 8] = q;
756 }
757 q++;
758 }
759 cpu.regs[i] = 0;
760 lreg[i] = &cpu.regs[i];
761 }
762
763 lreg[8] = &cpu.regs[8];
764
765 /* initialize the seg registers */
766 if (!cpu.cache)
767 sim_set_simcache_size (CSIZE);
768 }
769 }
770
771 static void
772 control_c (sig, code, scp, addr)
773 int sig;
774 int code;
775 char *scp;
776 char *addr;
777 {
778 cpu.state = SIM_STATE_STOPPED;
779 cpu.exception = SIGINT;
780 }
781
782 #define C (c != 0)
783 #define Z (nz == 0)
784 #define V (v != 0)
785 #define N (n != 0)
786
787 static int
788 mop (code, bsize, sign)
789 decoded_inst *code;
790 int bsize;
791 int sign;
792 {
793 int multiplier;
794 int multiplicand;
795 int result;
796 int n, nz;
797
798 if (sign)
799 {
800 multiplicand =
801 bsize ? SEXTCHAR (GET_W_REG (code->dst.reg)) :
802 SEXTSHORT (GET_W_REG (code->dst.reg));
803 multiplier =
804 bsize ? SEXTCHAR (GET_B_REG (code->src.reg)) :
805 SEXTSHORT (GET_W_REG (code->src.reg));
806 }
807 else
808 {
809 multiplicand = bsize ? UEXTCHAR (GET_W_REG (code->dst.reg)) :
810 UEXTSHORT (GET_W_REG (code->dst.reg));
811 multiplier =
812 bsize ? UEXTCHAR (GET_B_REG (code->src.reg)) :
813 UEXTSHORT (GET_W_REG (code->src.reg));
814
815 }
816 result = multiplier * multiplicand;
817
818 if (sign)
819 {
820 n = result & (bsize ? 0x8000 : 0x80000000);
821 nz = result & (bsize ? 0xffff : 0xffffffff);
822 }
823 if (bsize)
824 {
825 SET_W_REG (code->dst.reg, result);
826 }
827 else
828 {
829 SET_L_REG (code->dst.reg, result);
830 }
831 /* return ((n==1) << 1) | (nz==1); */
832
833 }
834
835 #define ONOT(name, how) \
836 case O(name, SB): \
837 { \
838 int t; \
839 int hm = 0x80; \
840 rd = GET_B_REG (code->src.reg); \
841 how; \
842 goto shift8; \
843 } \
844 case O(name, SW): \
845 { \
846 int t; \
847 int hm = 0x8000; \
848 rd = GET_W_REG (code->src.reg); \
849 how; \
850 goto shift16; \
851 } \
852 case O(name, SL): \
853 { \
854 int t; \
855 int hm = 0x80000000; \
856 rd = GET_L_REG (code->src.reg); \
857 how; \
858 goto shift32; \
859 }
860
861 #define OSHIFTS(name, how1, how2) \
862 case O(name, SB): \
863 { \
864 int t; \
865 int hm = 0x80; \
866 rd = GET_B_REG (code->src.reg); \
867 if ((GET_MEMORY_B (pc + 1) & 0x40) == 0) \
868 { \
869 how1; \
870 } \
871 else \
872 { \
873 how2; \
874 } \
875 goto shift8; \
876 } \
877 case O(name, SW): \
878 { \
879 int t; \
880 int hm = 0x8000; \
881 rd = GET_W_REG (code->src.reg); \
882 if ((GET_MEMORY_B (pc + 1) & 0x40) == 0) \
883 { \
884 how1; \
885 } \
886 else \
887 { \
888 how2; \
889 } \
890 goto shift16; \
891 } \
892 case O(name, SL): \
893 { \
894 int t; \
895 int hm = 0x80000000; \
896 rd = GET_L_REG (code->src.reg); \
897 if ((GET_MEMORY_B (pc + 1) & 0x40) == 0) \
898 { \
899 how1; \
900 } \
901 else \
902 { \
903 how2; \
904 } \
905 goto shift32; \
906 }
907
908 #define OBITOP(name,f, s, op) \
909 case O(name, SB): \
910 { \
911 int m; \
912 int b; \
913 if (f) ea = fetch (&code->dst); \
914 m=1<< fetch(&code->src); \
915 op; \
916 if(s) store (&code->dst,ea); goto next; \
917 }
918
919 int
920 sim_stop (sd)
921 SIM_DESC sd;
922 {
923 cpu.state = SIM_STATE_STOPPED;
924 cpu.exception = SIGINT;
925 return 1;
926 }
927
928 void
929 sim_resume (sd, step, siggnal)
930 SIM_DESC sd;
931 {
932 static int init1;
933 int cycles = 0;
934 int insts = 0;
935 int tick_start = get_now ();
936 void (*prev) ();
937 int poll_count = 0;
938 int res;
939 int tmp;
940 int rd;
941 int ea;
942 int bit;
943 int pc;
944 int c, nz, v, n;
945 int oldmask;
946 init_pointers ();
947
948 prev = signal (SIGINT, control_c);
949
950 if (step)
951 {
952 cpu.state = SIM_STATE_STOPPED;
953 cpu.exception = SIGTRAP;
954 }
955 else
956 {
957 cpu.state = SIM_STATE_RUNNING;
958 cpu.exception = 0;
959 }
960
961 pc = cpu.pc;
962
963 /* The PC should never be odd. */
964 if (pc & 0x1)
965 abort ();
966
967 GETSR ();
968 oldmask = cpu.mask;
969 if (!h8300hmode)
970 cpu.mask = 0xffff;
971 do
972 {
973 int cidx;
974 decoded_inst *code;
975
976 top:
977 cidx = cpu.cache_idx[pc];
978 code = cpu.cache + cidx;
979
980
981 #define ALUOP(STORE, NAME, HOW) \
982 case O(NAME,SB): HOW; if(STORE)goto alu8;else goto just_flags_alu8; \
983 case O(NAME, SW): HOW; if(STORE)goto alu16;else goto just_flags_alu16; \
984 case O(NAME,SL): HOW; if(STORE)goto alu32;else goto just_flags_alu32;
985
986
987 #define LOGOP(NAME, HOW) \
988 case O(NAME,SB): HOW; goto log8;\
989 case O(NAME, SW): HOW; goto log16;\
990 case O(NAME,SL): HOW; goto log32;
991
992
993
994 #if ADEBUG
995 if (debug)
996 {
997 printf ("%x %d %s\n", pc, code->opcode,
998 code->op ? code->op->name : "**");
999 }
1000 cpu.stats[code->opcode]++;
1001
1002 #endif
1003
1004 cycles += code->cycles;
1005 insts++;
1006 switch (code->opcode)
1007 {
1008 case 0:
1009 /*
1010 * This opcode is a fake for when we get to an
1011 * instruction which hasnt been compiled
1012 */
1013 compile (pc);
1014 goto top;
1015 break;
1016
1017
1018 case O (O_SUBX, SB):
1019 rd = fetch (&code->dst);
1020 ea = fetch (&code->src);
1021 ea = -(ea + C);
1022 res = rd + ea;
1023 goto alu8;
1024
1025 case O (O_ADDX, SB):
1026 rd = fetch (&code->dst);
1027 ea = fetch (&code->src);
1028 ea = C + ea;
1029 res = rd + ea;
1030 goto alu8;
1031
1032 #define EA ea = fetch(&code->src);
1033 #define RD_EA ea = fetch(&code->src); rd = fetch(&code->dst);
1034
1035 ALUOP (1, O_SUB, RD_EA;
1036 ea = -ea;
1037 res = rd + ea);
1038 ALUOP (1, O_NEG, EA;
1039 ea = -ea;
1040 rd = 0;
1041 res = rd + ea);
1042
1043 case O (O_ADD, SB):
1044 rd = GET_B_REG (code->dst.reg);
1045 ea = fetch (&code->src);
1046 res = rd + ea;
1047 goto alu8;
1048 case O (O_ADD, SW):
1049 rd = GET_W_REG (code->dst.reg);
1050 ea = fetch (&code->src);
1051 res = rd + ea;
1052 goto alu16;
1053 case O (O_ADD, SL):
1054 rd = GET_L_REG (code->dst.reg);
1055 ea = fetch (&code->src);
1056 res = rd + ea;
1057 goto alu32;
1058
1059
1060 LOGOP (O_AND, RD_EA;
1061 res = rd & ea);
1062
1063 LOGOP (O_OR, RD_EA;
1064 res = rd | ea);
1065
1066 LOGOP (O_XOR, RD_EA;
1067 res = rd ^ ea);
1068
1069
1070 case O (O_MOV_TO_MEM, SB):
1071 res = GET_B_REG (code->src.reg);
1072 goto log8;
1073 case O (O_MOV_TO_MEM, SW):
1074 res = GET_W_REG (code->src.reg);
1075 goto log16;
1076 case O (O_MOV_TO_MEM, SL):
1077 res = GET_L_REG (code->src.reg);
1078 goto log32;
1079
1080
1081 case O (O_MOV_TO_REG, SB):
1082 res = fetch (&code->src);
1083 SET_B_REG (code->dst.reg, res);
1084 goto just_flags_log8;
1085 case O (O_MOV_TO_REG, SW):
1086 res = fetch (&code->src);
1087 SET_W_REG (code->dst.reg, res);
1088 goto just_flags_log16;
1089 case O (O_MOV_TO_REG, SL):
1090 res = fetch (&code->src);
1091 SET_L_REG (code->dst.reg, res);
1092 goto just_flags_log32;
1093
1094
1095 case O (O_ADDS, SL):
1096 SET_L_REG (code->dst.reg,
1097 GET_L_REG (code->dst.reg)
1098 + code->src.literal);
1099
1100 goto next;
1101
1102 case O (O_SUBS, SL):
1103 SET_L_REG (code->dst.reg,
1104 GET_L_REG (code->dst.reg)
1105 - code->src.literal);
1106 goto next;
1107
1108 case O (O_CMP, SB):
1109 rd = fetch (&code->dst);
1110 ea = fetch (&code->src);
1111 ea = -ea;
1112 res = rd + ea;
1113 goto just_flags_alu8;
1114
1115 case O (O_CMP, SW):
1116 rd = fetch (&code->dst);
1117 ea = fetch (&code->src);
1118 ea = -ea;
1119 res = rd + ea;
1120 goto just_flags_alu16;
1121
1122 case O (O_CMP, SL):
1123 rd = fetch (&code->dst);
1124 ea = fetch (&code->src);
1125 ea = -ea;
1126 res = rd + ea;
1127 goto just_flags_alu32;
1128
1129
1130 case O (O_DEC, SB):
1131 rd = GET_B_REG (code->src.reg);
1132 ea = -1;
1133 res = rd + ea;
1134 SET_B_REG (code->src.reg, res);
1135 goto just_flags_inc8;
1136
1137 case O (O_DEC, SW):
1138 rd = GET_W_REG (code->dst.reg);
1139 ea = -code->src.literal;
1140 res = rd + ea;
1141 SET_W_REG (code->dst.reg, res);
1142 goto just_flags_inc16;
1143
1144 case O (O_DEC, SL):
1145 rd = GET_L_REG (code->dst.reg);
1146 ea = -code->src.literal;
1147 res = rd + ea;
1148 SET_L_REG (code->dst.reg, res);
1149 goto just_flags_inc32;
1150
1151
1152 case O (O_INC, SB):
1153 rd = GET_B_REG (code->src.reg);
1154 ea = 1;
1155 res = rd + ea;
1156 SET_B_REG (code->src.reg, res);
1157 goto just_flags_inc8;
1158
1159 case O (O_INC, SW):
1160 rd = GET_W_REG (code->dst.reg);
1161 ea = code->src.literal;
1162 res = rd + ea;
1163 SET_W_REG (code->dst.reg, res);
1164 goto just_flags_inc16;
1165
1166 case O (O_INC, SL):
1167 rd = GET_L_REG (code->dst.reg);
1168 ea = code->src.literal;
1169 res = rd + ea;
1170 SET_L_REG (code->dst.reg, res);
1171 goto just_flags_inc32;
1172
1173
1174 #define GET_CCR(x) BUILDSR();x = cpu.ccr
1175
1176 case O (O_ANDC, SB):
1177 GET_CCR (rd);
1178 ea = code->src.literal;
1179 res = rd & ea;
1180 goto setc;
1181
1182 case O (O_ORC, SB):
1183 GET_CCR (rd);
1184 ea = code->src.literal;
1185 res = rd | ea;
1186 goto setc;
1187
1188 case O (O_XORC, SB):
1189 GET_CCR (rd);
1190 ea = code->src.literal;
1191 res = rd ^ ea;
1192 goto setc;
1193
1194
1195 case O (O_BRA, SB):
1196 if (1)
1197 goto condtrue;
1198 goto next;
1199
1200 case O (O_BRN, SB):
1201 if (0)
1202 goto condtrue;
1203 goto next;
1204
1205 case O (O_BHI, SB):
1206 if ((C || Z) == 0)
1207 goto condtrue;
1208 goto next;
1209
1210
1211 case O (O_BLS, SB):
1212 if ((C || Z))
1213 goto condtrue;
1214 goto next;
1215
1216 case O (O_BCS, SB):
1217 if ((C == 1))
1218 goto condtrue;
1219 goto next;
1220
1221 case O (O_BCC, SB):
1222 if ((C == 0))
1223 goto condtrue;
1224 goto next;
1225
1226 case O (O_BEQ, SB):
1227 if (Z)
1228 goto condtrue;
1229 goto next;
1230 case O (O_BGT, SB):
1231 if (((Z || (N ^ V)) == 0))
1232 goto condtrue;
1233 goto next;
1234
1235
1236 case O (O_BLE, SB):
1237 if (((Z || (N ^ V)) == 1))
1238 goto condtrue;
1239 goto next;
1240
1241 case O (O_BGE, SB):
1242 if ((N ^ V) == 0)
1243 goto condtrue;
1244 goto next;
1245 case O (O_BLT, SB):
1246 if ((N ^ V))
1247 goto condtrue;
1248 goto next;
1249 case O (O_BMI, SB):
1250 if ((N))
1251 goto condtrue;
1252 goto next;
1253 case O (O_BNE, SB):
1254 if ((Z == 0))
1255 goto condtrue;
1256 goto next;
1257
1258 case O (O_BPL, SB):
1259 if (N == 0)
1260 goto condtrue;
1261 goto next;
1262 case O (O_BVC, SB):
1263 if ((V == 0))
1264 goto condtrue;
1265 goto next;
1266 case O (O_BVS, SB):
1267 if ((V == 1))
1268 goto condtrue;
1269 goto next;
1270
1271 case O (O_SYSCALL, SB):
1272 printf ("%c", cpu.regs[2]);
1273 goto next;
1274
1275 ONOT (O_NOT, rd = ~rd; v = 0;);
1276 OSHIFTS (O_SHLL,
1277 c = rd & hm; v = 0; rd <<= 1,
1278 c = rd & (hm >> 1); v = 0; rd <<= 2);
1279 OSHIFTS (O_SHLR,
1280 c = rd & 1; v = 0; rd = (unsigned int) rd >> 1,
1281 c = rd & 2; v = 0; rd = (unsigned int) rd >> 2);
1282 OSHIFTS (O_SHAL,
1283 c = rd & hm; v = (rd & hm) != ((rd & (hm >> 1)) << 1); rd <<= 1,
1284 c = rd & (hm >> 1); v = (rd & (hm >> 1)) != ((rd & (hm >> 2)) << 2); rd <<= 2);
1285 OSHIFTS (O_SHAR,
1286 t = rd & hm; c = rd & 1; v = 0; rd >>= 1; rd |= t,
1287 t = rd & hm; c = rd & 2; v = 0; rd >>= 2; rd |= t | t >> 1 );
1288 OSHIFTS (O_ROTL,
1289 c = rd & hm; v = 0; rd <<= 1; rd |= C,
1290 c = rd & hm; v = 0; rd <<= 1; rd |= C; c = rd & hm; rd <<= 1; rd |= C);
1291 OSHIFTS (O_ROTR,
1292 c = rd & 1; v = 0; rd = (unsigned int) rd >> 1; if (c) rd |= hm,
1293 c = rd & 1; v = 0; rd = (unsigned int) rd >> 1; if (c) rd |= hm; c = rd & 1; rd = (unsigned int) rd >> 1; if (c) rd |= hm);
1294 OSHIFTS (O_ROTXL,
1295 t = rd & hm; rd <<= 1; rd |= C; c = t; v = 0,
1296 t = rd & hm; rd <<= 1; rd |= C; c = t; v = 0; t = rd & hm; rd <<= 1; rd |= C; c = t);
1297 OSHIFTS (O_ROTXR,
1298 t = rd & 1; rd = (unsigned int) rd >> 1; if (C) rd |= hm; c = t; v = 0,
1299 t = rd & 1; rd = (unsigned int) rd >> 1; if (C) rd |= hm; c = t; v = 0; t = rd & 1; rd = (unsigned int) rd >> 1; if (C) rd |= hm; c = t);
1300
1301 case O (O_JMP, SB):
1302 {
1303 pc = fetch (&code->src);
1304 goto end;
1305
1306 }
1307
1308 case O (O_JSR, SB):
1309 {
1310 int tmp;
1311 pc = fetch (&code->src);
1312 call:
1313 tmp = cpu.regs[7];
1314
1315 if (h8300hmode)
1316 {
1317 tmp -= 4;
1318 SET_MEMORY_L (tmp, code->next_pc);
1319 }
1320 else
1321 {
1322 tmp -= 2;
1323 SET_MEMORY_W (tmp, code->next_pc);
1324 }
1325 cpu.regs[7] = tmp;
1326
1327 goto end;
1328 }
1329 case O (O_BSR, SB):
1330 pc = code->src.literal;
1331 goto call;
1332
1333 case O (O_RTS, SN):
1334 {
1335 int tmp;
1336
1337 tmp = cpu.regs[7];
1338
1339 if (h8300hmode)
1340 {
1341 pc = GET_MEMORY_L (tmp);
1342 tmp += 4;
1343 }
1344 else
1345 {
1346 pc = GET_MEMORY_W (tmp);
1347 tmp += 2;
1348 }
1349
1350 cpu.regs[7] = tmp;
1351 goto end;
1352 }
1353
1354 case O (O_ILL, SB):
1355 cpu.state = SIM_STATE_STOPPED;
1356 cpu.exception = SIGILL;
1357 goto end;
1358 case O (O_SLEEP, SN):
1359 /* The format of r0 is defined by devo/include/wait.h. */
1360 #if 0 /* FIXME: Ugh. A breakpoint is the sleep insn. */
1361 if (WIFEXITED (cpu.regs[0]))
1362 {
1363 cpu.state = SIM_STATE_EXITED;
1364 cpu.exception = WEXITSTATUS (cpu.regs[0]);
1365 }
1366 else if (WIFSTOPPED (cpu.regs[0]))
1367 {
1368 cpu.state = SIM_STATE_STOPPED;
1369 cpu.exception = WSTOPSIG (cpu.regs[0]);
1370 }
1371 else
1372 {
1373 cpu.state = SIM_STATE_SIGNALLED;
1374 cpu.exception = WTERMSIG (cpu.regs[0]);
1375 }
1376 #else
1377 /* FIXME: Doesn't this break for breakpoints when r0
1378 contains just the right (er, wrong) value? */
1379 cpu.state = SIM_STATE_STOPPED;
1380 if (! WIFEXITED (cpu.regs[0]) && WIFSIGNALED (cpu.regs[0]))
1381 cpu.exception = SIGILL;
1382 else
1383 cpu.exception = SIGTRAP;
1384 #endif
1385 goto end;
1386 case O (O_BPT, SN):
1387 cpu.state = SIM_STATE_STOPPED;
1388 cpu.exception = SIGTRAP;
1389 goto end;
1390
1391 OBITOP (O_BNOT, 1, 1, ea ^= m);
1392 OBITOP (O_BTST, 1, 0, nz = ea & m);
1393 OBITOP (O_BCLR, 1, 1, ea &= ~m);
1394 OBITOP (O_BSET, 1, 1, ea |= m);
1395 OBITOP (O_BLD, 1, 0, c = ea & m);
1396 OBITOP (O_BILD, 1, 0, c = !(ea & m));
1397 OBITOP (O_BST, 1, 1, ea &= ~m;
1398 if (C) ea |= m);
1399 OBITOP (O_BIST, 1, 1, ea &= ~m;
1400 if (!C) ea |= m);
1401 OBITOP (O_BAND, 1, 0, c = (ea & m) && C);
1402 OBITOP (O_BIAND, 1, 0, c = !(ea & m) && C);
1403 OBITOP (O_BOR, 1, 0, c = (ea & m) || C);
1404 OBITOP (O_BIOR, 1, 0, c = !(ea & m) || C);
1405 OBITOP (O_BXOR, 1, 0, c = (ea & m) != C);
1406 OBITOP (O_BIXOR, 1, 0, c = !(ea & m) != C);
1407
1408
1409 #define MOP(bsize, signed) mop(code, bsize,signed); goto next;
1410
1411 case O (O_MULS, SB):
1412 MOP (1, 1);
1413 break;
1414 case O (O_MULS, SW):
1415 MOP (0, 1);
1416 break;
1417 case O (O_MULU, SB):
1418 MOP (1, 0);
1419 break;
1420 case O (O_MULU, SW):
1421 MOP (0, 0);
1422 break;
1423
1424
1425 case O (O_DIVU, SB):
1426 {
1427 rd = GET_W_REG (code->dst.reg);
1428 ea = GET_B_REG (code->src.reg);
1429 if (ea)
1430 {
1431 tmp = (unsigned)rd % ea;
1432 rd = (unsigned)rd / ea;
1433 }
1434 SET_W_REG (code->dst.reg, (rd & 0xff) | (tmp << 8));
1435 n = ea & 0x80;
1436 nz = ea & 0xff;
1437
1438 goto next;
1439 }
1440 case O (O_DIVU, SW):
1441 {
1442 rd = GET_L_REG (code->dst.reg);
1443 ea = GET_W_REG (code->src.reg);
1444 n = ea & 0x8000;
1445 nz = ea & 0xffff;
1446 if (ea)
1447 {
1448 tmp = (unsigned)rd % ea;
1449 rd = (unsigned)rd / ea;
1450 }
1451 SET_L_REG (code->dst.reg, (rd & 0xffff) | (tmp << 16));
1452 goto next;
1453 }
1454
1455 case O (O_DIVS, SB):
1456 {
1457
1458 rd = SEXTSHORT (GET_W_REG (code->dst.reg));
1459 ea = SEXTCHAR (GET_B_REG (code->src.reg));
1460 if (ea)
1461 {
1462 tmp = (int) rd % (int) ea;
1463 rd = (int) rd / (int) ea;
1464 n = rd & 0x8000;
1465 nz = 1;
1466 }
1467 else
1468 nz = 0;
1469 SET_W_REG (code->dst.reg, (rd & 0xff) | (tmp << 8));
1470 goto next;
1471 }
1472 case O (O_DIVS, SW):
1473 {
1474 rd = GET_L_REG (code->dst.reg);
1475 ea = SEXTSHORT (GET_W_REG (code->src.reg));
1476 if (ea)
1477 {
1478 tmp = (int) rd % (int) ea;
1479 rd = (int) rd / (int) ea;
1480 n = rd & 0x80000000;
1481 nz = 1;
1482 }
1483 else
1484 nz = 0;
1485 SET_L_REG (code->dst.reg, (rd & 0xffff) | (tmp << 16));
1486 goto next;
1487 }
1488 case O (O_EXTS, SW):
1489 rd = GET_B_REG (code->src.reg + 8) & 0xff; /* Yes, src, not dst. */
1490 ea = rd & 0x80 ? -256 : 0;
1491 res = rd + ea;
1492 goto log16;
1493 case O (O_EXTS, SL):
1494 rd = GET_W_REG (code->src.reg) & 0xffff;
1495 ea = rd & 0x8000 ? -65536 : 0;
1496 res = rd + ea;
1497 goto log32;
1498 case O (O_EXTU, SW):
1499 rd = GET_B_REG (code->src.reg + 8) & 0xff;
1500 ea = 0;
1501 res = rd + ea;
1502 goto log16;
1503 case O (O_EXTU, SL):
1504 rd = GET_W_REG (code->src.reg) & 0xffff;
1505 ea = 0;
1506 res = rd + ea;
1507 goto log32;
1508
1509 case O (O_NOP, SN):
1510 goto next;
1511
1512 case O (O_STM, SL):
1513 {
1514 int nregs, firstreg, i;
1515
1516 nregs = GET_MEMORY_B (pc + 1);
1517 nregs >>= 4;
1518 nregs &= 0xf;
1519 firstreg = GET_MEMORY_B (pc + 3);
1520 firstreg &= 0xf;
1521 for (i = firstreg; i <= firstreg + nregs; i++)
1522 {
1523 cpu.regs[7] -= 4;
1524 SET_MEMORY_L (cpu.regs[7], cpu.regs[i]);
1525 }
1526 }
1527 goto next;
1528
1529 case O (O_LDM, SL):
1530 {
1531 int nregs, firstreg, i;
1532
1533 nregs = GET_MEMORY_B (pc + 1);
1534 nregs >>= 4;
1535 nregs &= 0xf;
1536 firstreg = GET_MEMORY_B (pc + 3);
1537 firstreg &= 0xf;
1538 for (i = firstreg; i >= firstreg - nregs; i--)
1539 {
1540 cpu.regs[i] = GET_MEMORY_L (cpu.regs[7]);
1541 cpu.regs[7] += 4;
1542 }
1543 }
1544 goto next;
1545
1546 default:
1547 cpu.state = SIM_STATE_STOPPED;
1548 cpu.exception = SIGILL;
1549 goto end;
1550
1551 }
1552 abort ();
1553
1554 setc:
1555 cpu.ccr = res;
1556 GETSR ();
1557 goto next;
1558
1559 condtrue:
1560 /* When a branch works */
1561 pc = code->src.literal;
1562 goto end;
1563
1564 /* Set the cond codes from res */
1565 bitop:
1566
1567 /* Set the flags after an 8 bit inc/dec operation */
1568 just_flags_inc8:
1569 n = res & 0x80;
1570 nz = res & 0xff;
1571 v = (rd & 0x7f) == 0x7f;
1572 goto next;
1573
1574
1575 /* Set the flags after an 16 bit inc/dec operation */
1576 just_flags_inc16:
1577 n = res & 0x8000;
1578 nz = res & 0xffff;
1579 v = (rd & 0x7fff) == 0x7fff;
1580 goto next;
1581
1582
1583 /* Set the flags after an 32 bit inc/dec operation */
1584 just_flags_inc32:
1585 n = res & 0x80000000;
1586 nz = res & 0xffffffff;
1587 v = (rd & 0x7fffffff) == 0x7fffffff;
1588 goto next;
1589
1590
1591 shift8:
1592 /* Set flags after an 8 bit shift op, carry,overflow set in insn */
1593 n = (rd & 0x80);
1594 nz = rd & 0xff;
1595 SET_B_REG (code->src.reg, rd);
1596 goto next;
1597
1598 shift16:
1599 /* Set flags after an 16 bit shift op, carry,overflow set in insn */
1600 n = (rd & 0x8000);
1601 nz = rd & 0xffff;
1602 SET_W_REG (code->src.reg, rd);
1603 goto next;
1604
1605 shift32:
1606 /* Set flags after an 32 bit shift op, carry,overflow set in insn */
1607 n = (rd & 0x80000000);
1608 nz = rd & 0xffffffff;
1609 SET_L_REG (code->src.reg, rd);
1610 goto next;
1611
1612 log32:
1613 store (&code->dst, res);
1614 just_flags_log32:
1615 /* flags after a 32bit logical operation */
1616 n = res & 0x80000000;
1617 nz = res & 0xffffffff;
1618 v = 0;
1619 goto next;
1620
1621 log16:
1622 store (&code->dst, res);
1623 just_flags_log16:
1624 /* flags after a 16bit logical operation */
1625 n = res & 0x8000;
1626 nz = res & 0xffff;
1627 v = 0;
1628 goto next;
1629
1630
1631 log8:
1632 store (&code->dst, res);
1633 just_flags_log8:
1634 n = res & 0x80;
1635 nz = res & 0xff;
1636 v = 0;
1637 goto next;
1638
1639 alu8:
1640 SET_B_REG (code->dst.reg, res);
1641 just_flags_alu8:
1642 n = res & 0x80;
1643 nz = res & 0xff;
1644 c = (res & 0x100);
1645 switch (code->opcode / 4)
1646 {
1647 case O_ADD:
1648 v = ((rd & 0x80) == (ea & 0x80)
1649 && (rd & 0x80) != (res & 0x80));
1650 break;
1651 case O_SUB:
1652 case O_CMP:
1653 v = ((rd & 0x80) != (-ea & 0x80)
1654 && (rd & 0x80) != (res & 0x80));
1655 break;
1656 case O_NEG:
1657 v = (rd == 0x80);
1658 break;
1659 }
1660 goto next;
1661
1662 alu16:
1663 SET_W_REG (code->dst.reg, res);
1664 just_flags_alu16:
1665 n = res & 0x8000;
1666 nz = res & 0xffff;
1667 c = (res & 0x10000);
1668 switch (code->opcode / 4)
1669 {
1670 case O_ADD:
1671 v = ((rd & 0x8000) == (ea & 0x8000)
1672 && (rd & 0x8000) != (res & 0x8000));
1673 break;
1674 case O_SUB:
1675 case O_CMP:
1676 v = ((rd & 0x8000) != (-ea & 0x8000)
1677 && (rd & 0x8000) != (res & 0x8000));
1678 break;
1679 case O_NEG:
1680 v = (rd == 0x8000);
1681 break;
1682 }
1683 goto next;
1684
1685 alu32:
1686 SET_L_REG (code->dst.reg, res);
1687 just_flags_alu32:
1688 n = res & 0x80000000;
1689 nz = res & 0xffffffff;
1690 switch (code->opcode / 4)
1691 {
1692 case O_ADD:
1693 v = ((rd & 0x80000000) == (ea & 0x80000000)
1694 && (rd & 0x80000000) != (res & 0x80000000));
1695 c = ((unsigned) res < (unsigned) rd) || ((unsigned) res < (unsigned) ea);
1696 break;
1697 case O_SUB:
1698 case O_CMP:
1699 v = ((rd & 0x80000000) != (-ea & 0x80000000)
1700 && (rd & 0x80000000) != (res & 0x80000000));
1701 c = (unsigned) rd < (unsigned) -ea;
1702 break;
1703 case O_NEG:
1704 v = (rd == 0x80000000);
1705 c = res != 0;
1706 break;
1707 }
1708 goto next;
1709
1710 next:;
1711 pc = code->next_pc;
1712
1713 end:
1714 ;
1715 /* if (cpu.regs[8] ) abort(); */
1716
1717 if (poll_count++ > 100)
1718 {
1719 poll_count = 0;
1720 if ((*sim_callback->poll_quit) != NULL
1721 && (*sim_callback->poll_quit) (sim_callback))
1722 sim_stop (sd);
1723 }
1724
1725 }
1726 while (cpu.state == SIM_STATE_RUNNING);
1727 cpu.ticks += get_now () - tick_start;
1728 cpu.cycles += cycles;
1729 cpu.insts += insts;
1730
1731 cpu.pc = pc;
1732 BUILDSR ();
1733 cpu.mask = oldmask;
1734 signal (SIGINT, prev);
1735 }
1736
1737 int
1738 sim_trace (sd)
1739 SIM_DESC sd;
1740 {
1741 /* FIXME: unfinished */
1742 abort ();
1743 }
1744
1745 int
1746 sim_write (sd, addr, buffer, size)
1747 SIM_DESC sd;
1748 SIM_ADDR addr;
1749 unsigned char *buffer;
1750 int size;
1751 {
1752 int i;
1753
1754 init_pointers ();
1755 if (addr < 0)
1756 return 0;
1757 for (i = 0; i < size; i++)
1758 {
1759 if (addr < memory_size)
1760 {
1761 cpu.memory[addr + i] = buffer[i];
1762 cpu.cache_idx[addr + i] = 0;
1763 }
1764 else
1765 cpu.eightbit[(addr + i) & 0xff] = buffer[i];
1766 }
1767 return size;
1768 }
1769
1770 int
1771 sim_read (sd, addr, buffer, size)
1772 SIM_DESC sd;
1773 SIM_ADDR addr;
1774 unsigned char *buffer;
1775 int size;
1776 {
1777 init_pointers ();
1778 if (addr < 0)
1779 return 0;
1780 if (addr < memory_size)
1781 memcpy (buffer, cpu.memory + addr, size);
1782 else
1783 memcpy (buffer, cpu.eightbit + (addr & 0xff), size);
1784 return size;
1785 }
1786
1787
1788 #define R0_REGNUM 0
1789 #define R1_REGNUM 1
1790 #define R2_REGNUM 2
1791 #define R3_REGNUM 3
1792 #define R4_REGNUM 4
1793 #define R5_REGNUM 5
1794 #define R6_REGNUM 6
1795 #define R7_REGNUM 7
1796
1797 #define SP_REGNUM R7_REGNUM /* Contains address of top of stack */
1798 #define FP_REGNUM R6_REGNUM /* Contains address of executing
1799 * stack frame */
1800
1801 #define CCR_REGNUM 8 /* Contains processor status */
1802 #define PC_REGNUM 9 /* Contains program counter */
1803
1804 #define CYCLE_REGNUM 10
1805 #define INST_REGNUM 11
1806 #define TICK_REGNUM 12
1807
1808
1809 void
1810 sim_store_register (sd, rn, value)
1811 SIM_DESC sd;
1812 int rn;
1813 unsigned char *value;
1814 {
1815 int longval;
1816 int shortval;
1817 int intval;
1818 longval = (value[0] << 24) | (value[1] << 16) | (value[2] << 8) | value[3];
1819 shortval = (value[0] << 8) | (value[1]);
1820 intval = h8300hmode ? longval : shortval;
1821
1822 init_pointers ();
1823 switch (rn)
1824 {
1825 case PC_REGNUM:
1826 cpu.pc = intval;
1827 break;
1828 default:
1829 abort ();
1830 case R0_REGNUM:
1831 case R1_REGNUM:
1832 case R2_REGNUM:
1833 case R3_REGNUM:
1834 case R4_REGNUM:
1835 case R5_REGNUM:
1836 case R6_REGNUM:
1837 case R7_REGNUM:
1838 cpu.regs[rn] = intval;
1839 break;
1840 case CCR_REGNUM:
1841 cpu.ccr = intval;
1842 break;
1843 case CYCLE_REGNUM:
1844 cpu.cycles = longval;
1845 break;
1846
1847 case INST_REGNUM:
1848 cpu.insts = longval;
1849 break;
1850
1851 case TICK_REGNUM:
1852 cpu.ticks = longval;
1853 break;
1854 }
1855 }
1856
1857 void
1858 sim_fetch_register (sd, rn, buf)
1859 SIM_DESC sd;
1860 int rn;
1861 unsigned char *buf;
1862 {
1863 int v;
1864 int longreg = 0;
1865
1866 init_pointers ();
1867
1868 switch (rn)
1869 {
1870 default:
1871 abort ();
1872 case 8:
1873 v = cpu.ccr;
1874 break;
1875 case 9:
1876 v = cpu.pc;
1877 break;
1878 case R0_REGNUM:
1879 case R1_REGNUM:
1880 case R2_REGNUM:
1881 case R3_REGNUM:
1882 case R4_REGNUM:
1883 case R5_REGNUM:
1884 case R6_REGNUM:
1885 case R7_REGNUM:
1886 v = cpu.regs[rn];
1887 break;
1888 case 10:
1889 v = cpu.cycles;
1890 longreg = 1;
1891 break;
1892 case 11:
1893 v = cpu.ticks;
1894 longreg = 1;
1895 break;
1896 case 12:
1897 v = cpu.insts;
1898 longreg = 1;
1899 break;
1900 }
1901 if (h8300hmode || longreg)
1902 {
1903 buf[0] = v >> 24;
1904 buf[1] = v >> 16;
1905 buf[2] = v >> 8;
1906 buf[3] = v >> 0;
1907 }
1908 else
1909 {
1910 buf[0] = v >> 8;
1911 buf[1] = v;
1912 }
1913 }
1914
1915 void
1916 sim_stop_reason (sd, reason, sigrc)
1917 SIM_DESC sd;
1918 enum sim_stop *reason;
1919 int *sigrc;
1920 {
1921 #if 0 /* FIXME: This should work but we can't use it.
1922 grep for SLEEP above. */
1923 switch (cpu.state)
1924 {
1925 case SIM_STATE_EXITED : *reason = sim_exited; break;
1926 case SIM_STATE_SIGNALLED : *reason = sim_signalled; break;
1927 case SIM_STATE_STOPPED : *reason = sim_stopped; break;
1928 default : abort ();
1929 }
1930 #else
1931 *reason = sim_stopped;
1932 #endif
1933 *sigrc = cpu.exception;
1934 }
1935
1936 /* FIXME: Rename to sim_set_mem_size. */
1937
1938 void
1939 sim_size (n)
1940 int n;
1941 {
1942 /* Memory size is fixed. */
1943 }
1944
1945 void
1946 sim_set_simcache_size (n)
1947 {
1948 if (cpu.cache)
1949 free (cpu.cache);
1950 if (n < 2)
1951 n = 2;
1952 cpu.cache = (decoded_inst *) malloc (sizeof (decoded_inst) * n);
1953 memset (cpu.cache, 0, sizeof (decoded_inst) * n);
1954 cpu.csize = n;
1955 }
1956
1957
1958 void
1959 sim_info (sd, verbose)
1960 SIM_DESC sd;
1961 int verbose;
1962 {
1963 double timetaken = (double) cpu.ticks / (double) now_persec ();
1964 double virttime = cpu.cycles / 10.0e6;
1965
1966 (*sim_callback->printf_filtered) (sim_callback,
1967 "\n\n#instructions executed %10d\n",
1968 cpu.insts);
1969 (*sim_callback->printf_filtered) (sim_callback,
1970 "#cycles (v approximate) %10d\n",
1971 cpu.cycles);
1972 (*sim_callback->printf_filtered) (sim_callback,
1973 "#real time taken %10.4f\n",
1974 timetaken);
1975 (*sim_callback->printf_filtered) (sim_callback,
1976 "#virtual time taked %10.4f\n",
1977 virttime);
1978 if (timetaken != 0.0)
1979 (*sim_callback->printf_filtered) (sim_callback,
1980 "#simulation ratio %10.4f\n",
1981 virttime / timetaken);
1982 (*sim_callback->printf_filtered) (sim_callback,
1983 "#compiles %10d\n",
1984 cpu.compiles);
1985 (*sim_callback->printf_filtered) (sim_callback,
1986 "#cache size %10d\n",
1987 cpu.csize);
1988
1989 #ifdef ADEBUG
1990 /* This to be conditional on `what' (aka `verbose'),
1991 however it was never passed as non-zero. */
1992 if (1)
1993 {
1994 int i;
1995 for (i = 0; i < O_LAST; i++)
1996 {
1997 if (cpu.stats[i])
1998 (*sim_callback->printf_filtered) (sim_callback,
1999 "%d: %d\n", i, cpu.stats[i]);
2000 }
2001 }
2002 #endif
2003 }
2004
2005 /* Indicate whether the cpu is an h8/300 or h8/300h.
2006 FLAG is non-zero for the h8/300h. */
2007
2008 void
2009 set_h8300h (flag)
2010 int flag;
2011 {
2012 h8300hmode = flag;
2013 }
2014
2015 SIM_DESC
2016 sim_open (kind, ptr, abfd, argv)
2017 SIM_OPEN_KIND kind;
2018 struct host_callback_struct *ptr;
2019 struct _bfd *abfd;
2020 char **argv;
2021 {
2022 sim_kind = kind;
2023 myname = argv[0];
2024 sim_callback = ptr;
2025 /* fudge our descriptor */
2026 return (SIM_DESC) 1;
2027 }
2028
2029 void
2030 sim_close (sd, quitting)
2031 SIM_DESC sd;
2032 int quitting;
2033 {
2034 /* nothing to do */
2035 }
2036
2037 /* Called by gdb to load a program into memory. */
2038
2039 SIM_RC
2040 sim_load (sd, prog, abfd, from_tty)
2041 SIM_DESC sd;
2042 char *prog;
2043 bfd *abfd;
2044 int from_tty;
2045 {
2046 bfd *prog_bfd;
2047
2048 /* See if the file is for the h8/300 or h8/300h. */
2049 /* ??? This may not be the most efficient way. The z8k simulator
2050 does this via a different mechanism (INIT_EXTRA_SYMTAB_INFO). */
2051 if (abfd != NULL)
2052 prog_bfd = abfd;
2053 else
2054 prog_bfd = bfd_openr (prog, "coff-h8300");
2055 if (prog_bfd != NULL)
2056 {
2057 /* Set the cpu type. We ignore failure from bfd_check_format
2058 and bfd_openr as sim_load_file checks too. */
2059 if (bfd_check_format (prog_bfd, bfd_object))
2060 {
2061 unsigned long mach = bfd_get_mach (prog_bfd);
2062 set_h8300h (mach == bfd_mach_h8300h
2063 || mach == bfd_mach_h8300s);
2064 }
2065 }
2066
2067 /* If we're using gdb attached to the simulator, then we have to
2068 reallocate memory for the simulator.
2069
2070 When gdb first starts, it calls fetch_registers (among other
2071 functions), which in turn calls init_pointers, which allocates
2072 simulator memory.
2073
2074 The problem is when we do that, we don't know whether we're
2075 debugging an h8/300 or h8/300h program.
2076
2077 This is the first point at which we can make that determination,
2078 so we just reallocate memory now; this will also allow us to handle
2079 switching between h8/300 and h8/300h programs without exiting
2080 gdb. */
2081 if (h8300hmode)
2082 memory_size = H8300H_MSIZE;
2083 else
2084 memory_size = H8300_MSIZE;
2085
2086 if (cpu.memory)
2087 free (cpu.memory);
2088 if (cpu.cache_idx)
2089 free (cpu.cache_idx);
2090 if (cpu.eightbit)
2091 free (cpu.eightbit);
2092
2093 cpu.memory = (unsigned char *) calloc (sizeof (char), memory_size);
2094 cpu.cache_idx = (unsigned short *) calloc (sizeof (short), memory_size);
2095 cpu.eightbit = (unsigned char *) calloc (sizeof (char), 256);
2096
2097 /* `msize' must be a power of two */
2098 if ((memory_size & (memory_size - 1)) != 0)
2099 abort ();
2100 cpu.mask = memory_size - 1;
2101
2102 if (sim_load_file (sd, myname, sim_callback, prog, prog_bfd,
2103 sim_kind == SIM_OPEN_DEBUG)
2104 == NULL)
2105 {
2106 /* Close the bfd if we opened it. */
2107 if (abfd == NULL && prog_bfd != NULL)
2108 bfd_close (prog_bfd);
2109 return SIM_RC_FAIL;
2110 }
2111
2112 cpu.pc = bfd_get_start_address (prog_bfd);
2113 /* Close the bfd if we opened it. */
2114 if (abfd == NULL && prog_bfd != NULL)
2115 bfd_close (prog_bfd);
2116 return SIM_RC_OK;
2117 }
2118
2119 SIM_RC
2120 sim_create_inferior (sd, argv, env)
2121 SIM_DESC sd;
2122 char **argv;
2123 char **env;
2124 {
2125 return SIM_RC_OK;
2126 }
2127
2128 void
2129 sim_do_command (sd, cmd)
2130 SIM_DESC sd;
2131 char *cmd;
2132 {
2133 (*sim_callback->printf_filtered) (sim_callback,
2134 "This simulator does not accept any commands.\n");
2135 }
2136
2137 void
2138 sim_set_callbacks (ptr)
2139 struct host_callback_struct *ptr;
2140 {
2141 sim_callback = ptr;
2142 }