* alpha-tdep.c (alpha_push_dummy_call): Handle COMPLEX types.
[binutils-gdb.git] / sim / m68hc11 / interp.c
1 /* interp.c -- Simulator for Motorola 68HC11/68HC12
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Written by Stephane Carrez (stcarrez@nerim.fr)
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "sim-main.h"
22 #include "sim-assert.h"
23 #include "sim-hw.h"
24 #include "sim-options.h"
25 #include "hw-tree.h"
26 #include "hw-device.h"
27 #include "hw-ports.h"
28
29 #ifndef MONITOR_BASE
30 # define MONITOR_BASE (0x0C000)
31 # define MONITOR_SIZE (0x04000)
32 #endif
33
34 static void sim_get_info (SIM_DESC sd, char *cmd);
35
36
37 char *interrupt_names[] = {
38 "reset",
39 "nmi",
40 "int",
41 NULL
42 };
43
44 #ifndef INLINE
45 #if defined(__GNUC__) && defined(__OPTIMIZE__)
46 #define INLINE __inline__
47 #else
48 #define INLINE
49 #endif
50 #endif
51
52 struct sim_info_list
53 {
54 const char *name;
55 const char *device;
56 };
57
58 struct sim_info_list dev_list_68hc11[] = {
59 {"cpu", "/m68hc11"},
60 {"timer", "/m68hc11/m68hc11tim"},
61 {"sio", "/m68hc11/m68hc11sio"},
62 {"spi", "/m68hc11/m68hc11spi"},
63 {"eeprom", "/m68hc11/m68hc11eepr"},
64 {0, 0}
65 };
66
67 struct sim_info_list dev_list_68hc12[] = {
68 {"cpu", "/m68hc12"},
69 {"timer", "/m68hc12/m68hc12tim"},
70 {"sio", "/m68hc12/m68hc12sio"},
71 {"spi", "/m68hc12/m68hc12spi"},
72 {"eeprom", "/m68hc12/m68hc12eepr"},
73 {0, 0}
74 };
75
76 /* Cover function of sim_state_free to free the cpu buffers as well. */
77
78 static void
79 free_state (SIM_DESC sd)
80 {
81 if (STATE_MODULES (sd) != NULL)
82 sim_module_uninstall (sd);
83
84 sim_state_free (sd);
85 }
86
87 /* Give some information about the simulator. */
88 static void
89 sim_get_info (SIM_DESC sd, char *cmd)
90 {
91 sim_cpu *cpu;
92
93 cpu = STATE_CPU (sd, 0);
94 if (cmd != 0 && (cmd[0] == ' ' || cmd[0] == '-'))
95 {
96 int i;
97 struct hw *hw_dev;
98 struct sim_info_list *dev_list;
99 const struct bfd_arch_info *arch;
100
101 arch = STATE_ARCHITECTURE (sd);
102 cmd++;
103
104 if (arch->arch == bfd_arch_m68hc11)
105 dev_list = dev_list_68hc11;
106 else
107 dev_list = dev_list_68hc12;
108
109 for (i = 0; dev_list[i].name; i++)
110 if (strcmp (cmd, dev_list[i].name) == 0)
111 break;
112
113 if (dev_list[i].name == 0)
114 {
115 sim_io_eprintf (sd, "Device '%s' not found.\n", cmd);
116 sim_io_eprintf (sd, "Valid devices: cpu timer sio eeprom\n");
117 return;
118 }
119 hw_dev = sim_hw_parse (sd, dev_list[i].device);
120 if (hw_dev == 0)
121 {
122 sim_io_eprintf (sd, "Device '%s' not found\n", dev_list[i].device);
123 return;
124 }
125 hw_ioctl (hw_dev, 23, 0);
126 return;
127 }
128
129 cpu_info (sd, cpu);
130 interrupts_info (sd, &cpu->cpu_interrupts);
131 }
132
133
134 void
135 sim_board_reset (SIM_DESC sd)
136 {
137 struct hw *hw_cpu;
138 sim_cpu *cpu;
139 const struct bfd_arch_info *arch;
140 const char *cpu_type;
141
142 cpu = STATE_CPU (sd, 0);
143 arch = STATE_ARCHITECTURE (sd);
144
145 /* hw_cpu = sim_hw_parse (sd, "/"); */
146 if (arch->arch == bfd_arch_m68hc11)
147 {
148 cpu->cpu_type = CPU_M6811;
149 cpu_type = "/m68hc11";
150 }
151 else
152 {
153 cpu->cpu_type = CPU_M6812;
154 cpu_type = "/m68hc12";
155 }
156
157 hw_cpu = sim_hw_parse (sd, cpu_type);
158 if (hw_cpu == 0)
159 {
160 sim_io_eprintf (sd, "%s cpu not found in device tree.", cpu_type);
161 return;
162 }
163
164 cpu_reset (cpu);
165 hw_port_event (hw_cpu, 3, 0);
166 cpu_restart (cpu);
167 }
168
169 static int
170 sim_hw_configure (SIM_DESC sd)
171 {
172 const struct bfd_arch_info *arch;
173 struct hw *device_tree;
174 sim_cpu *cpu;
175
176 arch = STATE_ARCHITECTURE (sd);
177 if (arch == 0)
178 return 0;
179
180 cpu = STATE_CPU (sd, 0);
181 cpu->cpu_configured_arch = arch;
182 device_tree = sim_hw_parse (sd, "/");
183 if (arch->arch == bfd_arch_m68hc11)
184 {
185 cpu->cpu_interpretor = cpu_interp_m6811;
186 if (hw_tree_find_property (device_tree, "/m68hc11/reg") == 0)
187 {
188 /* Allocate core managed memory */
189
190 /* the monitor */
191 sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
192 /* MONITOR_BASE, MONITOR_SIZE */
193 0x8000, M6811_RAM_LEVEL, 0x8000);
194 sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
195 M6811_RAM_LEVEL);
196 sim_hw_parse (sd, "/m68hc11/reg 0x1000 0x03F");
197 }
198
199 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11sio/reg") == 0)
200 {
201 sim_hw_parse (sd, "/m68hc11/m68hc11sio/reg 0x2b 0x5");
202 sim_hw_parse (sd, "/m68hc11/m68hc11sio/backend stdio");
203 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11sio");
204 }
205 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11tim/reg") == 0)
206 {
207 /* M68hc11 Timer configuration. */
208 sim_hw_parse (sd, "/m68hc11/m68hc11tim/reg 0x1b 0x5");
209 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11tim");
210 sim_hw_parse (sd, "/m68hc11 > capture capture /m68hc11/m68hc11tim");
211 }
212
213 /* Create the SPI device. */
214 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11spi/reg") == 0)
215 {
216 sim_hw_parse (sd, "/m68hc11/m68hc11spi/reg 0x28 0x3");
217 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11spi");
218 }
219 if (hw_tree_find_property (device_tree, "/m68hc11/nvram/reg") == 0)
220 {
221 /* M68hc11 persistent ram configuration. */
222 sim_hw_parse (sd, "/m68hc11/nvram/reg 0x0 256");
223 sim_hw_parse (sd, "/m68hc11/nvram/file m68hc11.ram");
224 sim_hw_parse (sd, "/m68hc11/nvram/mode save-modified");
225 /*sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/pram"); */
226 }
227 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11eepr/reg") == 0)
228 {
229 sim_hw_parse (sd, "/m68hc11/m68hc11eepr/reg 0xb000 512");
230 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11eepr");
231 }
232 sim_hw_parse (sd, "/m68hc11 > port-a cpu-write-port /m68hc11");
233 sim_hw_parse (sd, "/m68hc11 > port-b cpu-write-port /m68hc11");
234 sim_hw_parse (sd, "/m68hc11 > port-c cpu-write-port /m68hc11");
235 sim_hw_parse (sd, "/m68hc11 > port-d cpu-write-port /m68hc11");
236 cpu->hw_cpu = sim_hw_parse (sd, "/m68hc11");
237 }
238 else
239 {
240 cpu->cpu_interpretor = cpu_interp_m6812;
241 if (hw_tree_find_property (device_tree, "/m68hc12/reg") == 0)
242 {
243 /* Allocate core external memory. */
244 sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
245 0xC000, M6811_RAM_LEVEL, 0x4000);
246 sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
247 M6811_RAM_LEVEL);
248 sim_do_commandf (sd, "memory region 0x01000000@%d,0x100000",
249 M6811_RAM_LEVEL);
250
251 sim_hw_parse (sd, "/m68hc12/reg 0x0 0x3FF");
252 sim_hw_parse (sd, "/m68hc12/use_bank 1");
253 }
254
255 if (!hw_tree_find_property (device_tree, "/m68hc12/m68hc12sio@1/reg"))
256 {
257 sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/reg 0xC0 0x8");
258 sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/backend stdio");
259 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12sio@1");
260 }
261 if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12tim/reg") == 0)
262 {
263 /* M68hc11 Timer configuration. */
264 sim_hw_parse (sd, "/m68hc12/m68hc12tim/reg 0x1b 0x5");
265 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12tim");
266 sim_hw_parse (sd, "/m68hc12 > capture capture /m68hc12/m68hc12tim");
267 }
268
269 /* Create the SPI device. */
270 if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12spi/reg") == 0)
271 {
272 sim_hw_parse (sd, "/m68hc12/m68hc12spi/reg 0x28 0x3");
273 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12spi");
274 }
275 if (hw_tree_find_property (device_tree, "/m68hc12/nvram/reg") == 0)
276 {
277 /* M68hc11 persistent ram configuration. */
278 sim_hw_parse (sd, "/m68hc12/nvram/reg 0x2000 8192");
279 sim_hw_parse (sd, "/m68hc12/nvram/file m68hc12.ram");
280 sim_hw_parse (sd, "/m68hc12/nvram/mode save-modified");
281 }
282 if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12eepr/reg") == 0)
283 {
284 sim_hw_parse (sd, "/m68hc12/m68hc12eepr/reg 0x0800 2048");
285 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12eepr");
286 }
287
288 sim_hw_parse (sd, "/m68hc12 > port-a cpu-write-port /m68hc12");
289 sim_hw_parse (sd, "/m68hc12 > port-b cpu-write-port /m68hc12");
290 sim_hw_parse (sd, "/m68hc12 > port-c cpu-write-port /m68hc12");
291 sim_hw_parse (sd, "/m68hc12 > port-d cpu-write-port /m68hc12");
292 cpu->hw_cpu = sim_hw_parse (sd, "/m68hc12");
293 }
294 return 1;
295 }
296
297 static int
298 sim_prepare_for_program (SIM_DESC sd, struct bfd* abfd)
299 {
300 sim_cpu *cpu;
301
302 cpu = STATE_CPU (sd, 0);
303
304 if (!sim_hw_configure (sd))
305 return SIM_RC_FAIL;
306
307 if (abfd != NULL)
308 {
309 asection *s;
310 cpu->cpu_elf_start = bfd_get_start_address (abfd);
311 /* See if any section sets the reset address */
312 cpu->cpu_use_elf_start = 1;
313 for (s = abfd->sections; s && cpu->cpu_use_elf_start; s = s->next)
314 {
315 if (s->flags & SEC_LOAD)
316 {
317 bfd_size_type size;
318
319 size = bfd_get_section_size_before_reloc (s);
320 if (size > 0)
321 {
322 bfd_vma lma;
323
324 if (STATE_LOAD_AT_LMA_P (sd))
325 lma = bfd_section_lma (abfd, s);
326 else
327 lma = bfd_section_vma (abfd, s);
328
329 if (lma <= 0xFFFE && lma+size >= 0x10000)
330 cpu->cpu_use_elf_start = 0;
331 }
332 }
333 }
334 }
335
336 /* reset all state information */
337 sim_board_reset (sd);
338
339 return SIM_RC_OK;
340 }
341
342 SIM_DESC
343 sim_open (SIM_OPEN_KIND kind, host_callback *callback,
344 struct bfd *abfd, char **argv)
345 {
346 SIM_DESC sd;
347 sim_cpu *cpu;
348
349 sd = sim_state_alloc (kind, callback);
350 cpu = STATE_CPU (sd, 0);
351
352 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
353
354 /* for compatibility */
355 current_alignment = NONSTRICT_ALIGNMENT;
356 current_target_byte_order = BIG_ENDIAN;
357
358 cpu_initialize (sd, cpu);
359
360 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
361 {
362 free_state (sd);
363 return 0;
364 }
365
366 /* getopt will print the error message so we just have to exit if this fails.
367 FIXME: Hmmm... in the case of gdb we need getopt to call
368 print_filtered. */
369 if (sim_parse_args (sd, argv) != SIM_RC_OK)
370 {
371 /* Uninstall the modules to avoid memory leaks,
372 file descriptor leaks, etc. */
373 free_state (sd);
374 return 0;
375 }
376
377 /* Check for/establish the a reference program image. */
378 if (sim_analyze_program (sd,
379 (STATE_PROG_ARGV (sd) != NULL
380 ? *STATE_PROG_ARGV (sd)
381 : NULL), abfd) != SIM_RC_OK)
382 {
383 free_state (sd);
384 return 0;
385 }
386
387 /* Establish any remaining configuration options. */
388 if (sim_config (sd) != SIM_RC_OK)
389 {
390 free_state (sd);
391 return 0;
392 }
393
394 if (sim_post_argv_init (sd) != SIM_RC_OK)
395 {
396 /* Uninstall the modules to avoid memory leaks,
397 file descriptor leaks, etc. */
398 free_state (sd);
399 return 0;
400 }
401
402 sim_hw_configure (sd);
403
404 /* Fudge our descriptor. */
405 return sd;
406 }
407
408
409 void
410 sim_close (SIM_DESC sd, int quitting)
411 {
412 /* shut down modules */
413 sim_module_uninstall (sd);
414
415 /* Ensure that any resources allocated through the callback
416 mechanism are released: */
417 sim_io_shutdown (sd);
418
419 /* FIXME - free SD */
420 sim_state_free (sd);
421 return;
422 }
423
424 void
425 sim_set_profile (int n)
426 {
427 }
428
429 void
430 sim_set_profile_size (int n)
431 {
432 }
433
434 /* Generic implementation of sim_engine_run that works within the
435 sim_engine setjmp/longjmp framework. */
436
437 void
438 sim_engine_run (SIM_DESC sd,
439 int next_cpu_nr, /* ignore */
440 int nr_cpus, /* ignore */
441 int siggnal) /* ignore */
442 {
443 sim_cpu *cpu;
444
445 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
446 cpu = STATE_CPU (sd, 0);
447 while (1)
448 {
449 cpu_single_step (cpu);
450
451 /* process any events */
452 if (sim_events_tickn (sd, cpu->cpu_current_cycle))
453 {
454 sim_events_process (sd);
455 }
456 }
457 }
458
459 int
460 sim_trace (SIM_DESC sd)
461 {
462 sim_resume (sd, 0, 0);
463 return 1;
464 }
465
466 void
467 sim_info (SIM_DESC sd, int verbose)
468 {
469 const char *cpu_type;
470 const struct bfd_arch_info *arch;
471
472 /* Nothing to do if there is no verbose flag set. */
473 if (verbose == 0 && STATE_VERBOSE_P (sd) == 0)
474 return;
475
476 arch = STATE_ARCHITECTURE (sd);
477 if (arch->arch == bfd_arch_m68hc11)
478 cpu_type = "68HC11";
479 else
480 cpu_type = "68HC12";
481
482 sim_io_eprintf (sd, "Simulator info:\n");
483 sim_io_eprintf (sd, " CPU Motorola %s\n", cpu_type);
484 sim_get_info (sd, 0);
485 sim_module_info (sd, verbose || STATE_VERBOSE_P (sd));
486 }
487
488 SIM_RC
489 sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
490 char **argv, char **env)
491 {
492 return sim_prepare_for_program (sd, abfd);
493 }
494
495
496 void
497 sim_set_callbacks (host_callback *p)
498 {
499 /* m6811_callback = p; */
500 }
501
502
503 int
504 sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
505 {
506 sim_cpu *cpu;
507 uint16 val;
508 int size = 2;
509
510 cpu = STATE_CPU (sd, 0);
511 switch (rn)
512 {
513 case A_REGNUM:
514 val = cpu_get_a (cpu);
515 size = 1;
516 break;
517
518 case B_REGNUM:
519 val = cpu_get_b (cpu);
520 size = 1;
521 break;
522
523 case D_REGNUM:
524 val = cpu_get_d (cpu);
525 break;
526
527 case X_REGNUM:
528 val = cpu_get_x (cpu);
529 break;
530
531 case Y_REGNUM:
532 val = cpu_get_y (cpu);
533 break;
534
535 case SP_REGNUM:
536 val = cpu_get_sp (cpu);
537 break;
538
539 case PC_REGNUM:
540 val = cpu_get_pc (cpu);
541 break;
542
543 case PSW_REGNUM:
544 val = cpu_get_ccr (cpu);
545 size = 1;
546 break;
547
548 case PAGE_REGNUM:
549 val = cpu_get_page (cpu);
550 size = 1;
551 break;
552
553 default:
554 val = 0;
555 break;
556 }
557 if (size == 1)
558 {
559 memory[0] = val;
560 }
561 else
562 {
563 memory[0] = val >> 8;
564 memory[1] = val & 0x0FF;
565 }
566 return size;
567 }
568
569 int
570 sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
571 {
572 uint16 val;
573 sim_cpu *cpu;
574
575 cpu = STATE_CPU (sd, 0);
576
577 val = *memory++;
578 if (length == 2)
579 val = (val << 8) | *memory;
580
581 switch (rn)
582 {
583 case D_REGNUM:
584 cpu_set_d (cpu, val);
585 break;
586
587 case A_REGNUM:
588 cpu_set_a (cpu, val);
589 return 1;
590
591 case B_REGNUM:
592 cpu_set_b (cpu, val);
593 return 1;
594
595 case X_REGNUM:
596 cpu_set_x (cpu, val);
597 break;
598
599 case Y_REGNUM:
600 cpu_set_y (cpu, val);
601 break;
602
603 case SP_REGNUM:
604 cpu_set_sp (cpu, val);
605 break;
606
607 case PC_REGNUM:
608 cpu_set_pc (cpu, val);
609 break;
610
611 case PSW_REGNUM:
612 cpu_set_ccr (cpu, val);
613 return 1;
614
615 case PAGE_REGNUM:
616 cpu_set_page (cpu, val);
617 return 1;
618
619 default:
620 break;
621 }
622
623 return 2;
624 }
625
626 void
627 sim_size (int s)
628 {
629 ;
630 }
631
632 void
633 sim_do_command (SIM_DESC sd, char *cmd)
634 {
635 char *mm_cmd = "memory-map";
636 char *int_cmd = "interrupt";
637 sim_cpu *cpu;
638
639 cpu = STATE_CPU (sd, 0);
640 /* Commands available from GDB: */
641 if (sim_args_command (sd, cmd) != SIM_RC_OK)
642 {
643 if (strncmp (cmd, "info", sizeof ("info") - 1) == 0)
644 sim_get_info (sd, &cmd[4]);
645 else if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
646 sim_io_eprintf (sd,
647 "`memory-map' command replaced by `sim memory'\n");
648 else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
649 sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
650 else
651 sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
652 }
653
654 /* If the architecture changed, re-configure. */
655 if (STATE_ARCHITECTURE (sd) != cpu->cpu_configured_arch)
656 sim_hw_configure (sd);
657 }
658
659 /* Halt the simulator after just one instruction */
660
661 static void
662 has_stepped (SIM_DESC sd,
663 void *data)
664 {
665 ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
666 sim_engine_halt (sd, NULL, NULL, NULL_CIA, sim_stopped, SIM_SIGTRAP);
667 }
668
669
670 /* Generic resume - assumes the existance of sim_engine_run */
671
672 void
673 sim_resume (SIM_DESC sd,
674 int step,
675 int siggnal)
676 {
677 sim_engine *engine = STATE_ENGINE (sd);
678 jmp_buf buf;
679 int jmpval;
680
681 ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
682
683 /* we only want to be single stepping the simulator once */
684 if (engine->stepper != NULL)
685 {
686 sim_events_deschedule (sd, engine->stepper);
687 engine->stepper = NULL;
688 }
689 sim_module_resume (sd);
690
691 /* run/resume the simulator */
692 engine->jmpbuf = &buf;
693 jmpval = setjmp (buf);
694 if (jmpval == sim_engine_start_jmpval
695 || jmpval == sim_engine_restart_jmpval)
696 {
697 int last_cpu_nr = sim_engine_last_cpu_nr (sd);
698 int next_cpu_nr = sim_engine_next_cpu_nr (sd);
699 int nr_cpus = sim_engine_nr_cpus (sd);
700
701 sim_events_preprocess (sd, last_cpu_nr >= nr_cpus, next_cpu_nr >= nr_cpus);
702 if (next_cpu_nr >= nr_cpus)
703 next_cpu_nr = 0;
704
705 /* Only deliver the siggnal ]sic] the first time through - don't
706 re-deliver any siggnal during a restart. */
707 if (jmpval == sim_engine_restart_jmpval)
708 siggnal = 0;
709
710 /* Install the stepping event after having processed some
711 pending events. This is necessary for HC11/HC12 simulator
712 because the tick counter is incremented by the number of cycles
713 the instruction took. Some pending ticks to process can still
714 be recorded internally by the simulator and sim_events_preprocess
715 will handle them. If the stepping event is inserted before,
716 these pending ticks will raise the event and the simulator will
717 stop without having executed any instruction. */
718 if (step)
719 engine->stepper = sim_events_schedule (sd, 0, has_stepped, sd);
720
721 #ifdef SIM_CPU_EXCEPTION_RESUME
722 {
723 sim_cpu* cpu = STATE_CPU (sd, next_cpu_nr);
724 SIM_CPU_EXCEPTION_RESUME(sd, cpu, siggnal);
725 }
726 #endif
727
728 sim_engine_run (sd, next_cpu_nr, nr_cpus, siggnal);
729 }
730 engine->jmpbuf = NULL;
731
732 sim_module_suspend (sd);
733 }