Automatic Copyright Year update after running gdb/copyright.py
[binutils-gdb.git] / sim / m32r / m32r.c
1 /* m32r simulator support code
2 Copyright (C) 1996-2022 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* This must come before any other includes. */
21 #include "defs.h"
22
23 #define WANT_CPU m32rbf
24 #define WANT_CPU_M32RBF
25
26 #include "sim-main.h"
27 #include "cgen-mem.h"
28 #include "cgen-ops.h"
29 #include <stdlib.h>
30
31 /* Return the size of REGNO in bytes. */
32
33 static int
34 m32rbf_register_size (int regno)
35 {
36 return 4;
37 }
38
39 /* Decode gdb ctrl register number. */
40
41 int
42 m32r_decode_gdb_ctrl_regnum (int gdb_regnum)
43 {
44 switch (gdb_regnum)
45 {
46 case PSW_REGNUM : return H_CR_PSW;
47 case CBR_REGNUM : return H_CR_CBR;
48 case SPI_REGNUM : return H_CR_SPI;
49 case SPU_REGNUM : return H_CR_SPU;
50 case BPC_REGNUM : return H_CR_BPC;
51 case BBPSW_REGNUM : return H_CR_BBPSW;
52 case BBPC_REGNUM : return H_CR_BBPC;
53 case EVB_REGNUM : return H_CR_CR5;
54 }
55 abort ();
56 }
57
58 /* The contents of BUF are in target byte order. */
59
60 int
61 m32rbf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
62 {
63 int size = m32rbf_register_size (rn);
64 if (len != size)
65 return -1;
66
67 if (rn < 16)
68 SETTWI (buf, m32rbf_h_gr_get (current_cpu, rn));
69 else
70 switch (rn)
71 {
72 case PSW_REGNUM :
73 case CBR_REGNUM :
74 case SPI_REGNUM :
75 case SPU_REGNUM :
76 case BPC_REGNUM :
77 case BBPSW_REGNUM :
78 case BBPC_REGNUM :
79 SETTWI (buf, m32rbf_h_cr_get (current_cpu,
80 m32r_decode_gdb_ctrl_regnum (rn)));
81 break;
82 case PC_REGNUM :
83 SETTWI (buf, m32rbf_h_pc_get (current_cpu));
84 break;
85 case ACCL_REGNUM :
86 SETTWI (buf, GETLODI (m32rbf_h_accum_get (current_cpu)));
87 break;
88 case ACCH_REGNUM :
89 SETTWI (buf, GETHIDI (m32rbf_h_accum_get (current_cpu)));
90 break;
91 default :
92 return 0;
93 }
94
95 return size;
96 }
97
98 /* The contents of BUF are in target byte order. */
99
100 int
101 m32rbf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
102 {
103 int size = m32rbf_register_size (rn);
104 if (len != size)
105 return -1;
106
107 if (rn < 16)
108 m32rbf_h_gr_set (current_cpu, rn, GETTWI (buf));
109 else
110 switch (rn)
111 {
112 case PSW_REGNUM :
113 case CBR_REGNUM :
114 case SPI_REGNUM :
115 case SPU_REGNUM :
116 case BPC_REGNUM :
117 case BBPSW_REGNUM :
118 case BBPC_REGNUM :
119 m32rbf_h_cr_set (current_cpu,
120 m32r_decode_gdb_ctrl_regnum (rn),
121 GETTWI (buf));
122 break;
123 case PC_REGNUM :
124 m32rbf_h_pc_set (current_cpu, GETTWI (buf));
125 break;
126 case ACCL_REGNUM :
127 {
128 DI val = m32rbf_h_accum_get (current_cpu);
129 SETLODI (val, GETTWI (buf));
130 m32rbf_h_accum_set (current_cpu, val);
131 break;
132 }
133 case ACCH_REGNUM :
134 {
135 DI val = m32rbf_h_accum_get (current_cpu);
136 SETHIDI (val, GETTWI (buf));
137 m32rbf_h_accum_set (current_cpu, val);
138 break;
139 }
140 default :
141 return 0;
142 }
143
144 return size;
145 }
146 \f
147 USI
148 m32rbf_h_cr_get_handler (SIM_CPU *current_cpu, UINT cr)
149 {
150 switch (cr)
151 {
152 case H_CR_PSW : /* psw */
153 return (((CPU (h_bpsw) & 0xc1) << 8)
154 | ((CPU (h_psw) & 0xc0) << 0)
155 | GET_H_COND ());
156 case H_CR_BBPSW : /* backup backup psw */
157 return CPU (h_bbpsw) & 0xc1;
158 case H_CR_CBR : /* condition bit */
159 return GET_H_COND ();
160 case H_CR_SPI : /* interrupt stack pointer */
161 if (! GET_H_SM ())
162 return CPU (h_gr[H_GR_SP]);
163 else
164 return CPU (h_cr[H_CR_SPI]);
165 case H_CR_SPU : /* user stack pointer */
166 if (GET_H_SM ())
167 return CPU (h_gr[H_GR_SP]);
168 else
169 return CPU (h_cr[H_CR_SPU]);
170 case H_CR_BPC : /* backup pc */
171 return CPU (h_cr[H_CR_BPC]) & 0xfffffffe;
172 case H_CR_BBPC : /* backup backup pc */
173 return CPU (h_cr[H_CR_BBPC]) & 0xfffffffe;
174 case 4 : /* ??? unspecified, but apparently available */
175 case 5 : /* ??? unspecified, but apparently available */
176 return CPU (h_cr[cr]);
177 default :
178 return 0;
179 }
180 }
181
182 void
183 m32rbf_h_cr_set_handler (SIM_CPU *current_cpu, UINT cr, USI newval)
184 {
185 switch (cr)
186 {
187 case H_CR_PSW : /* psw */
188 {
189 int old_sm = (CPU (h_psw) & 0x80) != 0;
190 int new_sm = (newval & 0x80) != 0;
191 CPU (h_bpsw) = (newval >> 8) & 0xff;
192 CPU (h_psw) = newval & 0xff;
193 SET_H_COND (newval & 1);
194 /* When switching stack modes, update the registers. */
195 if (old_sm != new_sm)
196 {
197 if (old_sm)
198 {
199 /* Switching user -> system. */
200 CPU (h_cr[H_CR_SPU]) = CPU (h_gr[H_GR_SP]);
201 CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPI]);
202 }
203 else
204 {
205 /* Switching system -> user. */
206 CPU (h_cr[H_CR_SPI]) = CPU (h_gr[H_GR_SP]);
207 CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPU]);
208 }
209 }
210 break;
211 }
212 case H_CR_BBPSW : /* backup backup psw */
213 CPU (h_bbpsw) = newval & 0xff;
214 break;
215 case H_CR_CBR : /* condition bit */
216 SET_H_COND (newval & 1);
217 break;
218 case H_CR_SPI : /* interrupt stack pointer */
219 if (! GET_H_SM ())
220 CPU (h_gr[H_GR_SP]) = newval;
221 else
222 CPU (h_cr[H_CR_SPI]) = newval;
223 break;
224 case H_CR_SPU : /* user stack pointer */
225 if (GET_H_SM ())
226 CPU (h_gr[H_GR_SP]) = newval;
227 else
228 CPU (h_cr[H_CR_SPU]) = newval;
229 break;
230 case H_CR_BPC : /* backup pc */
231 CPU (h_cr[H_CR_BPC]) = newval;
232 break;
233 case H_CR_BBPC : /* backup backup pc */
234 CPU (h_cr[H_CR_BBPC]) = newval;
235 break;
236 case 4 : /* ??? unspecified, but apparently available */
237 case 5 : /* ??? unspecified, but apparently available */
238 CPU (h_cr[cr]) = newval;
239 break;
240 default :
241 /* ignore */
242 break;
243 }
244 }
245
246 /* Cover fns to access h-psw. */
247
248 UQI
249 m32rbf_h_psw_get_handler (SIM_CPU *current_cpu)
250 {
251 return (CPU (h_psw) & 0xfe) | (CPU (h_cond) & 1);
252 }
253
254 void
255 m32rbf_h_psw_set_handler (SIM_CPU *current_cpu, UQI newval)
256 {
257 CPU (h_psw) = newval;
258 CPU (h_cond) = newval & 1;
259 }
260
261 /* Cover fns to access h-accum. */
262
263 DI
264 m32rbf_h_accum_get_handler (SIM_CPU *current_cpu)
265 {
266 /* Sign extend the top 8 bits. */
267 DI r;
268 #if 1
269 r = ANDDI (CPU (h_accum), MAKEDI (0xffffff, 0xffffffff));
270 r = XORDI (r, MAKEDI (0x800000, 0));
271 r = SUBDI (r, MAKEDI (0x800000, 0));
272 #else
273 SI hi,lo;
274 r = CPU (h_accum);
275 hi = GETHIDI (r);
276 lo = GETLODI (r);
277 hi = ((hi & 0xffffff) ^ 0x800000) - 0x800000;
278 r = MAKEDI (hi, lo);
279 #endif
280 return r;
281 }
282
283 void
284 m32rbf_h_accum_set_handler (SIM_CPU *current_cpu, DI newval)
285 {
286 CPU (h_accum) = newval;
287 }
288 \f
289 #if WITH_PROFILE_MODEL_P
290
291 /* FIXME: Some of these should be inline or macros. Later. */
292
293 /* Initialize cycle counting for an insn.
294 FIRST_P is non-zero if this is the first insn in a set of parallel
295 insns. */
296
297 void
298 m32rbf_model_insn_before (SIM_CPU *cpu, int first_p)
299 {
300 M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
301 mp->cti_stall = 0;
302 mp->load_stall = 0;
303 if (first_p)
304 {
305 mp->load_regs_pending = 0;
306 mp->biggest_cycles = 0;
307 }
308 }
309
310 /* Record the cycles computed for an insn.
311 LAST_P is non-zero if this is the last insn in a set of parallel insns,
312 and we update the total cycle count.
313 CYCLES is the cycle count of the insn. */
314
315 void
316 m32rbf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
317 {
318 PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
319 M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
320 unsigned long total = cycles + mp->cti_stall + mp->load_stall;
321
322 if (last_p)
323 {
324 unsigned long biggest = total > mp->biggest_cycles ? total : mp->biggest_cycles;
325 PROFILE_MODEL_TOTAL_CYCLES (p) += biggest;
326 PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
327 }
328 else
329 {
330 /* Here we take advantage of the fact that !last_p -> first_p. */
331 mp->biggest_cycles = total;
332 PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
333 }
334
335 /* Branch and load stall counts are recorded independently of the
336 total cycle count. */
337 PROFILE_MODEL_CTI_STALL_CYCLES (p) += mp->cti_stall;
338 PROFILE_MODEL_LOAD_STALL_CYCLES (p) += mp->load_stall;
339
340 mp->load_regs = mp->load_regs_pending;
341 }
342
343 static INLINE void
344 check_load_stall (SIM_CPU *cpu, int regno)
345 {
346 UINT h_gr = CPU_M32R_MISC_PROFILE (cpu)->load_regs;
347
348 if (regno != -1
349 && (h_gr & (1 << regno)) != 0)
350 {
351 CPU_M32R_MISC_PROFILE (cpu)->load_stall += 2;
352 if (TRACE_INSN_P (cpu))
353 cgen_trace_printf (cpu, " ; Load stall of 2 cycles.");
354 }
355 }
356
357 int
358 m32rbf_model_m32r_d_u_exec (SIM_CPU *cpu, const IDESC *idesc,
359 int unit_num, int referenced,
360 INT sr, INT sr2, INT dr)
361 {
362 check_load_stall (cpu, sr);
363 check_load_stall (cpu, sr2);
364 return idesc->timing->units[unit_num].done;
365 }
366
367 int
368 m32rbf_model_m32r_d_u_cmp (SIM_CPU *cpu, const IDESC *idesc,
369 int unit_num, int referenced,
370 INT src1, INT src2)
371 {
372 check_load_stall (cpu, src1);
373 check_load_stall (cpu, src2);
374 return idesc->timing->units[unit_num].done;
375 }
376
377 int
378 m32rbf_model_m32r_d_u_mac (SIM_CPU *cpu, const IDESC *idesc,
379 int unit_num, int referenced,
380 INT src1, INT src2)
381 {
382 check_load_stall (cpu, src1);
383 check_load_stall (cpu, src2);
384 return idesc->timing->units[unit_num].done;
385 }
386
387 int
388 m32rbf_model_m32r_d_u_cti (SIM_CPU *cpu, const IDESC *idesc,
389 int unit_num, int referenced,
390 INT sr)
391 {
392 PROFILE_DATA *profile = CPU_PROFILE_DATA (cpu);
393 int taken_p = (referenced & (1 << 1)) != 0;
394
395 check_load_stall (cpu, sr);
396 if (taken_p)
397 {
398 CPU_M32R_MISC_PROFILE (cpu)->cti_stall += 2;
399 PROFILE_MODEL_TAKEN_COUNT (profile) += 1;
400 }
401 else
402 PROFILE_MODEL_UNTAKEN_COUNT (profile) += 1;
403 return idesc->timing->units[unit_num].done;
404 }
405
406 int
407 m32rbf_model_m32r_d_u_load (SIM_CPU *cpu, const IDESC *idesc,
408 int unit_num, int referenced,
409 INT sr, INT dr)
410 {
411 CPU_M32R_MISC_PROFILE (cpu)->load_regs_pending |= (1 << dr);
412 check_load_stall (cpu, sr);
413 return idesc->timing->units[unit_num].done;
414 }
415
416 int
417 m32rbf_model_m32r_d_u_store (SIM_CPU *cpu, const IDESC *idesc,
418 int unit_num, int referenced,
419 INT src1, INT src2)
420 {
421 check_load_stall (cpu, src1);
422 check_load_stall (cpu, src2);
423 return idesc->timing->units[unit_num].done;
424 }
425
426 int
427 m32rbf_model_test_u_exec (SIM_CPU *cpu, const IDESC *idesc,
428 int unit_num, int referenced)
429 {
430 return idesc->timing->units[unit_num].done;
431 }
432
433 #endif /* WITH_PROFILE_MODEL_P */