Powerpc fix for gdb.base/ending-run.exp
[binutils-gdb.git] / sim / mips / interp.c
1 /*> interp.c <*/
2 /* Simulator for the MIPS architecture.
3
4 This file is part of the MIPS sim
5
6 THIS SOFTWARE IS NOT COPYRIGHTED
7
8 Cygnus offers the following for use in the public domain. Cygnus
9 makes no warranty with regard to the software or it's performance
10 and the user accepts the software "AS IS" with all faults.
11
12 CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
13 THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
14 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
15
16 NOTEs:
17
18 The IDT monitor (found on the VR4300 board), seems to lie about
19 register contents. It seems to treat the registers as sign-extended
20 32-bit values. This cause *REAL* problems when single-stepping 64-bit
21 code on the hardware.
22
23 */
24
25 /* This must come before any other includes. */
26 #include "defs.h"
27
28 #include "bfd.h"
29 #include "sim-main.h"
30 #include "sim-utils.h"
31 #include "sim-options.h"
32 #include "sim-assert.h"
33 #include "sim-hw.h"
34 #include "sim-signal.h"
35
36 #include "itable.h"
37
38 #include <stdio.h>
39 #include <stdarg.h>
40 #include <ansidecl.h>
41 #include <ctype.h>
42 #include <limits.h>
43 #include <math.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include "getopt.h"
48 #include "libiberty.h"
49 #include "bfd.h"
50 #include "elf-bfd.h"
51 #include "sim/callback.h" /* GDB simulator callback interface */
52 #include "sim/sim.h" /* GDB simulator interface */
53 #include "sim-syscall.h" /* Simulator system call support */
54
55 char* pr_addr (SIM_ADDR addr);
56 char* pr_uword64 (uword64 addr);
57
58
59 /* Within interp.c we refer to the sim_state and sim_cpu directly. */
60 #define CPU cpu
61 #define SD sd
62
63
64 /* The following reserved instruction value is used when a simulator
65 trap is required. NOTE: Care must be taken, since this value may be
66 used in later revisions of the MIPS ISA. */
67
68 #define RSVD_INSTRUCTION (0x00000039)
69 #define RSVD_INSTRUCTION_MASK (0xFC00003F)
70
71 #define RSVD_INSTRUCTION_ARG_SHIFT 6
72 #define RSVD_INSTRUCTION_ARG_MASK 0xFFFFF
73
74
75 /* Bits in the Debug register */
76 #define Debug_DBD 0x80000000 /* Debug Branch Delay */
77 #define Debug_DM 0x40000000 /* Debug Mode */
78 #define Debug_DBp 0x00000002 /* Debug Breakpoint indicator */
79
80 /*---------------------------------------------------------------------------*/
81 /*-- GDB simulator interface ------------------------------------------------*/
82 /*---------------------------------------------------------------------------*/
83
84 static void ColdReset (SIM_DESC sd);
85
86 /*---------------------------------------------------------------------------*/
87
88
89
90 #define DELAYSLOT() {\
91 if (STATE & simDELAYSLOT)\
92 sim_io_eprintf(sd,"Delay slot already activated (branch in delay slot?)\n");\
93 STATE |= simDELAYSLOT;\
94 }
95
96 #define JALDELAYSLOT() {\
97 DELAYSLOT ();\
98 STATE |= simJALDELAYSLOT;\
99 }
100
101 #define NULLIFY() {\
102 STATE &= ~simDELAYSLOT;\
103 STATE |= simSKIPNEXT;\
104 }
105
106 #define CANCELDELAYSLOT() {\
107 DSSTATE = 0;\
108 STATE &= ~(simDELAYSLOT | simJALDELAYSLOT);\
109 }
110
111 #define INDELAYSLOT() ((STATE & simDELAYSLOT) != 0)
112 #define INJALDELAYSLOT() ((STATE & simJALDELAYSLOT) != 0)
113
114 /* Note that the monitor code essentially assumes this layout of memory.
115 If you change these, change the monitor code, too. */
116 /* FIXME Currently addresses are truncated to 32-bits, see
117 mips/sim-main.c:address_translation(). If that changes, then these
118 values will need to be extended, and tested for more carefully. */
119 #define K0BASE (0x80000000)
120 #define K0SIZE (0x20000000)
121 #define K1BASE (0xA0000000)
122 #define K1SIZE (0x20000000)
123
124 /* Simple run-time monitor support.
125
126 We emulate the monitor by placing magic reserved instructions at
127 the monitor's entry points; when we hit these instructions, instead
128 of raising an exception (as we would normally), we look at the
129 instruction and perform the appropriate monitory operation.
130
131 `*_monitor_base' are the physical addresses at which the corresponding
132 monitor vectors are located. `0' means none. By default,
133 install all three.
134 The RSVD_INSTRUCTION... macros specify the magic instructions we
135 use at the monitor entry points. */
136 static int firmware_option_p = 0;
137 static SIM_ADDR idt_monitor_base = 0xBFC00000;
138 static SIM_ADDR pmon_monitor_base = 0xBFC00500;
139 static SIM_ADDR lsipmon_monitor_base = 0xBFC00200;
140
141 static SIM_RC sim_firmware_command (SIM_DESC sd, char* arg);
142
143 #define MEM_SIZE (8 << 20) /* 8 MBytes */
144
145
146 #if WITH_TRACE_ANY_P
147 static char *tracefile = "trace.din"; /* default filename for trace log */
148 FILE *tracefh = NULL;
149 static void open_trace (SIM_DESC sd);
150 #else
151 #define open_trace(sd)
152 #endif
153
154 static const char * get_insn_name (sim_cpu *, int);
155
156 /* simulation target board. NULL=canonical */
157 static char* board = NULL;
158
159
160 static DECLARE_OPTION_HANDLER (mips_option_handler);
161
162 enum {
163 OPTION_DINERO_TRACE = OPTION_START,
164 OPTION_DINERO_FILE,
165 OPTION_FIRMWARE,
166 OPTION_INFO_MEMORY,
167 OPTION_BOARD
168 };
169
170 static int display_mem_info = 0;
171
172 static SIM_RC
173 mips_option_handler (SIM_DESC sd, sim_cpu *cpu, int opt, char *arg,
174 int is_command)
175 {
176 int cpu_nr;
177 switch (opt)
178 {
179 case OPTION_DINERO_TRACE: /* ??? */
180 #if WITH_TRACE_ANY_P
181 /* Eventually the simTRACE flag could be treated as a toggle, to
182 allow external control of the program points being traced
183 (i.e. only from main onwards, excluding the run-time setup,
184 etc.). */
185 for (cpu_nr = 0; cpu_nr < MAX_NR_PROCESSORS; cpu_nr++)
186 {
187 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
188 if (arg == NULL)
189 STATE |= simTRACE;
190 else if (strcmp (arg, "yes") == 0)
191 STATE |= simTRACE;
192 else if (strcmp (arg, "no") == 0)
193 STATE &= ~simTRACE;
194 else if (strcmp (arg, "on") == 0)
195 STATE |= simTRACE;
196 else if (strcmp (arg, "off") == 0)
197 STATE &= ~simTRACE;
198 else
199 {
200 fprintf (stderr, "Unrecognized dinero-trace option `%s'\n", arg);
201 return SIM_RC_FAIL;
202 }
203 }
204 return SIM_RC_OK;
205 #else /* !WITH_TRACE_ANY_P */
206 fprintf(stderr,"\
207 Simulator constructed without dinero tracing support (for performance).\n\
208 Re-compile simulator with \"-DWITH_TRACE_ANY_P\" to enable this option.\n");
209 return SIM_RC_FAIL;
210 #endif /* !WITH_TRACE_ANY_P */
211
212 case OPTION_DINERO_FILE:
213 #if WITH_TRACE_ANY_P
214 if (optarg != NULL) {
215 char *tmp;
216 tmp = (char *)malloc(strlen(optarg) + 1);
217 if (tmp == NULL)
218 {
219 sim_io_printf(sd,"Failed to allocate buffer for tracefile name \"%s\"\n",optarg);
220 return SIM_RC_FAIL;
221 }
222 else {
223 strcpy(tmp,optarg);
224 tracefile = tmp;
225 sim_io_printf(sd,"Placing trace information into file \"%s\"\n",tracefile);
226 }
227 }
228 #endif /* WITH_TRACE_ANY_P */
229 return SIM_RC_OK;
230
231 case OPTION_FIRMWARE:
232 return sim_firmware_command (sd, arg);
233
234 case OPTION_BOARD:
235 {
236 if (arg)
237 {
238 board = zalloc(strlen(arg) + 1);
239 strcpy(board, arg);
240 }
241 return SIM_RC_OK;
242 }
243
244 case OPTION_INFO_MEMORY:
245 display_mem_info = 1;
246 break;
247 }
248
249 return SIM_RC_OK;
250 }
251
252
253 static const OPTION mips_options[] =
254 {
255 { {"dinero-trace", optional_argument, NULL, OPTION_DINERO_TRACE},
256 '\0', "on|off", "Enable dinero tracing",
257 mips_option_handler },
258 { {"dinero-file", required_argument, NULL, OPTION_DINERO_FILE},
259 '\0', "FILE", "Write dinero trace to FILE",
260 mips_option_handler },
261 { {"firmware", required_argument, NULL, OPTION_FIRMWARE},
262 '\0', "[idt|pmon|lsipmon|none][@ADDRESS]", "Emulate ROM monitor",
263 mips_option_handler },
264 { {"board", required_argument, NULL, OPTION_BOARD},
265 '\0', "none" /* rely on compile-time string concatenation for other options */
266
267 #define BOARD_JMR3904 "jmr3904"
268 "|" BOARD_JMR3904
269 #define BOARD_JMR3904_PAL "jmr3904pal"
270 "|" BOARD_JMR3904_PAL
271 #define BOARD_JMR3904_DEBUG "jmr3904debug"
272 "|" BOARD_JMR3904_DEBUG
273 #define BOARD_BSP "bsp"
274 "|" BOARD_BSP
275
276 , "Customize simulation for a particular board.", mips_option_handler },
277
278 /* These next two options have the same names as ones found in the
279 memory_options[] array in common/sim-memopt.c. This is because
280 the intention is to provide an alternative handler for those two
281 options. We need an alternative handler because the memory
282 regions are not set up until after the command line arguments
283 have been parsed, and so we cannot display the memory info whilst
284 processing the command line. There is a hack in sim_open to
285 remove these handlers when we want the real --memory-info option
286 to work. */
287 { { "info-memory", no_argument, NULL, OPTION_INFO_MEMORY },
288 '\0', NULL, "List configured memory regions", mips_option_handler },
289 { { "memory-info", no_argument, NULL, OPTION_INFO_MEMORY },
290 '\0', NULL, NULL, mips_option_handler },
291
292 { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
293 };
294
295
296 int interrupt_pending;
297
298 void
299 interrupt_event (SIM_DESC sd, void *data)
300 {
301 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
302 address_word cia = CPU_PC_GET (cpu);
303 if (SR & status_IE)
304 {
305 interrupt_pending = 0;
306 SignalExceptionInterrupt (1); /* interrupt "1" */
307 }
308 else if (!interrupt_pending)
309 sim_events_schedule (sd, 1, interrupt_event, data);
310 }
311
312
313 /*---------------------------------------------------------------------------*/
314 /*-- Device registration hook -----------------------------------------------*/
315 /*---------------------------------------------------------------------------*/
316 static void device_init(SIM_DESC sd) {
317 #ifdef DEVICE_INIT
318 extern void register_devices(SIM_DESC);
319 register_devices(sd);
320 #endif
321 }
322
323 /*---------------------------------------------------------------------------*/
324 /*-- GDB simulator interface ------------------------------------------------*/
325 /*---------------------------------------------------------------------------*/
326
327 static sim_cia
328 mips_pc_get (sim_cpu *cpu)
329 {
330 return PC;
331 }
332
333 static void
334 mips_pc_set (sim_cpu *cpu, sim_cia pc)
335 {
336 PC = pc;
337 }
338
339 static int mips_reg_fetch (SIM_CPU *, int, unsigned char *, int);
340 static int mips_reg_store (SIM_CPU *, int, unsigned char *, int);
341
342 SIM_DESC
343 sim_open (SIM_OPEN_KIND kind, host_callback *cb,
344 struct bfd *abfd, char * const *argv)
345 {
346 int i;
347 SIM_DESC sd = sim_state_alloc_extra (kind, cb,
348 sizeof (struct mips_sim_state));
349 sim_cpu *cpu;
350
351 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
352
353 /* The cpu data is kept in a separately allocated chunk of memory. */
354 if (sim_cpu_alloc_all (sd, 1) != SIM_RC_OK)
355 return 0;
356
357 cpu = STATE_CPU (sd, 0); /* FIXME */
358
359 /* FIXME: watchpoints code shouldn't need this */
360 STATE_WATCHPOINTS (sd)->interrupt_handler = interrupt_event;
361
362 /* Initialize the mechanism for doing insn profiling. */
363 CPU_INSN_NAME (cpu) = get_insn_name;
364 CPU_MAX_INSNS (cpu) = nr_itable_entries;
365
366 STATE = 0;
367
368 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
369 return 0;
370 sim_add_option_table (sd, NULL, mips_options);
371
372
373 /* The parser will print an error message for us, so we silently return. */
374 if (sim_parse_args (sd, argv) != SIM_RC_OK)
375 {
376 /* Uninstall the modules to avoid memory leaks,
377 file descriptor leaks, etc. */
378 sim_module_uninstall (sd);
379 return 0;
380 }
381
382 /* handle board-specific memory maps */
383 if (board == NULL)
384 {
385 /* Allocate core managed memory */
386 sim_memopt *entry, *match = NULL;
387 address_word mem_size = 0;
388 int mapped = 0;
389
390 /* For compatibility with the old code - under this (at level one)
391 are the kernel spaces K0 & K1. Both of these map to a single
392 smaller sub region */
393 sim_do_command(sd," memory region 0x7fff8000,0x8000") ; /* MTZ- 32 k stack */
394
395 /* Look for largest memory region defined on command-line at
396 phys address 0. */
397 for (entry = STATE_MEMOPT (sd); entry != NULL; entry = entry->next)
398 {
399 /* If we find an entry at address 0, then we will end up
400 allocating a new buffer in the "memory alias" command
401 below. The region at address 0 will be deleted. */
402 address_word size = (entry->modulo != 0
403 ? entry->modulo : entry->nr_bytes);
404 if (entry->addr == 0
405 && (!match || entry->level < match->level))
406 match = entry;
407 else if (entry->addr == K0BASE || entry->addr == K1BASE)
408 mapped = 1;
409 else
410 {
411 sim_memopt *alias;
412 for (alias = entry->alias; alias != NULL; alias = alias->next)
413 {
414 if (alias->addr == 0
415 && (!match || entry->level < match->level))
416 match = entry;
417 else if (alias->addr == K0BASE || alias->addr == K1BASE)
418 mapped = 1;
419 }
420 }
421 }
422
423 if (!mapped)
424 {
425 if (match)
426 {
427 /* Get existing memory region size. */
428 mem_size = (match->modulo != 0
429 ? match->modulo : match->nr_bytes);
430 /* Delete old region. */
431 sim_do_commandf (sd, "memory delete %d:0x%" PRIxTW "@%d",
432 match->space, match->addr, match->level);
433 }
434 else if (mem_size == 0)
435 mem_size = MEM_SIZE;
436 /* Limit to KSEG1 size (512MB) */
437 if (mem_size > K1SIZE)
438 mem_size = K1SIZE;
439 /* memory alias K1BASE@1,K1SIZE%MEMSIZE,K0BASE */
440 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x%%0x%lx,0x%0x",
441 K1BASE, K1SIZE, (long)mem_size, K0BASE);
442 if (WITH_TARGET_WORD_BITSIZE == 64)
443 sim_do_commandf (sd, "memory alias 0x%x,0x%" PRIxTW ",0x%" PRIxTA,
444 (K0BASE), mem_size, EXTENDED(K0BASE));
445 }
446
447 device_init(sd);
448 }
449 else if (board != NULL
450 && (strcmp(board, BOARD_BSP) == 0))
451 {
452 int i;
453
454 STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
455
456 /* ROM: 0x9FC0_0000 - 0x9FFF_FFFF and 0xBFC0_0000 - 0xBFFF_FFFF */
457 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x,0x%0x",
458 0x9FC00000,
459 4 * 1024 * 1024, /* 4 MB */
460 0xBFC00000);
461
462 /* SRAM: 0x8000_0000 - 0x803F_FFFF and 0xA000_0000 - 0xA03F_FFFF */
463 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x,0x%0x",
464 0x80000000,
465 4 * 1024 * 1024, /* 4 MB */
466 0xA0000000);
467
468 /* DRAM: 0x8800_0000 - 0x89FF_FFFF and 0xA800_0000 - 0xA9FF_FFFF */
469 for (i=0; i<8; i++) /* 32 MB total */
470 {
471 unsigned size = 4 * 1024 * 1024; /* 4 MB */
472 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x,0x%0x",
473 0x88000000 + (i * size),
474 size,
475 0xA8000000 + (i * size));
476 }
477 }
478 #if (WITH_HW)
479 else if (board != NULL
480 && (strcmp(board, BOARD_JMR3904) == 0 ||
481 strcmp(board, BOARD_JMR3904_PAL) == 0 ||
482 strcmp(board, BOARD_JMR3904_DEBUG) == 0))
483 {
484 /* match VIRTUAL memory layout of JMR-TX3904 board */
485 int i;
486
487 /* --- disable monitor unless forced on by user --- */
488
489 if (! firmware_option_p)
490 {
491 idt_monitor_base = 0;
492 pmon_monitor_base = 0;
493 lsipmon_monitor_base = 0;
494 }
495
496 /* --- environment --- */
497
498 STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
499
500 /* --- memory --- */
501
502 /* ROM: 0x9FC0_0000 - 0x9FFF_FFFF and 0xBFC0_0000 - 0xBFFF_FFFF */
503 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x,0x%0x",
504 0x9FC00000,
505 4 * 1024 * 1024, /* 4 MB */
506 0xBFC00000);
507
508 /* SRAM: 0x8000_0000 - 0x803F_FFFF and 0xA000_0000 - 0xA03F_FFFF */
509 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x,0x%0x",
510 0x80000000,
511 4 * 1024 * 1024, /* 4 MB */
512 0xA0000000);
513
514 /* DRAM: 0x8800_0000 - 0x89FF_FFFF and 0xA800_0000 - 0xA9FF_FFFF */
515 for (i=0; i<8; i++) /* 32 MB total */
516 {
517 unsigned size = 4 * 1024 * 1024; /* 4 MB */
518 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x,0x%0x",
519 0x88000000 + (i * size),
520 size,
521 0xA8000000 + (i * size));
522 }
523
524 /* Dummy memory regions for unsimulated devices - sorted by address */
525
526 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x", 0xB1000000, 0x400); /* ISA I/O */
527 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x", 0xB2100000, 0x004); /* ISA ctl */
528 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x", 0xB2500000, 0x004); /* LED/switch */
529 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x", 0xB2700000, 0x004); /* RTC */
530 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x", 0xB3C00000, 0x004); /* RTC */
531 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x", 0xFFFF8000, 0x900); /* DRAMC */
532 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x", 0xFFFF9000, 0x200); /* EBIF */
533 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x", 0xFFFFE000, 0x01c); /* EBIF */
534 sim_do_commandf (sd, "memory alias 0x%x@1,0x%x", 0xFFFFF500, 0x300); /* PIO */
535
536
537 /* --- simulated devices --- */
538 sim_hw_parse (sd, "/tx3904irc@0xffffc000/reg 0xffffc000 0x20");
539 sim_hw_parse (sd, "/tx3904cpu");
540 sim_hw_parse (sd, "/tx3904tmr@0xfffff000/reg 0xfffff000 0x100");
541 sim_hw_parse (sd, "/tx3904tmr@0xfffff100/reg 0xfffff100 0x100");
542 sim_hw_parse (sd, "/tx3904tmr@0xfffff200/reg 0xfffff200 0x100");
543 sim_hw_parse (sd, "/tx3904sio@0xfffff300/reg 0xfffff300 0x100");
544 {
545 /* FIXME: poking at dv-sockser internals, use tcp backend if
546 --sockser_addr option was given.*/
547 #ifdef HAVE_DV_SOCKSER
548 extern char* sockser_addr;
549 #else
550 # define sockser_addr NULL
551 #endif
552 if (sockser_addr == NULL)
553 sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend stdio");
554 else
555 sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend tcp");
556 }
557 sim_hw_parse (sd, "/tx3904sio@0xfffff400/reg 0xfffff400 0x100");
558 sim_hw_parse (sd, "/tx3904sio@0xfffff400/backend stdio");
559
560 /* -- device connections --- */
561 sim_hw_parse (sd, "/tx3904irc > ip level /tx3904cpu");
562 sim_hw_parse (sd, "/tx3904tmr@0xfffff000 > int tmr0 /tx3904irc");
563 sim_hw_parse (sd, "/tx3904tmr@0xfffff100 > int tmr1 /tx3904irc");
564 sim_hw_parse (sd, "/tx3904tmr@0xfffff200 > int tmr2 /tx3904irc");
565 sim_hw_parse (sd, "/tx3904sio@0xfffff300 > int sio0 /tx3904irc");
566 sim_hw_parse (sd, "/tx3904sio@0xfffff400 > int sio1 /tx3904irc");
567
568 /* add PAL timer & I/O module */
569 if (!strcmp(board, BOARD_JMR3904_PAL))
570 {
571 /* the device */
572 sim_hw_parse (sd, "/pal@0xffff0000");
573 sim_hw_parse (sd, "/pal@0xffff0000/reg 0xffff0000 64");
574
575 /* wire up interrupt ports to irc */
576 sim_hw_parse (sd, "/pal@0x31000000 > countdown tmr0 /tx3904irc");
577 sim_hw_parse (sd, "/pal@0x31000000 > timer tmr1 /tx3904irc");
578 sim_hw_parse (sd, "/pal@0x31000000 > int int0 /tx3904irc");
579 }
580
581 if (!strcmp(board, BOARD_JMR3904_DEBUG))
582 {
583 /* -- DEBUG: glue interrupt generators --- */
584 sim_hw_parse (sd, "/glue@0xffff0000/reg 0xffff0000 0x50");
585 sim_hw_parse (sd, "/glue@0xffff0000 > int0 int0 /tx3904irc");
586 sim_hw_parse (sd, "/glue@0xffff0000 > int1 int1 /tx3904irc");
587 sim_hw_parse (sd, "/glue@0xffff0000 > int2 int2 /tx3904irc");
588 sim_hw_parse (sd, "/glue@0xffff0000 > int3 int3 /tx3904irc");
589 sim_hw_parse (sd, "/glue@0xffff0000 > int4 int4 /tx3904irc");
590 sim_hw_parse (sd, "/glue@0xffff0000 > int5 int5 /tx3904irc");
591 sim_hw_parse (sd, "/glue@0xffff0000 > int6 int6 /tx3904irc");
592 sim_hw_parse (sd, "/glue@0xffff0000 > int7 int7 /tx3904irc");
593 sim_hw_parse (sd, "/glue@0xffff0000 > int8 dmac0 /tx3904irc");
594 sim_hw_parse (sd, "/glue@0xffff0000 > int9 dmac1 /tx3904irc");
595 sim_hw_parse (sd, "/glue@0xffff0000 > int10 dmac2 /tx3904irc");
596 sim_hw_parse (sd, "/glue@0xffff0000 > int11 dmac3 /tx3904irc");
597 sim_hw_parse (sd, "/glue@0xffff0000 > int12 sio0 /tx3904irc");
598 sim_hw_parse (sd, "/glue@0xffff0000 > int13 sio1 /tx3904irc");
599 sim_hw_parse (sd, "/glue@0xffff0000 > int14 tmr0 /tx3904irc");
600 sim_hw_parse (sd, "/glue@0xffff0000 > int15 tmr1 /tx3904irc");
601 sim_hw_parse (sd, "/glue@0xffff0000 > int16 tmr2 /tx3904irc");
602 sim_hw_parse (sd, "/glue@0xffff0000 > int17 nmi /tx3904cpu");
603 }
604
605 device_init(sd);
606 }
607 #endif
608
609 if (display_mem_info)
610 {
611 struct option_list * ol;
612 struct option_list * prev;
613
614 /* This is a hack. We want to execute the real --memory-info command
615 line switch which is handled in common/sim-memopts.c, not the
616 override we have defined in this file. So we remove the
617 mips_options array from the state options list. This is safe
618 because we have now processed all of the command line. */
619 for (ol = STATE_OPTIONS (sd), prev = NULL;
620 ol != NULL;
621 prev = ol, ol = ol->next)
622 if (ol->options == mips_options)
623 break;
624
625 SIM_ASSERT (ol != NULL);
626
627 if (prev == NULL)
628 STATE_OPTIONS (sd) = ol->next;
629 else
630 prev->next = ol->next;
631
632 sim_do_commandf (sd, "memory-info");
633 }
634
635 /* check for/establish the a reference program image */
636 if (sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK)
637 {
638 sim_module_uninstall (sd);
639 return 0;
640 }
641
642 /* Configure/verify the target byte order and other runtime
643 configuration options */
644 if (sim_config (sd) != SIM_RC_OK)
645 {
646 sim_module_uninstall (sd);
647 return 0;
648 }
649
650 if (sim_post_argv_init (sd) != SIM_RC_OK)
651 {
652 /* Uninstall the modules to avoid memory leaks,
653 file descriptor leaks, etc. */
654 sim_module_uninstall (sd);
655 return 0;
656 }
657
658 /* verify assumptions the simulator made about the host type system.
659 This macro does not return if there is a problem */
660 SIM_ASSERT (sizeof(int) == (4 * sizeof(char)));
661 SIM_ASSERT (sizeof(word64) == (8 * sizeof(char)));
662
663 /* This is NASTY, in that we are assuming the size of specific
664 registers: */
665 {
666 int rn;
667 for (rn = 0; (rn < (LAST_EMBED_REGNUM + 1)); rn++)
668 {
669 if (rn < 32)
670 cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
671 else if ((rn >= FGR_BASE) && (rn < (FGR_BASE + NR_FGR)))
672 cpu->register_widths[rn] = WITH_TARGET_FLOATING_POINT_BITSIZE;
673 else if ((rn >= 33) && (rn <= 37))
674 cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
675 else if ((rn == SRIDX)
676 || (rn == FCR0IDX)
677 || (rn == FCR31IDX)
678 || ((rn >= 72) && (rn <= 89)))
679 cpu->register_widths[rn] = 32;
680 else
681 cpu->register_widths[rn] = 0;
682 }
683
684
685 }
686
687 if (STATE & simTRACE)
688 open_trace(sd);
689
690 /*
691 sim_io_eprintf (sd, "idt@%x pmon@%x lsipmon@%x\n",
692 idt_monitor_base,
693 pmon_monitor_base,
694 lsipmon_monitor_base);
695 */
696
697 /* Write the monitor trap address handlers into the monitor (eeprom)
698 address space. This can only be done once the target endianness
699 has been determined. */
700 if (idt_monitor_base != 0)
701 {
702 unsigned loop;
703 address_word idt_monitor_size = 1 << 11;
704
705 /* the default monitor region */
706 if (WITH_TARGET_WORD_BITSIZE == 64)
707 sim_do_commandf (sd, "memory alias 0x%x,0x%" PRIxTW ",0x%" PRIxTA,
708 idt_monitor_base, idt_monitor_size,
709 EXTENDED (idt_monitor_base));
710 else
711 sim_do_commandf (sd, "memory region 0x%x,0x%" PRIxTA,
712 idt_monitor_base, idt_monitor_size);
713
714 /* Entry into the IDT monitor is via fixed address vectors, and
715 not using machine instructions. To avoid clashing with use of
716 the MIPS TRAP system, we place our own (simulator specific)
717 "undefined" instructions into the relevant vector slots. */
718 for (loop = 0; (loop < idt_monitor_size); loop += 4)
719 {
720 address_word vaddr = (idt_monitor_base + loop);
721 uint32_t insn = (RSVD_INSTRUCTION |
722 (((loop >> 2) & RSVD_INSTRUCTION_ARG_MASK)
723 << RSVD_INSTRUCTION_ARG_SHIFT));
724 H2T (insn);
725 sim_write (sd, vaddr, (unsigned char *)&insn, sizeof (insn));
726 }
727 }
728
729 if ((pmon_monitor_base != 0) || (lsipmon_monitor_base != 0))
730 {
731 /* The PMON monitor uses the same address space, but rather than
732 branching into it the address of a routine is loaded. We can
733 cheat for the moment, and direct the PMON routine to IDT style
734 instructions within the monitor space. This relies on the IDT
735 monitor not using the locations from 0xBFC00500 onwards as its
736 entry points.*/
737 unsigned loop;
738 for (loop = 0; (loop < 24); loop++)
739 {
740 uint32_t value = ((0x500 - 8) / 8); /* default UNDEFINED reason code */
741 switch (loop)
742 {
743 case 0: /* read */
744 value = 7;
745 break;
746 case 1: /* write */
747 value = 8;
748 break;
749 case 2: /* open */
750 value = 6;
751 break;
752 case 3: /* close */
753 value = 10;
754 break;
755 case 5: /* printf */
756 value = ((0x500 - 16) / 8); /* not an IDT reason code */
757 break;
758 case 8: /* cliexit */
759 value = 17;
760 break;
761 case 11: /* flush_cache */
762 value = 28;
763 break;
764 }
765
766 SIM_ASSERT (idt_monitor_base != 0);
767 value = ((unsigned int) idt_monitor_base + (value * 8));
768 H2T (value);
769
770 if (pmon_monitor_base != 0)
771 {
772 address_word vaddr = (pmon_monitor_base + (loop * 4));
773 sim_write (sd, vaddr, (unsigned char *)&value, sizeof (value));
774 }
775
776 if (lsipmon_monitor_base != 0)
777 {
778 address_word vaddr = (lsipmon_monitor_base + (loop * 4));
779 sim_write (sd, vaddr, (unsigned char *)&value, sizeof (value));
780 }
781 }
782
783 /* Write an abort sequence into the TRAP (common) exception vector
784 addresses. This is to catch code executing a TRAP (et.al.)
785 instruction without installing a trap handler. */
786 if ((idt_monitor_base != 0) ||
787 (pmon_monitor_base != 0) ||
788 (lsipmon_monitor_base != 0))
789 {
790 uint32_t halt[2] = { 0x2404002f /* addiu r4, r0, 47 */,
791 HALT_INSTRUCTION /* BREAK */ };
792 H2T (halt[0]);
793 H2T (halt[1]);
794 sim_write (sd, 0x80000000, (unsigned char *) halt, sizeof (halt));
795 sim_write (sd, 0x80000180, (unsigned char *) halt, sizeof (halt));
796 sim_write (sd, 0x80000200, (unsigned char *) halt, sizeof (halt));
797 /* XXX: Write here unconditionally? */
798 sim_write (sd, 0xBFC00200, (unsigned char *) halt, sizeof (halt));
799 sim_write (sd, 0xBFC00380, (unsigned char *) halt, sizeof (halt));
800 sim_write (sd, 0xBFC00400, (unsigned char *) halt, sizeof (halt));
801 }
802 }
803
804 /* CPU specific initialization. */
805 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
806 {
807 SIM_CPU *cpu = STATE_CPU (sd, i);
808
809 CPU_REG_FETCH (cpu) = mips_reg_fetch;
810 CPU_REG_STORE (cpu) = mips_reg_store;
811 CPU_PC_FETCH (cpu) = mips_pc_get;
812 CPU_PC_STORE (cpu) = mips_pc_set;
813 }
814
815 return sd;
816 }
817
818 #if WITH_TRACE_ANY_P
819 static void
820 open_trace (SIM_DESC sd)
821 {
822 tracefh = fopen(tracefile,"wb+");
823 if (tracefh == NULL)
824 {
825 sim_io_eprintf(sd,"Failed to create file \"%s\", writing trace information to stderr.\n",tracefile);
826 tracefh = stderr;
827 }
828 }
829 #endif
830
831 /* Return name of an insn, used by insn profiling. */
832 static const char *
833 get_insn_name (sim_cpu *cpu, int i)
834 {
835 return itable[i].name;
836 }
837
838 void
839 mips_sim_close (SIM_DESC sd, int quitting)
840 {
841 #if WITH_TRACE_ANY_P
842 if (tracefh != NULL && tracefh != stderr)
843 fclose(tracefh);
844 tracefh = NULL;
845 #endif
846 }
847
848 static int
849 mips_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
850 {
851 /* NOTE: gdb (the client) stores registers in target byte order
852 while the simulator uses host byte order */
853
854 /* Unfortunately this suffers from the same problem as the register
855 numbering one. We need to know what the width of each logical
856 register number is for the architecture being simulated. */
857
858 if (cpu->register_widths[rn] == 0)
859 {
860 sim_io_eprintf (CPU_STATE (cpu), "Invalid register width for %d (register store ignored)\n", rn);
861 return 0;
862 }
863
864 if (rn >= FGR_BASE && rn < FGR_BASE + NR_FGR)
865 {
866 cpu->fpr_state[rn - FGR_BASE] = fmt_uninterpreted;
867 if (cpu->register_widths[rn] == 32)
868 {
869 if (length == 8)
870 {
871 cpu->fgr[rn - FGR_BASE] =
872 (uint32_t) T2H_8 (*(uint64_t*)memory);
873 return 8;
874 }
875 else
876 {
877 cpu->fgr[rn - FGR_BASE] = T2H_4 (*(uint32_t*)memory);
878 return 4;
879 }
880 }
881 else
882 {
883 if (length == 8)
884 {
885 cpu->fgr[rn - FGR_BASE] = T2H_8 (*(uint64_t*)memory);
886 return 8;
887 }
888 else
889 {
890 cpu->fgr[rn - FGR_BASE] = T2H_4 (*(uint32_t*)memory);
891 return 4;
892 }
893 }
894 }
895
896 if (cpu->register_widths[rn] == 32)
897 {
898 if (length == 8)
899 {
900 cpu->registers[rn] =
901 (uint32_t) T2H_8 (*(uint64_t*)memory);
902 return 8;
903 }
904 else
905 {
906 cpu->registers[rn] = T2H_4 (*(uint32_t*)memory);
907 return 4;
908 }
909 }
910 else
911 {
912 if (length == 8)
913 {
914 cpu->registers[rn] = T2H_8 (*(uint64_t*)memory);
915 return 8;
916 }
917 else
918 {
919 cpu->registers[rn] = (int32_t) T2H_4(*(uint32_t*)memory);
920 return 4;
921 }
922 }
923
924 return 0;
925 }
926
927 static int
928 mips_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
929 {
930 /* NOTE: gdb (the client) stores registers in target byte order
931 while the simulator uses host byte order */
932
933 if (cpu->register_widths[rn] == 0)
934 {
935 sim_io_eprintf (CPU_STATE (cpu), "Invalid register width for %d (register fetch ignored)\n", rn);
936 return 0;
937 }
938
939 /* Any floating point register */
940 if (rn >= FGR_BASE && rn < FGR_BASE + NR_FGR)
941 {
942 if (cpu->register_widths[rn] == 32)
943 {
944 if (length == 8)
945 {
946 *(uint64_t*)memory =
947 H2T_8 ((uint32_t) (cpu->fgr[rn - FGR_BASE]));
948 return 8;
949 }
950 else
951 {
952 *(uint32_t*)memory = H2T_4 (cpu->fgr[rn - FGR_BASE]);
953 return 4;
954 }
955 }
956 else
957 {
958 if (length == 8)
959 {
960 *(uint64_t*)memory = H2T_8 (cpu->fgr[rn - FGR_BASE]);
961 return 8;
962 }
963 else
964 {
965 *(uint32_t*)memory = H2T_4 ((uint32_t)(cpu->fgr[rn - FGR_BASE]));
966 return 4;
967 }
968 }
969 }
970
971 if (cpu->register_widths[rn] == 32)
972 {
973 if (length == 8)
974 {
975 *(uint64_t*)memory =
976 H2T_8 ((uint32_t) (cpu->registers[rn]));
977 return 8;
978 }
979 else
980 {
981 *(uint32_t*)memory = H2T_4 ((uint32_t)(cpu->registers[rn]));
982 return 4;
983 }
984 }
985 else
986 {
987 if (length == 8)
988 {
989 *(uint64_t*)memory =
990 H2T_8 ((uint64_t) (cpu->registers[rn]));
991 return 8;
992 }
993 else
994 {
995 *(uint32_t*)memory = H2T_4 ((uint32_t)(cpu->registers[rn]));
996 return 4;
997 }
998 }
999
1000 return 0;
1001 }
1002
1003 SIM_RC
1004 sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
1005 char * const *argv, char * const *env)
1006 {
1007
1008 #ifdef DEBUG
1009 #if 0 /* FIXME: doesn't compile */
1010 printf("DBG: sim_create_inferior entered: start_address = 0x%s\n",
1011 pr_addr(PC));
1012 #endif
1013 #endif /* DEBUG */
1014
1015 ColdReset(sd);
1016
1017 if (abfd != NULL)
1018 {
1019 /* override PC value set by ColdReset () */
1020 int cpu_nr;
1021 for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
1022 {
1023 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
1024 sim_cia pc = bfd_get_start_address (abfd);
1025
1026 /* The 64-bit BFD sign-extends MIPS addresses to model
1027 32-bit compatibility segments with 64-bit addressing.
1028 These addresses work as is on 64-bit targets but
1029 can be truncated for 32-bit targets. */
1030 if (WITH_TARGET_WORD_BITSIZE == 32)
1031 pc = (uint32_t) pc;
1032
1033 CPU_PC_SET (cpu, pc);
1034 }
1035 }
1036
1037 #if 0 /* def DEBUG */
1038 if (argv || env)
1039 {
1040 /* We should really place the argv slot values into the argument
1041 registers, and onto the stack as required. However, this
1042 assumes that we have a stack defined, which is not
1043 necessarily true at the moment. */
1044 char **cptr;
1045 sim_io_printf(sd,"sim_create_inferior() : passed arguments ignored\n");
1046 for (cptr = argv; (cptr && *cptr); cptr++)
1047 printf("DBG: arg \"%s\"\n",*cptr);
1048 }
1049 #endif /* DEBUG */
1050
1051 return SIM_RC_OK;
1052 }
1053
1054 /*---------------------------------------------------------------------------*/
1055 /*-- Private simulator support interface ------------------------------------*/
1056 /*---------------------------------------------------------------------------*/
1057
1058 /* Read a null terminated string from memory, return in a buffer */
1059 static char *
1060 fetch_str (SIM_DESC sd,
1061 address_word addr)
1062 {
1063 char *buf;
1064 int nr = 0;
1065 unsigned char null;
1066 while (sim_read (sd, addr + nr, &null, 1) == 1 && null != 0)
1067 nr++;
1068 buf = NZALLOC (char, nr + 1);
1069 sim_read (sd, addr, (unsigned char *)buf, nr);
1070 return buf;
1071 }
1072
1073
1074 /* Implements the "sim firmware" command:
1075 sim firmware NAME[@ADDRESS] --- emulate ROM monitor named NAME.
1076 NAME can be idt, pmon, or lsipmon. If omitted, ADDRESS
1077 defaults to the normal address for that monitor.
1078 sim firmware none --- don't emulate any ROM monitor. Useful
1079 if you need a clean address space. */
1080 static SIM_RC
1081 sim_firmware_command (SIM_DESC sd, char *arg)
1082 {
1083 int address_present = 0;
1084 SIM_ADDR address;
1085
1086 /* Signal occurrence of this option. */
1087 firmware_option_p = 1;
1088
1089 /* Parse out the address, if present. */
1090 {
1091 char *p = strchr (arg, '@');
1092 if (p)
1093 {
1094 char *q;
1095 address_present = 1;
1096 p ++; /* skip over @ */
1097
1098 address = strtoul (p, &q, 0);
1099 if (*q != '\0')
1100 {
1101 sim_io_printf (sd, "Invalid address given to the"
1102 "`sim firmware NAME@ADDRESS' command: %s\n",
1103 p);
1104 return SIM_RC_FAIL;
1105 }
1106 }
1107 else
1108 {
1109 address_present = 0;
1110 address = -1; /* Dummy value. */
1111 }
1112 }
1113
1114 if (! strncmp (arg, "idt", 3))
1115 {
1116 idt_monitor_base = address_present ? address : 0xBFC00000;
1117 pmon_monitor_base = 0;
1118 lsipmon_monitor_base = 0;
1119 }
1120 else if (! strncmp (arg, "pmon", 4))
1121 {
1122 /* pmon uses indirect calls. Hook into implied idt. */
1123 pmon_monitor_base = address_present ? address : 0xBFC00500;
1124 idt_monitor_base = pmon_monitor_base - 0x500;
1125 lsipmon_monitor_base = 0;
1126 }
1127 else if (! strncmp (arg, "lsipmon", 7))
1128 {
1129 /* lsipmon uses indirect calls. Hook into implied idt. */
1130 pmon_monitor_base = 0;
1131 lsipmon_monitor_base = address_present ? address : 0xBFC00200;
1132 idt_monitor_base = lsipmon_monitor_base - 0x200;
1133 }
1134 else if (! strncmp (arg, "none", 4))
1135 {
1136 if (address_present)
1137 {
1138 sim_io_printf (sd,
1139 "The `sim firmware none' command does "
1140 "not take an `ADDRESS' argument.\n");
1141 return SIM_RC_FAIL;
1142 }
1143 idt_monitor_base = 0;
1144 pmon_monitor_base = 0;
1145 lsipmon_monitor_base = 0;
1146 }
1147 else
1148 {
1149 sim_io_printf (sd, "\
1150 Unrecognized name given to the `sim firmware NAME' command: %s\n\
1151 Recognized firmware names are: `idt', `pmon', `lsipmon', and `none'.\n",
1152 arg);
1153 return SIM_RC_FAIL;
1154 }
1155
1156 return SIM_RC_OK;
1157 }
1158
1159 /* stat structures from MIPS32/64. */
1160 static const char stat32_map[] =
1161 "st_dev,2:st_ino,2:st_mode,4:st_nlink,2:st_uid,2:st_gid,2"
1162 ":st_rdev,2:st_size,4:st_atime,4:st_spare1,4:st_mtime,4:st_spare2,4"
1163 ":st_ctime,4:st_spare3,4:st_blksize,4:st_blocks,4:st_spare4,8";
1164
1165 static const char stat64_map[] =
1166 "st_dev,2:st_ino,2:st_mode,4:st_nlink,2:st_uid,2:st_gid,2"
1167 ":st_rdev,2:st_size,8:st_atime,8:st_spare1,8:st_mtime,8:st_spare2,8"
1168 ":st_ctime,8:st_spare3,8:st_blksize,8:st_blocks,8:st_spare4,16";
1169
1170 /* Map for calls using the host struct stat. */
1171 static const CB_TARGET_DEFS_MAP CB_stat_map[] =
1172 {
1173 { "stat", CB_SYS_stat, 15 },
1174 { 0, -1, -1 }
1175 };
1176
1177
1178 /* Simple monitor interface (currently setup for the IDT and PMON monitors) */
1179 int
1180 sim_monitor (SIM_DESC sd,
1181 sim_cpu *cpu,
1182 address_word cia,
1183 unsigned int reason)
1184 {
1185 #ifdef DEBUG
1186 printf("DBG: sim_monitor: entered (reason = %d)\n",reason);
1187 #endif /* DEBUG */
1188
1189 /* The IDT monitor actually allows two instructions per vector
1190 slot. However, the simulator currently causes a trap on each
1191 individual instruction. We cheat, and lose the bottom bit. */
1192 reason >>= 1;
1193
1194 /* The following callback functions are available, however the
1195 monitor we are simulating does not make use of them: get_errno,
1196 isatty, rename, system and time. */
1197 switch (reason)
1198 {
1199
1200 case 6: /* int open(char *path,int flags) */
1201 {
1202 char *path = fetch_str (sd, A0);
1203 V0 = sim_io_open (sd, path, (int)A1);
1204 free (path);
1205 break;
1206 }
1207
1208 case 7: /* int read(int file,char *ptr,int len) */
1209 {
1210 int fd = A0;
1211 int nr = A2;
1212 char *buf = zalloc (nr);
1213 V0 = sim_io_read (sd, fd, buf, nr);
1214 sim_write (sd, A1, (unsigned char *)buf, nr);
1215 free (buf);
1216 }
1217 break;
1218
1219 case 8: /* int write(int file,char *ptr,int len) */
1220 {
1221 int fd = A0;
1222 int nr = A2;
1223 char *buf = zalloc (nr);
1224 sim_read (sd, A1, (unsigned char *)buf, nr);
1225 V0 = sim_io_write (sd, fd, buf, nr);
1226 if (fd == 1)
1227 sim_io_flush_stdout (sd);
1228 else if (fd == 2)
1229 sim_io_flush_stderr (sd);
1230 free (buf);
1231 break;
1232 }
1233
1234 case 10: /* int close(int file) */
1235 {
1236 V0 = sim_io_close (sd, (int)A0);
1237 break;
1238 }
1239
1240 case 2: /* Densan monitor: char inbyte(int waitflag) */
1241 {
1242 if (A0 == 0) /* waitflag == NOWAIT */
1243 V0 = (unsigned_word)-1;
1244 }
1245 /* Drop through to case 11 */
1246
1247 case 11: /* char inbyte(void) */
1248 {
1249 char tmp;
1250 /* ensure that all output has gone... */
1251 sim_io_flush_stdout (sd);
1252 if (sim_io_read_stdin (sd, &tmp, sizeof(char)) != sizeof(char))
1253 {
1254 sim_io_error(sd,"Invalid return from character read");
1255 V0 = (unsigned_word)-1;
1256 }
1257 else
1258 V0 = (unsigned_word)tmp;
1259 break;
1260 }
1261
1262 case 3: /* Densan monitor: void co(char chr) */
1263 case 12: /* void outbyte(char chr) : write a byte to "stdout" */
1264 {
1265 char tmp = (char)(A0 & 0xFF);
1266 sim_io_write_stdout (sd, &tmp, sizeof(char));
1267 break;
1268 }
1269
1270 case 13: /* int unlink(const char *path) */
1271 {
1272 char *path = fetch_str (sd, A0);
1273 V0 = sim_io_unlink (sd, path);
1274 free (path);
1275 break;
1276 }
1277
1278 case 14: /* int lseek(int fd, int offset, int whence) */
1279 {
1280 V0 = sim_io_lseek (sd, A0, A1, A2);
1281 break;
1282 }
1283
1284 case 15: /* int stat(const char *path, struct stat *buf); */
1285 {
1286 /* As long as the infrastructure doesn't cache anything
1287 related to the stat mapping, this trick gets us a dual
1288 "struct stat"-type mapping in the least error-prone way. */
1289 host_callback *cb = STATE_CALLBACK (sd);
1290 const char *saved_map = cb->stat_map;
1291 CB_TARGET_DEFS_MAP *saved_syscall_map = cb->syscall_map;
1292 bfd *prog_bfd = STATE_PROG_BFD (sd);
1293 int is_elf32bit = (elf_elfheader(prog_bfd)->e_ident[EI_CLASS] ==
1294 ELFCLASS32);
1295 static CB_SYSCALL s;
1296 CB_SYSCALL_INIT (&s);
1297 s.func = 15;
1298 /* Mask out the sign extension part for 64-bit targets because the
1299 MIPS simulator's memory model is still 32-bit. */
1300 s.arg1 = A0 & 0xFFFFFFFF;
1301 s.arg2 = A1 & 0xFFFFFFFF;
1302 s.p1 = (PTR) sd;
1303 s.p2 = (PTR) cpu;
1304 s.read_mem = sim_syscall_read_mem;
1305 s.write_mem = sim_syscall_write_mem;
1306
1307 cb->syscall_map = (CB_TARGET_DEFS_MAP *) CB_stat_map;
1308 cb->stat_map = is_elf32bit ? stat32_map : stat64_map;
1309
1310 if (cb_syscall (cb, &s) != CB_RC_OK)
1311 sim_engine_halt (sd, cpu, NULL, mips_pc_get (cpu),
1312 sim_stopped, SIM_SIGILL);
1313
1314 V0 = s.result;
1315 cb->stat_map = saved_map;
1316 cb->syscall_map = saved_syscall_map;
1317 break;
1318 }
1319
1320 case 17: /* void _exit() */
1321 {
1322 sim_io_eprintf (sd, "sim_monitor(17): _exit(int reason) to be coded\n");
1323 sim_engine_halt (SD, CPU, NULL, NULL_CIA, sim_exited,
1324 (unsigned int)(A0 & 0xFFFFFFFF));
1325 break;
1326 }
1327
1328 case 28: /* PMON flush_cache */
1329 break;
1330
1331 case 55: /* void get_mem_info(unsigned int *ptr) */
1332 /* in: A0 = pointer to three word memory location */
1333 /* out: [A0 + 0] = size */
1334 /* [A0 + 4] = instruction cache size */
1335 /* [A0 + 8] = data cache size */
1336 {
1337 unsigned_4 value;
1338 unsigned_4 zero = 0;
1339 address_word mem_size;
1340 sim_memopt *entry, *match = NULL;
1341
1342 /* Search for memory region mapped to KSEG0 or KSEG1. */
1343 for (entry = STATE_MEMOPT (sd);
1344 entry != NULL;
1345 entry = entry->next)
1346 {
1347 if ((entry->addr == K0BASE || entry->addr == K1BASE)
1348 && (!match || entry->level < match->level))
1349 match = entry;
1350 else
1351 {
1352 sim_memopt *alias;
1353 for (alias = entry->alias;
1354 alias != NULL;
1355 alias = alias->next)
1356 if ((alias->addr == K0BASE || alias->addr == K1BASE)
1357 && (!match || entry->level < match->level))
1358 match = entry;
1359 }
1360 }
1361
1362 /* Get region size, limit to KSEG1 size (512MB). */
1363 SIM_ASSERT (match != NULL);
1364 mem_size = (match->modulo != 0
1365 ? match->modulo : match->nr_bytes);
1366 if (mem_size > K1SIZE)
1367 mem_size = K1SIZE;
1368
1369 value = mem_size;
1370 H2T (value);
1371 sim_write (sd, A0 + 0, (unsigned char *)&value, 4);
1372 sim_write (sd, A0 + 4, (unsigned char *)&zero, 4);
1373 sim_write (sd, A0 + 8, (unsigned char *)&zero, 4);
1374 /* sim_io_eprintf (sd, "sim: get_mem_info() deprecated\n"); */
1375 break;
1376 }
1377
1378 case 158: /* PMON printf */
1379 /* in: A0 = pointer to format string */
1380 /* A1 = optional argument 1 */
1381 /* A2 = optional argument 2 */
1382 /* A3 = optional argument 3 */
1383 /* out: void */
1384 /* The following is based on the PMON printf source */
1385 {
1386 address_word s = A0;
1387 unsigned char c;
1388 address_word *ap = &A1; /* 1st argument */
1389 /* This isn't the quickest way, since we call the host print
1390 routine for every character almost. But it does avoid
1391 having to allocate and manage a temporary string buffer. */
1392 /* TODO: Include check that we only use three arguments (A1,
1393 A2 and A3) */
1394 while (sim_read (sd, s++, &c, 1) && c != '\0')
1395 {
1396 if (c == '%')
1397 {
1398 char tmp[40];
1399 enum {FMT_RJUST, FMT_LJUST, FMT_RJUST0, FMT_CENTER} fmt = FMT_RJUST;
1400 int width = 0, trunc = 0, haddot = 0, longlong = 0;
1401 while (sim_read (sd, s++, &c, 1) && c != '\0')
1402 {
1403 if (strchr ("dobxXulscefg%", c))
1404 break;
1405 else if (c == '-')
1406 fmt = FMT_LJUST;
1407 else if (c == '0')
1408 fmt = FMT_RJUST0;
1409 else if (c == '~')
1410 fmt = FMT_CENTER;
1411 else if (c == '*')
1412 {
1413 if (haddot)
1414 trunc = (int)*ap++;
1415 else
1416 width = (int)*ap++;
1417 }
1418 else if (c >= '1' && c <= '9')
1419 {
1420 address_word t = s;
1421 unsigned int n;
1422 while (sim_read (sd, s++, &c, 1) == 1 && isdigit (c))
1423 tmp[s - t] = c;
1424 tmp[s - t] = '\0';
1425 n = (unsigned int)strtol(tmp,NULL,10);
1426 if (haddot)
1427 trunc = n;
1428 else
1429 width = n;
1430 s--;
1431 }
1432 else if (c == '.')
1433 haddot = 1;
1434 }
1435 switch (c)
1436 {
1437 case '%':
1438 sim_io_printf (sd, "%%");
1439 break;
1440 case 's':
1441 if ((int)*ap != 0)
1442 {
1443 address_word p = *ap++;
1444 unsigned char ch;
1445 while (sim_read (sd, p++, &ch, 1) == 1 && ch != '\0')
1446 sim_io_printf(sd, "%c", ch);
1447 }
1448 else
1449 sim_io_printf(sd,"(null)");
1450 break;
1451 case 'c':
1452 sim_io_printf (sd, "%c", (int)*ap++);
1453 break;
1454 default:
1455 if (c == 'l')
1456 {
1457 sim_read (sd, s++, &c, 1);
1458 if (c == 'l')
1459 {
1460 longlong = 1;
1461 sim_read (sd, s++, &c, 1);
1462 }
1463 }
1464 if (strchr ("dobxXu", c))
1465 {
1466 word64 lv = (word64) *ap++;
1467 if (c == 'b')
1468 sim_io_printf(sd,"<binary not supported>");
1469 else
1470 {
1471 #define P_(c, fmt64, fmt32) \
1472 case c: \
1473 if (longlong) \
1474 sim_io_printf (sd, "%" fmt64, lv); \
1475 else \
1476 sim_io_printf (sd, "%" fmt32, (int)lv); \
1477 break;
1478 #define P(c, fmtc) P_(c, PRI##fmtc##64, PRI##fmtc##32)
1479 switch (c)
1480 {
1481 P('d', d)
1482 P('o', o)
1483 P('x', x)
1484 P('X', X)
1485 P('u', u)
1486 }
1487 }
1488 #undef P
1489 #undef P_
1490 }
1491 else if (strchr ("eEfgG", c))
1492 {
1493 double dbl = *(double*)(ap++);
1494
1495 #define P(c, fmtc) \
1496 case c: \
1497 sim_io_printf (sd, "%*.*" #fmtc, width, trunc, dbl); \
1498 break;
1499 switch (c)
1500 {
1501 P('e', e)
1502 P('E', E)
1503 P('f', f)
1504 P('g', g)
1505 P('G', G)
1506 }
1507 #undef P
1508 trunc = 0;
1509 }
1510 }
1511 }
1512 else
1513 sim_io_printf(sd, "%c", c);
1514 }
1515 break;
1516 }
1517
1518 default:
1519 /* Unknown reason. */
1520 return 0;
1521 }
1522 return 1;
1523 }
1524
1525 /* Store a word into memory. */
1526
1527 static void
1528 store_word (SIM_DESC sd,
1529 sim_cpu *cpu,
1530 address_word cia,
1531 uword64 vaddr,
1532 signed_word val)
1533 {
1534 address_word paddr = vaddr;
1535
1536 if ((vaddr & 3) != 0)
1537 SignalExceptionAddressStore ();
1538 else
1539 {
1540 const uword64 mask = 7;
1541 uword64 memval;
1542 unsigned int byte;
1543
1544 paddr = (paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2));
1545 byte = (vaddr & mask) ^ (BigEndianCPU << 2);
1546 memval = ((uword64) val) << (8 * byte);
1547 StoreMemory (AccessLength_WORD, memval, 0, paddr, vaddr,
1548 isREAL);
1549 }
1550 }
1551
1552 #define MIPSR6_P(abfd) \
1553 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
1554 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
1555
1556 /* Load a word from memory. */
1557
1558 static signed_word
1559 load_word (SIM_DESC sd,
1560 sim_cpu *cpu,
1561 address_word cia,
1562 uword64 vaddr)
1563 {
1564 if ((vaddr & 3) != 0 && !MIPSR6_P (STATE_PROG_BFD (sd)))
1565 {
1566 SIM_CORE_SIGNAL (SD, cpu, cia, read_map, AccessLength_WORD+1, vaddr, read_transfer, sim_core_unaligned_signal);
1567 }
1568 else
1569 {
1570 address_word paddr = vaddr;
1571 const uword64 mask = 0x7;
1572 const unsigned int reverse = ReverseEndian ? 1 : 0;
1573 const unsigned int bigend = BigEndianCPU ? 1 : 0;
1574 uword64 memval;
1575 unsigned int byte;
1576
1577 paddr = (paddr & ~mask) | ((paddr & mask) ^ (reverse << 2));
1578 LoadMemory (&memval, NULL, AccessLength_WORD, paddr, vaddr, isDATA,
1579 isREAL);
1580 byte = (vaddr & mask) ^ (bigend << 2);
1581 return EXTEND32 (memval >> (8 * byte));
1582 }
1583
1584 return 0;
1585 }
1586
1587 /* Simulate the mips16 entry and exit pseudo-instructions. These
1588 would normally be handled by the reserved instruction exception
1589 code, but for ease of simulation we just handle them directly. */
1590
1591 static void
1592 mips16_entry (SIM_DESC sd,
1593 sim_cpu *cpu,
1594 address_word cia,
1595 unsigned int insn)
1596 {
1597 int aregs, sregs, rreg;
1598
1599 #ifdef DEBUG
1600 printf("DBG: mips16_entry: entered (insn = 0x%08X)\n",insn);
1601 #endif /* DEBUG */
1602
1603 aregs = (insn & 0x700) >> 8;
1604 sregs = (insn & 0x0c0) >> 6;
1605 rreg = (insn & 0x020) >> 5;
1606
1607 /* This should be checked by the caller. */
1608 if (sregs == 3)
1609 abort ();
1610
1611 if (aregs < 5)
1612 {
1613 int i;
1614 signed_word tsp;
1615
1616 /* This is the entry pseudo-instruction. */
1617
1618 for (i = 0; i < aregs; i++)
1619 store_word (SD, CPU, cia, (uword64) (SP + 4 * i), GPR[i + 4]);
1620
1621 tsp = SP;
1622 SP -= 32;
1623
1624 if (rreg)
1625 {
1626 tsp -= 4;
1627 store_word (SD, CPU, cia, (uword64) tsp, RA);
1628 }
1629
1630 for (i = 0; i < sregs; i++)
1631 {
1632 tsp -= 4;
1633 store_word (SD, CPU, cia, (uword64) tsp, GPR[16 + i]);
1634 }
1635 }
1636 else
1637 {
1638 int i;
1639 signed_word tsp;
1640
1641 /* This is the exit pseudo-instruction. */
1642
1643 tsp = SP + 32;
1644
1645 if (rreg)
1646 {
1647 tsp -= 4;
1648 RA = load_word (SD, CPU, cia, (uword64) tsp);
1649 }
1650
1651 for (i = 0; i < sregs; i++)
1652 {
1653 tsp -= 4;
1654 GPR[i + 16] = load_word (SD, CPU, cia, (uword64) tsp);
1655 }
1656
1657 SP += 32;
1658
1659 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1660 {
1661 if (aregs == 5)
1662 {
1663 FGR[0] = WORD64LO (GPR[4]);
1664 FPR_STATE[0] = fmt_uninterpreted;
1665 }
1666 else if (aregs == 6)
1667 {
1668 FGR[0] = WORD64LO (GPR[5]);
1669 FGR[1] = WORD64LO (GPR[4]);
1670 FPR_STATE[0] = fmt_uninterpreted;
1671 FPR_STATE[1] = fmt_uninterpreted;
1672 }
1673 }
1674
1675 PC = RA;
1676 }
1677
1678 }
1679
1680 /*-- trace support ----------------------------------------------------------*/
1681
1682 /* The trace support is provided (if required) in the memory accessing
1683 routines. Since we are also providing the architecture specific
1684 features, the architecture simulation code can also deal with
1685 notifying the trace world of cache flushes, etc. Similarly we do
1686 not need to provide profiling support in the simulator engine,
1687 since we can sample in the instruction fetch control loop. By
1688 defining the trace manifest, we add tracing as a run-time
1689 option. */
1690
1691 #if WITH_TRACE_ANY_P
1692 /* Tracing by default produces "din" format (as required by
1693 dineroIII). Each line of such a trace file *MUST* have a din label
1694 and address field. The rest of the line is ignored, so comments can
1695 be included if desired. The first field is the label which must be
1696 one of the following values:
1697
1698 0 read data
1699 1 write data
1700 2 instruction fetch
1701 3 escape record (treated as unknown access type)
1702 4 escape record (causes cache flush)
1703
1704 The address field is a 32bit (lower-case) hexadecimal address
1705 value. The address should *NOT* be preceded by "0x".
1706
1707 The size of the memory transfer is not important when dealing with
1708 cache lines (as long as no more than a cache line can be
1709 transferred in a single operation :-), however more information
1710 could be given following the dineroIII requirement to allow more
1711 complete memory and cache simulators to provide better
1712 results. i.e. the University of Pisa has a cache simulator that can
1713 also take bus size and speed as (variable) inputs to calculate
1714 complete system performance (a much more useful ability when trying
1715 to construct an end product, rather than a processor). They
1716 currently have an ARM version of their tool called ChARM. */
1717
1718
1719 void
1720 dotrace (SIM_DESC sd,
1721 sim_cpu *cpu,
1722 FILE *tracefh,
1723 int type,
1724 SIM_ADDR address,
1725 int width,
1726 const char *comment, ...)
1727 {
1728 if (STATE & simTRACE) {
1729 va_list ap;
1730 fprintf(tracefh,"%d %s ; width %d ; ",
1731 type,
1732 pr_addr(address),
1733 width);
1734 va_start(ap,comment);
1735 vfprintf(tracefh,comment,ap);
1736 va_end(ap);
1737 fprintf(tracefh,"\n");
1738 }
1739 /* NOTE: Since the "din" format will only accept 32bit addresses, and
1740 we may be generating 64bit ones, we should put the hi-32bits of the
1741 address into the comment field. */
1742
1743 /* TODO: Provide a buffer for the trace lines. We can then avoid
1744 performing writes until the buffer is filled, or the file is
1745 being closed. */
1746
1747 /* NOTE: We could consider adding a comment field to the "din" file
1748 produced using type 3 markers (unknown access). This would then
1749 allow information about the program that the "din" is for, and
1750 the MIPs world that was being simulated, to be placed into the
1751 trace file. */
1752
1753 return;
1754 }
1755 #endif /* WITH_TRACE_ANY_P */
1756
1757 /*---------------------------------------------------------------------------*/
1758 /*-- simulator engine -------------------------------------------------------*/
1759 /*---------------------------------------------------------------------------*/
1760
1761 static void
1762 ColdReset (SIM_DESC sd)
1763 {
1764 int cpu_nr;
1765 for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
1766 {
1767 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
1768 /* RESET: Fixed PC address: */
1769 PC = (unsigned_word) UNSIGNED64 (0xFFFFFFFFBFC00000);
1770 /* The reset vector address is in the unmapped, uncached memory space. */
1771
1772 SR &= ~(status_SR | status_TS | status_RP);
1773 SR |= (status_ERL | status_BEV);
1774
1775 /* Cheat and allow access to the complete register set immediately */
1776 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT
1777 && WITH_TARGET_WORD_BITSIZE == 64)
1778 SR |= status_FR; /* 64bit registers */
1779
1780 /* Ensure that any instructions with pending register updates are
1781 cleared: */
1782 PENDING_INVALIDATE();
1783
1784 /* Initialise the FPU registers to the unknown state */
1785 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1786 {
1787 int rn;
1788 for (rn = 0; (rn < 32); rn++)
1789 FPR_STATE[rn] = fmt_uninterpreted;
1790 }
1791
1792 /* Initialise the Config0 register. */
1793 C0_CONFIG = 0x80000000 /* Config1 present */
1794 | 2; /* KSEG0 uncached */
1795 if (WITH_TARGET_WORD_BITSIZE == 64)
1796 {
1797 /* FIXME Currently mips/sim-main.c:address_translation()
1798 truncates all addresses to 32-bits. */
1799 if (0 && WITH_TARGET_ADDRESS_BITSIZE == 64)
1800 C0_CONFIG |= (2 << 13); /* MIPS64, 64-bit addresses */
1801 else
1802 C0_CONFIG |= (1 << 13); /* MIPS64, 32-bit addresses */
1803 }
1804 if (BigEndianMem)
1805 C0_CONFIG |= 0x00008000; /* Big Endian */
1806 }
1807 }
1808
1809
1810
1811
1812 /* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
1813 /* Signal an exception condition. This will result in an exception
1814 that aborts the instruction. The instruction operation pseudocode
1815 will never see a return from this function call. */
1816
1817 void
1818 signal_exception (SIM_DESC sd,
1819 sim_cpu *cpu,
1820 address_word cia,
1821 int exception,...)
1822 {
1823 /* int vector; */
1824
1825 #ifdef DEBUG
1826 sim_io_printf(sd,"DBG: SignalException(%d) PC = 0x%s\n",exception,pr_addr(cia));
1827 #endif /* DEBUG */
1828
1829 /* Ensure that any active atomic read/modify/write operation will fail: */
1830 LLBIT = 0;
1831
1832 /* Save registers before interrupt dispatching */
1833 #ifdef SIM_CPU_EXCEPTION_TRIGGER
1834 SIM_CPU_EXCEPTION_TRIGGER(sd, cpu, cia);
1835 #endif
1836
1837 switch (exception) {
1838
1839 case DebugBreakPoint:
1840 if (! (Debug & Debug_DM))
1841 {
1842 if (INDELAYSLOT())
1843 {
1844 CANCELDELAYSLOT();
1845
1846 Debug |= Debug_DBD; /* signaled from within in delay slot */
1847 DEPC = cia - 4; /* reference the branch instruction */
1848 }
1849 else
1850 {
1851 Debug &= ~Debug_DBD; /* not signaled from within a delay slot */
1852 DEPC = cia;
1853 }
1854
1855 Debug |= Debug_DM; /* in debugging mode */
1856 Debug |= Debug_DBp; /* raising a DBp exception */
1857 PC = 0xBFC00200;
1858 sim_engine_restart (SD, CPU, NULL, NULL_CIA);
1859 }
1860 break;
1861
1862 case ReservedInstruction:
1863 {
1864 va_list ap;
1865 unsigned int instruction;
1866 va_start(ap,exception);
1867 instruction = va_arg(ap,unsigned int);
1868 va_end(ap);
1869 /* Provide simple monitor support using ReservedInstruction
1870 exceptions. The following code simulates the fixed vector
1871 entry points into the IDT monitor by causing a simulator
1872 trap, performing the monitor operation, and returning to
1873 the address held in the $ra register (standard PCS return
1874 address). This means we only need to pre-load the vector
1875 space with suitable instruction values. For systems were
1876 actual trap instructions are used, we would not need to
1877 perform this magic. */
1878 if ((instruction & RSVD_INSTRUCTION_MASK) == RSVD_INSTRUCTION)
1879 {
1880 int reason = (instruction >> RSVD_INSTRUCTION_ARG_SHIFT) & RSVD_INSTRUCTION_ARG_MASK;
1881 if (!sim_monitor (SD, CPU, cia, reason))
1882 sim_io_error (sd, "sim_monitor: unhandled reason = %d, pc = 0x%s\n", reason, pr_addr (cia));
1883
1884 /* NOTE: This assumes that a branch-and-link style
1885 instruction was used to enter the vector (which is the
1886 case with the current IDT monitor). */
1887 sim_engine_restart (SD, CPU, NULL, RA);
1888 }
1889 /* Look for the mips16 entry and exit instructions, and
1890 simulate a handler for them. */
1891 else if ((cia & 1) != 0
1892 && (instruction & 0xf81f) == 0xe809
1893 && (instruction & 0x0c0) != 0x0c0)
1894 {
1895 mips16_entry (SD, CPU, cia, instruction);
1896 sim_engine_restart (sd, NULL, NULL, NULL_CIA);
1897 }
1898 /* else fall through to normal exception processing */
1899 sim_io_eprintf(sd,"ReservedInstruction at PC = 0x%s\n", pr_addr (cia));
1900 }
1901
1902 default:
1903 /* Store exception code into current exception id variable (used
1904 by exit code): */
1905
1906 /* TODO: If not simulating exceptions then stop the simulator
1907 execution. At the moment we always stop the simulation. */
1908
1909 #ifdef SUBTARGET_R3900
1910 /* update interrupt-related registers */
1911
1912 /* insert exception code in bits 6:2 */
1913 CAUSE = LSMASKED32(CAUSE, 31, 7) | LSINSERTED32(exception, 6, 2);
1914 /* shift IE/KU history bits left */
1915 SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 3, 0), 5, 2);
1916
1917 if (STATE & simDELAYSLOT)
1918 {
1919 STATE &= ~simDELAYSLOT;
1920 CAUSE |= cause_BD;
1921 EPC = (cia - 4); /* reference the branch instruction */
1922 }
1923 else
1924 EPC = cia;
1925
1926 if (SR & status_BEV)
1927 PC = (signed)0xBFC00000 + 0x180;
1928 else
1929 PC = (signed)0x80000000 + 0x080;
1930 #else
1931 /* See figure 5-17 for an outline of the code below */
1932 if (! (SR & status_EXL))
1933 {
1934 CAUSE = (exception << 2);
1935 if (STATE & simDELAYSLOT)
1936 {
1937 STATE &= ~simDELAYSLOT;
1938 CAUSE |= cause_BD;
1939 EPC = (cia - 4); /* reference the branch instruction */
1940 }
1941 else
1942 EPC = cia;
1943 /* FIXME: TLB et.al. */
1944 /* vector = 0x180; */
1945 }
1946 else
1947 {
1948 CAUSE = (exception << 2);
1949 /* vector = 0x180; */
1950 }
1951 SR |= status_EXL;
1952 /* Store exception code into current exception id variable (used
1953 by exit code): */
1954
1955 if (SR & status_BEV)
1956 PC = (signed)0xBFC00200 + 0x180;
1957 else
1958 PC = (signed)0x80000000 + 0x180;
1959 #endif
1960
1961 switch ((CAUSE >> 2) & 0x1F)
1962 {
1963 case Interrupt:
1964 /* Interrupts arrive during event processing, no need to
1965 restart */
1966 return;
1967
1968 case NMIReset:
1969 /* Ditto */
1970 #ifdef SUBTARGET_3900
1971 /* Exception vector: BEV=0 BFC00000 / BEF=1 BFC00000 */
1972 PC = (signed)0xBFC00000;
1973 #endif /* SUBTARGET_3900 */
1974 return;
1975
1976 case TLBModification:
1977 case TLBLoad:
1978 case TLBStore:
1979 case AddressLoad:
1980 case AddressStore:
1981 case InstructionFetch:
1982 case DataReference:
1983 /* The following is so that the simulator will continue from the
1984 exception handler address. */
1985 sim_engine_halt (SD, CPU, NULL, PC,
1986 sim_stopped, SIM_SIGBUS);
1987
1988 case ReservedInstruction:
1989 case CoProcessorUnusable:
1990 PC = EPC;
1991 sim_engine_halt (SD, CPU, NULL, PC,
1992 sim_stopped, SIM_SIGILL);
1993
1994 case IntegerOverflow:
1995 case FPE:
1996 sim_engine_halt (SD, CPU, NULL, PC,
1997 sim_stopped, SIM_SIGFPE);
1998
1999 case BreakPoint:
2000 sim_engine_halt (SD, CPU, NULL, PC, sim_stopped, SIM_SIGTRAP);
2001 break;
2002
2003 case SystemCall:
2004 case Trap:
2005 sim_engine_restart (SD, CPU, NULL, PC);
2006 break;
2007
2008 case Watch:
2009 PC = EPC;
2010 sim_engine_halt (SD, CPU, NULL, PC,
2011 sim_stopped, SIM_SIGTRAP);
2012
2013 default: /* Unknown internal exception */
2014 PC = EPC;
2015 sim_engine_halt (SD, CPU, NULL, PC,
2016 sim_stopped, SIM_SIGABRT);
2017
2018 }
2019
2020 case SimulatorFault:
2021 {
2022 va_list ap;
2023 char *msg;
2024 va_start(ap,exception);
2025 msg = va_arg(ap,char *);
2026 va_end(ap);
2027 sim_engine_abort (SD, CPU, NULL_CIA,
2028 "FATAL: Simulator error \"%s\"\n",msg);
2029 }
2030 }
2031
2032 return;
2033 }
2034
2035
2036
2037 /* This function implements what the MIPS32 and MIPS64 ISAs define as
2038 "UNPREDICTABLE" behaviour.
2039
2040 About UNPREDICTABLE behaviour they say: "UNPREDICTABLE results
2041 may vary from processor implementation to processor implementation,
2042 instruction to instruction, or as a function of time on the same
2043 implementation or instruction. Software can never depend on results
2044 that are UNPREDICTABLE. ..." (MIPS64 Architecture for Programmers
2045 Volume II, The MIPS64 Instruction Set. MIPS Document MD00087 revision
2046 0.95, page 2.)
2047
2048 For UNPREDICTABLE behaviour, we print a message, if possible print
2049 the offending instructions mips.igen instruction name (provided by
2050 the caller), and stop the simulator.
2051
2052 XXX FIXME: eventually, stopping the simulator should be made conditional
2053 on a command-line option. */
2054 void
2055 unpredictable_action(sim_cpu *cpu, address_word cia)
2056 {
2057 SIM_DESC sd = CPU_STATE(cpu);
2058
2059 sim_io_eprintf(sd, "UNPREDICTABLE: PC = 0x%s\n", pr_addr (cia));
2060 sim_engine_halt (SD, CPU, NULL, cia, sim_stopped, SIM_SIGABRT);
2061 }
2062
2063
2064 /*-- co-processor support routines ------------------------------------------*/
2065
2066 static int UNUSED
2067 CoProcPresent(unsigned int coproc_number)
2068 {
2069 /* Return TRUE if simulator provides a model for the given co-processor number */
2070 return(0);
2071 }
2072
2073 void
2074 cop_lw (SIM_DESC sd,
2075 sim_cpu *cpu,
2076 address_word cia,
2077 int coproc_num,
2078 int coproc_reg,
2079 unsigned int memword)
2080 {
2081 switch (coproc_num)
2082 {
2083 case 1:
2084 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
2085 {
2086 #ifdef DEBUG
2087 printf("DBG: COP_LW: memword = 0x%08X (uword64)memword = 0x%s\n",memword,pr_addr(memword));
2088 #endif
2089 StoreFPR(coproc_reg,fmt_uninterpreted_32,(uword64)memword);
2090 break;
2091 }
2092
2093 default:
2094 #if 0 /* this should be controlled by a configuration option */
2095 sim_io_printf(sd,"COP_LW(%d,%d,0x%08X) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,memword,pr_addr(cia));
2096 #endif
2097 break;
2098 }
2099
2100 return;
2101 }
2102
2103 void
2104 cop_ld (SIM_DESC sd,
2105 sim_cpu *cpu,
2106 address_word cia,
2107 int coproc_num,
2108 int coproc_reg,
2109 uword64 memword)
2110 {
2111
2112 #ifdef DEBUG
2113 printf("DBG: COP_LD: coproc_num = %d, coproc_reg = %d, value = 0x%s : PC = 0x%s\n", coproc_num, coproc_reg, pr_uword64(memword), pr_addr(cia));
2114 #endif
2115
2116 switch (coproc_num) {
2117 case 1:
2118 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
2119 {
2120 StoreFPR(coproc_reg,fmt_uninterpreted_64,memword);
2121 break;
2122 }
2123
2124 default:
2125 #if 0 /* this message should be controlled by a configuration option */
2126 sim_io_printf(sd,"COP_LD(%d,%d,0x%s) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(memword),pr_addr(cia));
2127 #endif
2128 break;
2129 }
2130
2131 return;
2132 }
2133
2134
2135
2136
2137 unsigned int
2138 cop_sw (SIM_DESC sd,
2139 sim_cpu *cpu,
2140 address_word cia,
2141 int coproc_num,
2142 int coproc_reg)
2143 {
2144 unsigned int value = 0;
2145
2146 switch (coproc_num)
2147 {
2148 case 1:
2149 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
2150 {
2151 value = (unsigned int)ValueFPR(coproc_reg,fmt_uninterpreted_32);
2152 break;
2153 }
2154
2155 default:
2156 #if 0 /* should be controlled by configuration option */
2157 sim_io_printf(sd,"COP_SW(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
2158 #endif
2159 break;
2160 }
2161
2162 return(value);
2163 }
2164
2165 uword64
2166 cop_sd (SIM_DESC sd,
2167 sim_cpu *cpu,
2168 address_word cia,
2169 int coproc_num,
2170 int coproc_reg)
2171 {
2172 uword64 value = 0;
2173 switch (coproc_num)
2174 {
2175 case 1:
2176 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
2177 {
2178 value = ValueFPR(coproc_reg,fmt_uninterpreted_64);
2179 break;
2180 }
2181
2182 default:
2183 #if 0 /* should be controlled by configuration option */
2184 sim_io_printf(sd,"COP_SD(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
2185 #endif
2186 break;
2187 }
2188
2189 return(value);
2190 }
2191
2192
2193
2194
2195 void
2196 decode_coproc (SIM_DESC sd,
2197 sim_cpu *cpu,
2198 address_word cia,
2199 unsigned int instruction,
2200 int coprocnum,
2201 CP0_operation op,
2202 int rt,
2203 int rd,
2204 int sel)
2205 {
2206 switch (coprocnum)
2207 {
2208 case 0: /* standard CPU control and cache registers */
2209 {
2210 /* R4000 Users Manual (second edition) lists the following CP0
2211 instructions:
2212 CODE><-RT><RD-><--TAIL--->
2213 DMFC0 Doubleword Move From CP0 (VR4100 = 01000000001tttttddddd00000000000)
2214 DMTC0 Doubleword Move To CP0 (VR4100 = 01000000101tttttddddd00000000000)
2215 MFC0 word Move From CP0 (VR4100 = 01000000000tttttddddd00000000000)
2216 MTC0 word Move To CP0 (VR4100 = 01000000100tttttddddd00000000000)
2217 TLBR Read Indexed TLB Entry (VR4100 = 01000010000000000000000000000001)
2218 TLBWI Write Indexed TLB Entry (VR4100 = 01000010000000000000000000000010)
2219 TLBWR Write Random TLB Entry (VR4100 = 01000010000000000000000000000110)
2220 TLBP Probe TLB for Matching Entry (VR4100 = 01000010000000000000000000001000)
2221 CACHE Cache operation (VR4100 = 101111bbbbbpppppiiiiiiiiiiiiiiii)
2222 ERET Exception return (VR4100 = 01000010000000000000000000011000)
2223 */
2224 if (((op == cp0_mfc0) || (op == cp0_mtc0) /* MFC0 / MTC0 */
2225 || (op == cp0_dmfc0) || (op == cp0_dmtc0)) /* DMFC0 / DMTC0 */
2226 && sel == 0)
2227 {
2228 switch (rd) /* NOTEs: Standard CP0 registers */
2229 {
2230 /* 0 = Index R4000 VR4100 VR4300 */
2231 /* 1 = Random R4000 VR4100 VR4300 */
2232 /* 2 = EntryLo0 R4000 VR4100 VR4300 */
2233 /* 3 = EntryLo1 R4000 VR4100 VR4300 */
2234 /* 4 = Context R4000 VR4100 VR4300 */
2235 /* 5 = PageMask R4000 VR4100 VR4300 */
2236 /* 6 = Wired R4000 VR4100 VR4300 */
2237 /* 8 = BadVAddr R4000 VR4100 VR4300 */
2238 /* 9 = Count R4000 VR4100 VR4300 */
2239 /* 10 = EntryHi R4000 VR4100 VR4300 */
2240 /* 11 = Compare R4000 VR4100 VR4300 */
2241 /* 12 = SR R4000 VR4100 VR4300 */
2242 #ifdef SUBTARGET_R3900
2243 case 3:
2244 /* 3 = Config R3900 */
2245 case 7:
2246 /* 7 = Cache R3900 */
2247 case 15:
2248 /* 15 = PRID R3900 */
2249
2250 /* ignore */
2251 break;
2252
2253 case 8:
2254 /* 8 = BadVAddr R4000 VR4100 VR4300 */
2255 if (op == cp0_mfc0 || op == cp0_dmfc0)
2256 GPR[rt] = (signed_word) (signed_address) COP0_BADVADDR;
2257 else
2258 COP0_BADVADDR = GPR[rt];
2259 break;
2260
2261 #endif /* SUBTARGET_R3900 */
2262 case 12:
2263 if (op == cp0_mfc0 || op == cp0_dmfc0)
2264 GPR[rt] = SR;
2265 else
2266 SR = GPR[rt];
2267 break;
2268 /* 13 = Cause R4000 VR4100 VR4300 */
2269 case 13:
2270 if (op == cp0_mfc0 || op == cp0_dmfc0)
2271 GPR[rt] = CAUSE;
2272 else
2273 CAUSE = GPR[rt];
2274 break;
2275 /* 14 = EPC R4000 VR4100 VR4300 */
2276 case 14:
2277 if (op == cp0_mfc0 || op == cp0_dmfc0)
2278 GPR[rt] = (signed_word) (signed_address) EPC;
2279 else
2280 EPC = GPR[rt];
2281 break;
2282 /* 15 = PRId R4000 VR4100 VR4300 */
2283 #ifdef SUBTARGET_R3900
2284 /* 16 = Debug */
2285 case 16:
2286 if (op == cp0_mfc0 || op == cp0_dmfc0)
2287 GPR[rt] = Debug;
2288 else
2289 Debug = GPR[rt];
2290 break;
2291 #else
2292 /* 16 = Config R4000 VR4100 VR4300 */
2293 case 16:
2294 if (op == cp0_mfc0 || op == cp0_dmfc0)
2295 GPR[rt] = C0_CONFIG;
2296 else
2297 /* only bottom three bits are writable */
2298 C0_CONFIG = (C0_CONFIG & ~0x7) | (GPR[rt] & 0x7);
2299 break;
2300 #endif
2301 #ifdef SUBTARGET_R3900
2302 /* 17 = Debug */
2303 case 17:
2304 if (op == cp0_mfc0 || op == cp0_dmfc0)
2305 GPR[rt] = DEPC;
2306 else
2307 DEPC = GPR[rt];
2308 break;
2309 #else
2310 /* 17 = LLAddr R4000 VR4100 VR4300 */
2311 #endif
2312 /* 18 = WatchLo R4000 VR4100 VR4300 */
2313 /* 19 = WatchHi R4000 VR4100 VR4300 */
2314 /* 20 = XContext R4000 VR4100 VR4300 */
2315 /* 26 = PErr or ECC R4000 VR4100 VR4300 */
2316 /* 27 = CacheErr R4000 VR4100 */
2317 /* 28 = TagLo R4000 VR4100 VR4300 */
2318 /* 29 = TagHi R4000 VR4100 VR4300 */
2319 /* 30 = ErrorEPC R4000 VR4100 VR4300 */
2320 if (STATE_VERBOSE_P(SD))
2321 sim_io_eprintf (SD,
2322 "Warning: PC 0x%lx:interp.c decode_coproc DEADC0DE\n",
2323 (unsigned long)cia);
2324 GPR[rt] = 0xDEADC0DE; /* CPR[0,rd] */
2325 /* CPR[0,rd] = GPR[rt]; */
2326 default:
2327 if (op == cp0_mfc0 || op == cp0_dmfc0)
2328 GPR[rt] = (signed_word) (int32_t) COP0_GPR[rd];
2329 else
2330 COP0_GPR[rd] = GPR[rt];
2331 #if 0
2332 if (code == 0x00)
2333 sim_io_printf(sd,"Warning: MFC0 %d,%d ignored, PC=%08x (architecture specific)\n",rt,rd, (unsigned)cia);
2334 else
2335 sim_io_printf(sd,"Warning: MTC0 %d,%d ignored, PC=%08x (architecture specific)\n",rt,rd, (unsigned)cia);
2336 #endif
2337 }
2338 }
2339 else if ((op == cp0_mfc0 || op == cp0_dmfc0)
2340 && rd == 16)
2341 {
2342 /* [D]MFC0 RT,C0_CONFIG,SEL */
2343 int32_t cfg = 0;
2344 switch (sel)
2345 {
2346 case 0:
2347 cfg = C0_CONFIG;
2348 break;
2349 case 1:
2350 /* MIPS32 r/o Config1:
2351 Config2 present */
2352 cfg = 0x80000000;
2353 /* MIPS16 implemented.
2354 XXX How to check configuration? */
2355 cfg |= 0x0000004;
2356 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
2357 /* MDMX & FPU implemented */
2358 cfg |= 0x00000021;
2359 break;
2360 case 2:
2361 /* MIPS32 r/o Config2:
2362 Config3 present. */
2363 cfg = 0x80000000;
2364 break;
2365 case 3:
2366 /* MIPS32 r/o Config3:
2367 SmartMIPS implemented. */
2368 cfg = 0x00000002;
2369 break;
2370 }
2371 GPR[rt] = cfg;
2372 }
2373 else if (op == cp0_eret && sel == 0x18)
2374 {
2375 /* ERET */
2376 if (SR & status_ERL)
2377 {
2378 /* Oops, not yet available */
2379 sim_io_printf(sd,"Warning: ERET when SR[ERL] set not handled yet");
2380 PC = EPC;
2381 SR &= ~status_ERL;
2382 }
2383 else
2384 {
2385 PC = EPC;
2386 SR &= ~status_EXL;
2387 }
2388 }
2389 else if (op == cp0_rfe && sel == 0x10)
2390 {
2391 /* RFE */
2392 #ifdef SUBTARGET_R3900
2393 /* TX39: Copy IEp/KUp -> IEc/KUc, and IEo/KUo -> IEp/KUp */
2394
2395 /* shift IE/KU history bits right */
2396 SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 5, 2), 3, 0);
2397
2398 /* TODO: CACHE register */
2399 #endif /* SUBTARGET_R3900 */
2400 }
2401 else if (op == cp0_deret && sel == 0x1F)
2402 {
2403 /* DERET */
2404 Debug &= ~Debug_DM;
2405 DELAYSLOT();
2406 DSPC = DEPC;
2407 }
2408 else
2409 sim_io_eprintf(sd,"Unrecognised COP0 instruction 0x%08X at PC = 0x%s : No handler present\n",instruction,pr_addr(cia));
2410 /* TODO: When executing an ERET or RFE instruction we should
2411 clear LLBIT, to ensure that any out-standing atomic
2412 read/modify/write sequence fails. */
2413 }
2414 break;
2415
2416 case 2: /* co-processor 2 */
2417 {
2418 int handle = 0;
2419
2420
2421 if (!handle)
2422 {
2423 sim_io_eprintf(sd, "COP2 instruction 0x%08X at PC = 0x%s : No handler present\n",
2424 instruction,pr_addr(cia));
2425 }
2426 }
2427 break;
2428
2429 case 1: /* should not occur (FPU co-processor) */
2430 case 3: /* should not occur (FPU co-processor) */
2431 SignalException(ReservedInstruction,instruction);
2432 break;
2433 }
2434
2435 return;
2436 }
2437
2438
2439 /* This code copied from gdb's utils.c. Would like to share this code,
2440 but don't know of a common place where both could get to it. */
2441
2442 /* Temporary storage using circular buffer */
2443 #define NUMCELLS 16
2444 #define CELLSIZE 32
2445 static char*
2446 get_cell (void)
2447 {
2448 static char buf[NUMCELLS][CELLSIZE];
2449 static int cell=0;
2450 if (++cell>=NUMCELLS) cell=0;
2451 return buf[cell];
2452 }
2453
2454 /* Print routines to handle variable size regs, etc */
2455
2456 /* Eliminate warning from compiler on 32-bit systems */
2457 static int thirty_two = 32;
2458
2459 char*
2460 pr_addr (SIM_ADDR addr)
2461 {
2462 char *paddr_str=get_cell();
2463 switch (sizeof(addr))
2464 {
2465 case 8:
2466 sprintf(paddr_str,"%08lx%08lx",
2467 (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
2468 break;
2469 case 4:
2470 sprintf(paddr_str,"%08lx",(unsigned long)addr);
2471 break;
2472 case 2:
2473 sprintf(paddr_str,"%04x",(unsigned short)(addr&0xffff));
2474 break;
2475 default:
2476 sprintf(paddr_str,"%x",addr);
2477 }
2478 return paddr_str;
2479 }
2480
2481 char*
2482 pr_uword64 (uword64 addr)
2483 {
2484 char *paddr_str=get_cell();
2485 sprintf(paddr_str,"%08lx%08lx",
2486 (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
2487 return paddr_str;
2488 }
2489
2490
2491 void
2492 mips_core_signal (SIM_DESC sd,
2493 sim_cpu *cpu,
2494 sim_cia cia,
2495 unsigned map,
2496 int nr_bytes,
2497 address_word addr,
2498 transfer_type transfer,
2499 sim_core_signals sig)
2500 {
2501 const char *copy = (transfer == read_transfer ? "read" : "write");
2502 address_word ip = CIA_ADDR (cia);
2503
2504 switch (sig)
2505 {
2506 case sim_core_unmapped_signal:
2507 sim_io_eprintf (sd, "mips-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
2508 nr_bytes, copy,
2509 (unsigned long) addr, (unsigned long) ip);
2510 COP0_BADVADDR = addr;
2511 SignalExceptionDataReference();
2512 break;
2513
2514 case sim_core_unaligned_signal:
2515 sim_io_eprintf (sd, "mips-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n",
2516 nr_bytes, copy,
2517 (unsigned long) addr, (unsigned long) ip);
2518 COP0_BADVADDR = addr;
2519 if (transfer == read_transfer)
2520 SignalExceptionAddressLoad();
2521 else
2522 SignalExceptionAddressStore();
2523 break;
2524
2525 default:
2526 sim_engine_abort (sd, cpu, cia,
2527 "mips_core_signal - internal error - bad switch");
2528 }
2529 }
2530
2531
2532 void
2533 mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia)
2534 {
2535 ASSERT(cpu != NULL);
2536
2537 if (cpu->exc_suspended > 0)
2538 sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", cpu->exc_suspended);
2539
2540 PC = cia;
2541 memcpy(cpu->exc_trigger_registers, cpu->registers, sizeof(cpu->exc_trigger_registers));
2542 cpu->exc_suspended = 0;
2543 }
2544
2545 void
2546 mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception)
2547 {
2548 ASSERT(cpu != NULL);
2549
2550 if (cpu->exc_suspended > 0)
2551 sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n",
2552 cpu->exc_suspended, exception);
2553
2554 memcpy(cpu->exc_suspend_registers, cpu->registers, sizeof(cpu->exc_suspend_registers));
2555 memcpy(cpu->registers, cpu->exc_trigger_registers, sizeof(cpu->registers));
2556 cpu->exc_suspended = exception;
2557 }
2558
2559 void
2560 mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception)
2561 {
2562 ASSERT(cpu != NULL);
2563
2564 if (exception == 0 && cpu->exc_suspended > 0)
2565 {
2566 /* warn not for breakpoints */
2567 if (cpu->exc_suspended != sim_signal_to_host(sd, SIM_SIGTRAP))
2568 sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n",
2569 cpu->exc_suspended);
2570 }
2571 else if (exception != 0 && cpu->exc_suspended > 0)
2572 {
2573 if (exception != cpu->exc_suspended)
2574 sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n",
2575 cpu->exc_suspended, exception);
2576
2577 memcpy(cpu->registers, cpu->exc_suspend_registers, sizeof(cpu->registers));
2578 }
2579 else if (exception != 0 && cpu->exc_suspended == 0)
2580 {
2581 sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception);
2582 }
2583 cpu->exc_suspended = 0;
2584 }
2585
2586
2587 /*---------------------------------------------------------------------------*/
2588 /*> EOF interp.c <*/