2002-06-03 Chris Demetriou <cgd@broadcom.com>
[binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997, 1998 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35
36 #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
37 mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
38
39 #include "sim-basics.h"
40
41 typedef address_word sim_cia;
42
43 #include "sim-base.h"
44
45
46 /* Deprecated macros and types for manipulating 64bit values. Use
47 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
48
49 typedef signed64 word64;
50 typedef unsigned64 uword64;
51
52 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
53 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
54 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
55 #define SET64HI(t) (((uword64)(t))<<32)
56 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
57 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
58
59 /* Check if a value will fit within a halfword: */
60 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
61
62
63
64 /* Floating-point operations: */
65
66 #include "sim-fpu.h"
67
68 /* FPU registers must be one of the following types. All other values
69 are reserved (and undefined). */
70 typedef enum {
71 fmt_single = 0,
72 fmt_double = 1,
73 fmt_word = 4,
74 fmt_long = 5,
75 /* The following are well outside the normal acceptable format
76 range, and are used in the register status vector. */
77 fmt_unknown = 0x10000000,
78 fmt_uninterpreted = 0x20000000,
79 fmt_uninterpreted_32 = 0x40000000,
80 fmt_uninterpreted_64 = 0x80000000U,
81 } FP_formats;
82
83 unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats));
84 #define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT))
85
86 void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
87 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE))
88
89 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
90 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
91 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
92 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
93 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
94 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
95 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
96 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
97 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
98 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
99 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
100 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
101 unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
102 #define Convert(rm,op,from,to) \
103 convert (SD, CPU, cia, rm, op, from, to)
104
105 /* Macro to update FPSR condition-code field. This is complicated by
106 the fact that there is a hole in the index range of the bits within
107 the FCSR register. Also, the number of bits visible depends on the
108 MIPS ISA version being supported. */
109
110 #define SETFCC(cc,v) {\
111 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
112 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
113 }
114 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0)
115
116 /* This should be the COC1 value at the start of the preceding
117 instruction: */
118 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
119
120 #ifdef TARGET_ENABLE_FR
121 /* FIXME: this should be enabled for all targets, but needs testing first. */
122 #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
123 ? ((SR & status_FR) ? 64 : 32) \
124 : (WITH_TARGET_FLOATING_POINT_BITSIZE))
125 #else
126 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
127 #endif
128
129 /* Standard FCRS bits: */
130 #define IR (0) /* Inexact Result */
131 #define UF (1) /* UnderFlow */
132 #define OF (2) /* OverFlow */
133 #define DZ (3) /* Division by Zero */
134 #define IO (4) /* Invalid Operation */
135 #define UO (5) /* Unimplemented Operation */
136
137 /* Get masks for individual flags: */
138 #if 1 /* SAFE version */
139 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
140 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
141 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
142 #else
143 #define FP_FLAGS(b) (1 << ((b) + 2))
144 #define FP_ENABLE(b) (1 << ((b) + 7))
145 #define FP_CAUSE(b) (1 << ((b) + 12))
146 #endif
147
148 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
149
150 #define FP_MASK_RM (0x3)
151 #define FP_SH_RM (0)
152 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
153 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
154 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
155 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
156 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
157
158
159
160
161
162
163 /* HI/LO register accesses */
164
165 /* For some MIPS targets, the HI/LO registers have certain timing
166 restrictions in that, for instance, a read of a HI register must be
167 separated by at least three instructions from a preceeding read.
168
169 The struct below is used to record the last access by each of A MT,
170 MF or other OP instruction to a HI/LO register. See mips.igen for
171 more details. */
172
173 typedef struct _hilo_access {
174 signed64 timestamp;
175 address_word cia;
176 } hilo_access;
177
178 typedef struct _hilo_history {
179 hilo_access mt;
180 hilo_access mf;
181 hilo_access op;
182 } hilo_history;
183
184
185
186
187 /* Integer ALU operations: */
188
189 #include "sim-alu.h"
190
191 #define ALU32_END(ANS) \
192 if (ALU32_HAD_OVERFLOW) \
193 SignalExceptionIntegerOverflow (); \
194 (ANS) = (signed32) ALU32_OVERFLOW_RESULT
195
196
197 #define ALU64_END(ANS) \
198 if (ALU64_HAD_OVERFLOW) \
199 SignalExceptionIntegerOverflow (); \
200 (ANS) = ALU64_OVERFLOW_RESULT;
201
202
203
204
205
206 /* The following is probably not used for MIPS IV onwards: */
207 /* Slots for delayed register updates. For the moment we just have a
208 fixed number of slots (rather than a more generic, dynamic
209 system). This keeps the simulator fast. However, we only allow
210 for the register update to be delayed for a single instruction
211 cycle. */
212 #define PSLOTS (8) /* Maximum number of instruction cycles */
213
214 typedef struct _pending_write_queue {
215 int in;
216 int out;
217 int total;
218 int slot_delay[PSLOTS];
219 int slot_size[PSLOTS];
220 int slot_bit[PSLOTS];
221 void *slot_dest[PSLOTS];
222 unsigned64 slot_value[PSLOTS];
223 } pending_write_queue;
224
225 #ifndef PENDING_TRACE
226 #define PENDING_TRACE 0
227 #endif
228 #define PENDING_IN ((CPU)->pending.in)
229 #define PENDING_OUT ((CPU)->pending.out)
230 #define PENDING_TOTAL ((CPU)->pending.total)
231 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
232 #define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
233 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
234 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
235 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
236
237 /* Invalidate the pending write queue, all pending writes are
238 discarded. */
239
240 #define PENDING_INVALIDATE() \
241 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
242
243 /* Schedule a write to DEST for N cycles time. For 64 bit
244 destinations, schedule two writes. For floating point registers,
245 the caller should schedule a write to both the dest register and
246 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
247 is updated. */
248
249 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
250 do { \
251 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
252 sim_engine_abort (SD, CPU, cia, \
253 "PENDING_SCHED - buffer overflow\n"); \
254 if (PENDING_TRACE) \
255 sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \
256 (unsigned long) cia, (unsigned long) &(DEST), \
257 (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
258 PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
259 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
260 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
261 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
262 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
263 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
264 PENDING_IN = (PENDING_IN + 1) % PSLOTS; \
265 PENDING_TOTAL += 1; \
266 } while (0)
267
268 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
269 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
270
271 #define PENDING_TICK() pending_tick (SD, CPU, cia)
272
273 #define PENDING_FLUSH() abort () /* think about this one */
274 #define PENDING_FP() abort () /* think about this one */
275
276 /* For backward compatibility */
277 #define PENDING_FILL(R,VAL) \
278 do { \
279 if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR) \
280 { \
281 PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 1, -1); \
282 PENDING_SCHED(FPR_STATE[(R) - FGRIDX], fmt_uninterpreted, 1, -1); \
283 } \
284 else \
285 PENDING_SCHED(GPR[(R)], VAL, 1, -1); \
286 } while (0)
287
288
289 enum float_operation
290 {
291 FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
292 FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
293 FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
294 };
295
296
297 /* The internal representation of an MDMX accumulator.
298 Note that 24 and 48 bit accumulator elements are represented in
299 32 or 64 bits. Since the accumulators are 2's complement with
300 overflow suppressed, high-order bits can be ignored in most contexts. */
301
302 typedef signed32 signed24;
303 typedef signed64 signed48;
304
305 typedef union {
306 signed24 ob[8];
307 signed48 qh[4];
308 } MDMX_accumulator;
309
310
311 /* Conventional system arguments. */
312 #define SIM_STATE sim_cpu *cpu, address_word cia
313 #define SIM_ARGS CPU, cia
314
315 struct _sim_cpu {
316
317
318 /* The following are internal simulator state variables: */
319 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
320 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
321 address_word dspc; /* delay-slot PC */
322 #define DSPC ((CPU)->dspc)
323
324 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
325 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
326
327
328 /* State of the simulator */
329 unsigned int state;
330 unsigned int dsstate;
331 #define STATE ((CPU)->state)
332 #define DSSTATE ((CPU)->dsstate)
333
334 /* Flags in the "state" variable: */
335 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
336 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
337 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
338 #define simPCOC0 (1 << 17) /* COC[1] from current */
339 #define simPCOC1 (1 << 18) /* COC[1] from previous */
340 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
341 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
342 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
343 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
344
345 #ifndef ENGINE_ISSUE_PREFIX_HOOK
346 #define ENGINE_ISSUE_PREFIX_HOOK() \
347 { \
348 /* Perform any pending writes */ \
349 PENDING_TICK(); \
350 /* Set previous flag, depending on current: */ \
351 if (STATE & simPCOC0) \
352 STATE |= simPCOC1; \
353 else \
354 STATE &= ~simPCOC1; \
355 /* and update the current value: */ \
356 if (GETFCC(0)) \
357 STATE |= simPCOC0; \
358 else \
359 STATE &= ~simPCOC0; \
360 }
361 #endif /* ENGINE_ISSUE_PREFIX_HOOK */
362
363
364 /* This is nasty, since we have to rely on matching the register
365 numbers used by GDB. Unfortunately, depending on the MIPS target
366 GDB uses different register numbers. We cannot just include the
367 relevant "gdb/tm.h" link, since GDB may not be configured before
368 the sim world, and also the GDB header file requires too much other
369 state. */
370
371 #ifndef TM_MIPS_H
372 #define LAST_EMBED_REGNUM (89)
373 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
374
375
376 #endif
377
378
379 /* To keep this default simulator simple, and fast, we use a direct
380 vector of registers. The internal simulator engine then uses
381 manifests to access the correct slot. */
382
383 unsigned_word registers[LAST_EMBED_REGNUM + 1];
384
385 int register_widths[NUM_REGS];
386 #define REGISTERS ((CPU)->registers)
387
388 #define GPR (&REGISTERS[0])
389 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
390
391 /* While space is allocated for the floating point registers in the
392 main registers array, they are stored separatly. This is because
393 their size may not necessarily match the size of either the
394 general-purpose or system specific registers */
395 #define NR_FGR (32)
396 #define FGRIDX (38)
397 fp_word fgr[NR_FGR];
398 #define FGR ((CPU)->fgr)
399
400 #define LO (REGISTERS[33])
401 #define HI (REGISTERS[34])
402 #define PCIDX 37
403 #define PC (REGISTERS[PCIDX])
404 #define CAUSE (REGISTERS[36])
405 #define SRIDX (32)
406 #define SR (REGISTERS[SRIDX]) /* CPU status register */
407 #define FCR0IDX (71)
408 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
409 #define FCR31IDX (70)
410 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
411 #define FCSR (FCR31)
412 #define Debug (REGISTERS[86])
413 #define DEPC (REGISTERS[87])
414 #define EPC (REGISTERS[88])
415
416 /* All internal state modified by signal_exception() that may need to be
417 rolled back for passing moment-of-exception image back to gdb. */
418 unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
419 unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
420 int exc_suspended;
421
422 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
423 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
424 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
425
426 unsigned_word c0_config_reg;
427 #define C0_CONFIG ((CPU)->c0_config_reg)
428
429 /* The following are pseudonyms for standard registers */
430 #define ZERO (REGISTERS[0])
431 #define V0 (REGISTERS[2])
432 #define A0 (REGISTERS[4])
433 #define A1 (REGISTERS[5])
434 #define A2 (REGISTERS[6])
435 #define A3 (REGISTERS[7])
436 #define T8IDX 24
437 #define T8 (REGISTERS[T8IDX])
438 #define SPIDX 29
439 #define SP (REGISTERS[SPIDX])
440 #define RAIDX 31
441 #define RA (REGISTERS[RAIDX])
442
443 /* While space is allocated in the main registers arrray for some of
444 the COP0 registers, that space isn't sufficient. Unknown COP0
445 registers overflow into the array below */
446
447 #define NR_COP0_GPR 32
448 unsigned_word cop0_gpr[NR_COP0_GPR];
449 #define COP0_GPR ((CPU)->cop0_gpr)
450 #define COP0_BADVADDR ((unsigned32)(COP0_GPR[8]))
451
452 /* Keep the current format state for each register: */
453 FP_formats fpr_state[32];
454 #define FPR_STATE ((CPU)->fpr_state)
455
456 pending_write_queue pending;
457
458 /* The MDMX accumulator (used only for MDMX ASE). */
459 MDMX_accumulator acc;
460 #define ACC ((CPU)->acc)
461
462 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
463 read-write instructions. It is set when a linked load occurs. It
464 is tested and cleared by the conditional store. It is cleared
465 (during other CPU operations) when a store to the location would
466 no longer be atomic. In particular, it is cleared by exception
467 return instructions. */
468 int llbit;
469 #define LLBIT ((CPU)->llbit)
470
471
472 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
473 corruptions caused by using the HI or LO register too close to a
474 following operation is spotted. See mips.igen for more details. */
475
476 hilo_history hi_history;
477 #define HIHISTORY (&(CPU)->hi_history)
478 hilo_history lo_history;
479 #define LOHISTORY (&(CPU)->lo_history)
480
481 #define check_branch_bug()
482 #define mark_branch_bug(TARGET)
483
484
485
486 sim_cpu_base base;
487 };
488
489
490 /* MIPS specific simulator watch config */
491
492 void watch_options_install PARAMS ((SIM_DESC sd));
493
494 struct swatch {
495 sim_event *pc;
496 sim_event *clock;
497 sim_event *cycles;
498 };
499
500
501 /* FIXME: At present much of the simulator is still static */
502 struct sim_state {
503
504 struct swatch watch;
505
506 sim_cpu cpu[MAX_NR_PROCESSORS];
507 #if (WITH_SMP)
508 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
509 #else
510 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
511 #endif
512
513
514 sim_state_base base;
515 };
516
517
518
519 /* Status information: */
520
521 /* TODO : these should be the bitmasks for these bits within the
522 status register. At the moment the following are VR4300
523 bit-positions: */
524 #define status_KSU_mask (0x18) /* mask for KSU bits */
525 #define status_KSU_shift (3) /* shift for field */
526 #define ksu_kernel (0x0)
527 #define ksu_supervisor (0x1)
528 #define ksu_user (0x2)
529 #define ksu_unknown (0x3)
530
531 #define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift)
532
533 #define status_IE (1 << 0) /* Interrupt enable */
534 #define status_EIE (1 << 16) /* Enable Interrupt Enable */
535 #define status_EXL (1 << 1) /* Exception level */
536 #define status_RE (1 << 25) /* Reverse Endian in user mode */
537 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
538 #define status_SR (1 << 20) /* soft reset or NMI */
539 #define status_BEV (1 << 22) /* Location of general exception vectors */
540 #define status_TS (1 << 21) /* TLB shutdown has occurred */
541 #define status_ERL (1 << 2) /* Error level */
542 #define status_IM7 (1 << 15) /* Timer Interrupt Mask */
543 #define status_RP (1 << 27) /* Reduced Power mode */
544
545 /* Specializations for TX39 family */
546 #define status_IEc (1 << 0) /* Interrupt enable (current) */
547 #define status_KUc (1 << 1) /* Kernel/User mode */
548 #define status_IEp (1 << 2) /* Interrupt enable (previous) */
549 #define status_KUp (1 << 3) /* Kernel/User mode */
550 #define status_IEo (1 << 4) /* Interrupt enable (old) */
551 #define status_KUo (1 << 5) /* Kernel/User mode */
552 #define status_IM_mask (0xff) /* Interrupt mask */
553 #define status_IM_shift (8)
554 #define status_NMI (1 << 20) /* NMI */
555 #define status_NMI (1 << 20) /* NMI */
556
557 /* Status bits used by MIPS32/MIPS64. */
558 #define status_UX (1 << 5) /* 64-bit user addrs */
559 #define status_SX (1 << 6) /* 64-bit supervisor addrs */
560 #define status_KX (1 << 7) /* 64-bit kernel addrs */
561 #define status_TS (1 << 21) /* TLB shutdown has occurred */
562 #define status_PX (1 << 23) /* Enable 64 bit operations */
563 #define status_MX (1 << 24) /* Enable MDMX resources */
564 #define status_CU0 (1 << 28) /* Coprocessor 0 usable */
565 #define status_CU1 (1 << 29) /* Coprocessor 1 usable */
566 #define status_CU2 (1 << 30) /* Coprocessor 2 usable */
567 #define status_CU3 (1 << 31) /* Coprocessor 3 usable */
568 /* Bits reserved for implementations: */
569 #define status_SBX (1 << 16) /* Enable SiByte SB-1 extensions. */
570
571 #define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */
572 #define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */
573 #define cause_CE_mask 0x30000000 /* Coprocessor exception */
574 #define cause_CE_shift 28
575 #define cause_EXC2_mask 0x00070000
576 #define cause_EXC2_shift 16
577 #define cause_IP7 (1 << 15) /* Interrupt pending */
578 #define cause_SIOP (1 << 12) /* SIO pending */
579 #define cause_IP3 (1 << 11) /* Int 0 pending */
580 #define cause_IP2 (1 << 10) /* Int 1 pending */
581
582 #define cause_EXC_mask (0x1c) /* Exception code */
583 #define cause_EXC_shift (2)
584
585 #define cause_SW0 (1 << 8) /* Software interrupt 0 */
586 #define cause_SW1 (1 << 9) /* Software interrupt 1 */
587 #define cause_IP_mask (0x3f) /* Interrupt pending field */
588 #define cause_IP_shift (10)
589
590 #define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask)
591 #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
592
593
594 /* NOTE: We keep the following status flags as bit values (1 for true,
595 0 for false). This allows them to be used in binary boolean
596 operations without worrying about what exactly the non-zero true
597 value is. */
598
599 /* UserMode */
600 #ifdef SUBTARGET_R3900
601 #define UserMode ((SR & status_KUc) ? 1 : 0)
602 #else
603 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
604 #endif /* SUBTARGET_R3900 */
605
606 /* BigEndianMem */
607 /* Hardware configuration. Affects endianness of LoadMemory and
608 StoreMemory and the endianness of Kernel and Supervisor mode
609 execution. The value is 0 for little-endian; 1 for big-endian. */
610 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
611 /*(state & simBE) ? 1 : 0)*/
612
613 /* ReverseEndian */
614 /* This mode is selected if in User mode with the RE bit being set in
615 SR (Status Register). It reverses the endianness of load and store
616 instructions. */
617 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
618
619 /* BigEndianCPU */
620 /* The endianness for load and store instructions (0=little;1=big). In
621 User mode this endianness may be switched by setting the state_RE
622 bit in the SR register. Thus, BigEndianCPU may be computed as
623 (BigEndianMem EOR ReverseEndian). */
624 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
625
626
627
628 /* Exceptions: */
629
630 /* NOTE: These numbers depend on the processor architecture being
631 simulated: */
632 enum ExceptionCause {
633 Interrupt = 0,
634 TLBModification = 1,
635 TLBLoad = 2,
636 TLBStore = 3,
637 AddressLoad = 4,
638 AddressStore = 5,
639 InstructionFetch = 6,
640 DataReference = 7,
641 SystemCall = 8,
642 BreakPoint = 9,
643 ReservedInstruction = 10,
644 CoProcessorUnusable = 11,
645 IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */
646 Trap = 13,
647 FPE = 15,
648 DebugBreakPoint = 16, /* Impl. dep. in MIPS32/MIPS64. */
649 MDMX = 22,
650 Watch = 23,
651 MCheck = 24,
652 CacheErr = 30,
653 NMIReset = 31, /* Reserved in MIPS32/MIPS64. */
654
655
656 /* The following exception code is actually private to the simulator
657 world. It is *NOT* a processor feature, and is used to signal
658 run-time errors in the simulator. */
659 SimulatorFault = 0xFFFFFFFF
660 };
661
662 #define TLB_REFILL (0)
663 #define TLB_INVALID (1)
664
665
666 /* The following break instructions are reserved for use by the
667 simulator. The first is used to halt the simulation. The second
668 is used by gdb for break-points. NOTE: Care must be taken, since
669 this value may be used in later revisions of the MIPS ISA. */
670 #define HALT_INSTRUCTION_MASK (0x03FFFFC0)
671
672 #define HALT_INSTRUCTION (0x03ff000d)
673 #define HALT_INSTRUCTION2 (0x0000ffcd)
674
675
676 #define BREAKPOINT_INSTRUCTION (0x0005000d)
677 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
678
679
680
681 void interrupt_event (SIM_DESC sd, void *data);
682
683 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
684 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
685 #define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level)
686 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
687 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
688 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
689 #define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference)
690 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
691 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
692 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
693 #define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
694 #define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
695 #define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
696 #define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
697 #define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
698 #define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
699 #define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification)
700 #define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX)
701 #define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch)
702 #define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck)
703 #define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr)
704
705 /* Co-processor accesses */
706
707 /* XXX FIXME: For now, assume that FPU (cp1) is always usable. */
708 #define COP_Usable(coproc_num) (coproc_num == 1)
709
710 void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
711 void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
712 unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
713 uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
714
715 #define COP_LW(coproc_num,coproc_reg,memword) \
716 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
717 #define COP_LD(coproc_num,coproc_reg,memword) \
718 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
719 #define COP_SW(coproc_num,coproc_reg) \
720 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
721 #define COP_SD(coproc_num,coproc_reg) \
722 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
723
724
725 void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
726 #define DecodeCoproc(instruction) \
727 decode_coproc (SD, CPU, cia, (instruction))
728
729 int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
730
731
732 /* MDMX access. */
733
734 typedef unsigned int MX_fmtsel; /* MDMX format select field (5 bits). */
735 #define ob_fmtsel(sel) (((sel)<<1)|0x0)
736 #define qh_fmtsel(sel) (((sel)<<2)|0x1)
737
738 #define fmt_mdmx fmt_uninterpreted
739
740 #define MX_VECT_AND (0)
741 #define MX_VECT_NOR (1)
742 #define MX_VECT_OR (2)
743 #define MX_VECT_XOR (3)
744 #define MX_VECT_SLL (4)
745 #define MX_VECT_SRL (5)
746 #define MX_VECT_ADD (6)
747 #define MX_VECT_SUB (7)
748 #define MX_VECT_MIN (8)
749 #define MX_VECT_MAX (9)
750 #define MX_VECT_MUL (10)
751 #define MX_VECT_MSGN (11)
752 #define MX_VECT_SRA (12)
753 #define MX_VECT_ABSD (13) /* SB-1 only. */
754 #define MX_VECT_AVG (14) /* SB-1 only. */
755
756 unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
757 #define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
758 #define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
759 #define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
760 #define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
761 #define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
762 #define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
763 #define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
764 #define MX_Or(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_OR, op1, vt, fmtsel)
765 #define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
766 #define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
767 #define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
768 #define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
769 #define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
770 #define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
771 #define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
772
773 #define MX_C_EQ 0x1
774 #define MX_C_LT 0x4
775
776 void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel);
777 #define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
778
779 unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel);
780 #define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
781
782 #define MX_VECT_ADDA (0)
783 #define MX_VECT_ADDL (1)
784 #define MX_VECT_MULA (2)
785 #define MX_VECT_MULL (3)
786 #define MX_VECT_MULS (4)
787 #define MX_VECT_MULSL (5)
788 #define MX_VECT_SUBA (6)
789 #define MX_VECT_SUBL (7)
790 #define MX_VECT_ABSDA (8) /* SB-1 only. */
791
792 void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
793 #define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
794 #define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
795 #define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
796 #define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
797 #define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
798 #define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
799 #define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
800 #define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
801 #define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
802
803 #define MX_FMT_OB (0)
804 #define MX_FMT_QH (1)
805
806 /* The following codes chosen to indicate the units of shift. */
807 #define MX_RAC_L (0)
808 #define MX_RAC_M (1)
809 #define MX_RAC_H (2)
810
811 unsigned64 mdmx_rac_op (SIM_STATE, int, int);
812 #define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
813
814 void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64);
815 #define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
816 void mdmx_wach (SIM_STATE, int, unsigned64);
817 #define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
818
819 #define MX_RND_AS (0)
820 #define MX_RND_AU (1)
821 #define MX_RND_ES (2)
822 #define MX_RND_EU (3)
823 #define MX_RND_ZS (4)
824 #define MX_RND_ZU (5)
825
826 unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
827 #define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
828 #define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
829 #define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
830 #define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
831 #define MX_RZS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
832 #define MX_RZU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
833
834 unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64);
835 #define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
836
837
838
839 /* Memory accesses */
840
841 /* The following are generic to all versions of the MIPS architecture
842 to date: */
843
844 /* Memory Access Types (for CCA): */
845 #define Uncached (0)
846 #define CachedNoncoherent (1)
847 #define CachedCoherent (2)
848 #define Cached (3)
849
850 #define isINSTRUCTION (1 == 0) /* FALSE */
851 #define isDATA (1 == 1) /* TRUE */
852 #define isLOAD (1 == 0) /* FALSE */
853 #define isSTORE (1 == 1) /* TRUE */
854 #define isREAL (1 == 0) /* FALSE */
855 #define isRAW (1 == 1) /* TRUE */
856 /* The parameter HOST (isTARGET / isHOST) is ignored */
857 #define isTARGET (1 == 0) /* FALSE */
858 /* #define isHOST (1 == 1) TRUE */
859
860 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
861 is the number of bytes minus 1. */
862 #define AccessLength_BYTE (0)
863 #define AccessLength_HALFWORD (1)
864 #define AccessLength_TRIPLEBYTE (2)
865 #define AccessLength_WORD (3)
866 #define AccessLength_QUINTIBYTE (4)
867 #define AccessLength_SEXTIBYTE (5)
868 #define AccessLength_SEPTIBYTE (6)
869 #define AccessLength_DOUBLEWORD (7)
870 #define AccessLength_QUADWORD (15)
871
872 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
873 ? AccessLength_DOUBLEWORD /*7*/ \
874 : AccessLength_WORD /*3*/)
875 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
876
877
878 INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
879 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
880 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
881
882 INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
883 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
884 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
885
886 INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
887 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
888 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
889
890 INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
891 #define CacheOp(op,pAddr,vAddr,instruction) \
892 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
893
894 INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
895 #define SyncOperation(stype) \
896 sync_operation (SD, CPU, cia, (stype))
897
898 INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
899 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
900 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
901
902 void unpredictable_action (sim_cpu *cpu, address_word cia);
903 #define NotWordValue(val) not_word_value (SD_, (val))
904 #define Unpredictable() unpredictable (SD_)
905 #define UnpredictableResult() /* For now, do nothing. */
906
907 INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
908 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
909 INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
910 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
911 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
912
913 void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
914 extern FILE *tracefh;
915
916 INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
917 extern SIM_CORE_SIGNAL_FN mips_core_signal;
918
919 char* pr_addr PARAMS ((SIM_ADDR addr));
920 char* pr_uword64 PARAMS ((uword64 addr));
921
922
923 #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
924
925 void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
926 void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
927 void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
928
929
930 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
931 #include "sim-main.c"
932 #endif
933
934 #endif